用户名: 密码: 验证码:
抗热震陶瓷制备技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题针对普通陶瓷热电偶保护管耐急冷急热性差,很容易断裂这一问题,对氧化铝陶瓷进行了改进,以提高氧化铝陶瓷的抗热震性。
     在实验过程中采用以Al_2O_3为基的纳米陶瓷粉料,再分别加入适量的堇青石、钛酸铝和霞石等粉料。通过混料、成型、排塑、烧结等工艺制备出Al_2O_3基纳米复相陶瓷。成型工艺采用干压成型和冷等静压成型技术,烧结工艺为无压烧结。
     通过实验确定了制备Al_2O_3—堇青石复相陶瓷、Al_2O_3—钛酸铝复相陶瓷和Al_2O_3—霞石复相陶瓷的最佳工艺,以及合成堇青石和霞石的最佳合成工艺。从XRD检测结果可以看出,合成堇青石的最佳工艺为:最高合成温度为1400℃,保温2h,降温速度为0.8℃/min;合成霞石的最佳工艺为:最高合成温度为1310℃,保温2h,降温速度为0.8℃/min。采用SEM对陶瓷进行组织结构分析,发现氧化铝—堇青石复相陶瓷中形成长柱状颗粒,互相连接的长柱状颗粒能较好地抵抗由于热震引起的裂纹的扩展,使材料的抗热震性能大大改善;在Al_2O_3—钛酸铝复相陶瓷中,存在大量的强化相颗粒,这些强化相颗粒镶嵌在基体上,可以阻止裂纹的扩展,有效的缓解了热应力,因此提高了材料的抗热震性。结果表明:堇青石加入量w(堇青石)=10%,烧结温度为1520℃时,陶瓷样品能够承受1500℃温差(空冷)的热震破坏,并且是制备Al_2O_3—堇青石复相陶瓷的最佳工艺;钛酸铝加入量w(钛酸铝)=20%,烧结温度为1510℃时,陶瓷样品能够承受1500℃温差(空冷)的热震破坏,并且是制备Al_2O_3—钛酸铝复相陶瓷的最佳工艺;霞石加入量w(霞石)=20%,烧结温度为1500℃时,陶瓷样品能够承受钢水中1500℃温差(空冷)的热震破坏,并且是制备Al_2O_3—霞石复相陶瓷的最佳工艺。
This project is to study the method of improving the thermal shock resistance of alumina ceramics,because the tube for protecting thermocouples which is made of common ceramics bears the quick cooling and heating badly,splits very easily.
     In the experiment,Al_2O_3 powder is the basic material of nano-composite ceramics. We added appropriate amount of other kinds of powder,such as cordierite,aluminium titanate and eucryptite.The progress of making alumina matrix ceramics can be divided into mixing,shaping,discharging plastic and sintering,etc.In the process of shaping and sintering,dry pressing,isostatically pressing shaping technology and pressureless sintering technology were used respectively in the experiment.
     After the experiment,we determined the material gradient and the best technical process of alumina-cordierite mullite ceramics,alumina-aluminium titanate mullite ceramics and alumina-eucryptite mullite ceramics.In addition,the best synthesis technical of cordierite and eucryptite was also determined.Results of XRD show that the best synthesis technical of cordierite is synthesis temperature is 1400℃,heat preservation time is 2h,cooling rate is 0.8℃/min;The best synthesis technical of eucryptite is synthesis temperature is 1310℃,heat preservation time is 2h,cooling rate is 0.8℃/min.The microstructure of ceramics was observed in SEM.It was founded that the solid solution has formed in the matrix of alumina-cordierite mullite ceramics,and it looks as the shape of long strip distributing without any orderliness.It is effective to abate thermal stress and raise the strength of ceramics for such microstructure,and it is one of the most important reason that the properties of thermal shock resistance of the ceramics can be improved effectively.There are a lot of strengthened grains in the alumina-aluminium titanate mullite ceramics,these grains bond in the matrix so that they can prevent the expansion of crack and abate thermal stress effectively,and it is one of the most important reason that the properties of thermal shock resistance of the ceramics can be improved.The results show that when the amount of additive cordierite w(cordierite)=10%and the sintering temperature is 1520℃,the ceramics can endure the thermal shock with a temperature difference of 1500℃(cooling in air),and this is the best component of alumina-cordierite ceramics.When the amount of additive aluminium titanate w(aluminium titanate)=20%and the sintering temperature to be 1510℃,the ceramics can endure the thermal shock with a temperature difference of 1500℃(cooling in air),and this is the best component of alumina-aluminium titanate ceramics.When the mount of additive eucryptite w(eucryptite)=20%and the sintering temperature is 1500℃,the ceramics can endure the thermal shock with a temperature difference of 1500℃(cooling in air),and this is the best component of alumina-eucryptite ceramics.
引文
[1]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000.
    [2]金志浩,周敬恩.工程陶瓷材料.北京:机械工业出版社,1986.
    [3]周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [4]张清纯.陶瓷材料的力学性能.北京:科学出版社,1987.
    [5]董艳玲,王为民.陶瓷材料抗热震性的研究进展.现代技术陶瓷,2004,32(1):37-41.
    [6]Kingery W D著.清华大学无机教研组译.陶瓷导论.北京:中国建筑工业出版社,1982.
    [7]华南工学院.陶瓷材料物理性能.北京:中国建工出版社,1980.
    [8]宋世学,艾兴,黄传真.结构陶瓷抗热震性能及其机理的研究进展.陶瓷学报,2002,23(4):27-31
    [9]Hasselman D P H.Elastic energy at fracture and surface energy as design criteria for thermal shock.J.Am.Ceram.Soc.,1963,46(11):535-540.
    [10]Kingery W D.Factors affecting thermal shock resistance of ceramic materials.J.Am.Ceram.Soc.,1955,38(1):3-15.
    [11]Hasselman D P H.Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics.J.Am.Ceram.Soc.,1969,52(11):600-604.
    [12]焦绥隆,Bcorsa C E.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理.材料导报,1996,10(增):89-93.
    [13]王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析.陶瓷学报,2000,21(2):107-111.
    [14]Lu T J,Fleck N A.The thermal shock resistance of solids.Acta Material,1998,46(13):4755-4768.
    [15]Kingery W D.The thermal conductivity of ceramic dielectrics.New York:Pergamon Press,1962.
    [16]斯温M V著.郭景坤译.陶瓷的结构与性能.北京:科学出版社,1998.
    [17]Lutz E H,Swain M V,Claussen.Thermal shock behavior of duplex ceramics.J.Am.Ceram.Soc.,1991,74(1):19-23.
    [18]Lutz E H,Swain M V.Fracture toughness and thermal shock behavior of silicon nitride ceramics.J.Am.Ceram.Soc.,1992,75(1):76-80.
    [19]时清海,施季春.含莫来石一氧化锆的铝质耐火材料热力学性能评价.国外耐火材料,1996,33(10):50-53.
    [20]Gravie G M.Desiging advanced refractories with monoclinic zirconia polycrystals.Materials Science Forum,1988,34:681-688.
    [21]Swain M V.R-curve behavior and thermal shock resistance of ceramics.J.Am.Ceram.Soc.,1990,73(8):621-628.
    [22]隋万美,黄勇.微裂纹复相陶瓷的抗热震机制.材料导报,2000,14(2):34-35.
    [23]Knesans R,Steinbrech R.Memory effort of crack resistance during slow crack growth in notched bend specimens.J.Mater.Sci.Lett.,1982,17(4):327-329.
    [24]Sakai M.R-curve behavior of polycrystalline graphite:microcracking and grain bridging in the wake region.J.Am.Ceram.Soc.,1988,71(8):609-616.
    [25]Paul E B.Influence of reinforcement content and diameter on the R-curve response in SiC-whisker-reinforced alumina,J.Am.Ceram.Sot.,1988,71(8):609-616.
    [26]宋桂明,周玉,孙毅等.晶须增韧陶瓷基复合材料裂纹扩展行为模型.材料研究学报,1998,12(1):31-36.
    [27]Tiegs T N,Becher P F.Thermal shock behavior of alumina-SiC whisker composite.J.Am.Ceram.Soc.,1987,70(5):109-111.
    [28]Gabriel H M,Kloos H K.Morphology and structure of iron plated TiN,TiC and Ti(C,N) coatings.Thin Solid Films,1984,118(3):243-254.
    [29]赵世柯,黄校先.ZrO_2相变设计改善耐火材料的抗热震性的设想.耐火材料,1999,33(2):104-106.
    [30]张清纯,林素贞,李文兰.反应烧结Si_3N_4的热震断裂行为.无机材料学报,1987,2(2):161-168.
    [31]Chin C C.Influence of surface oxidation on thermal shock resistance and flexural of SiC/Al_2O_3composites.J.Mater.Sci.,1994,29(4):2078-2082.
    [32]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992.
    [33]蔡捷伟.热电偶保护管的性能和选用.传感器世界,2002,8(10):25-29.
    [34]孙宏飞,万殿茅.新材料技术在热电偶保护套管中的应用现状.中国仪器仪表,2002,21(3):1-5.
    [35]Rawets J C.Thermal stability of nanostructured metal alloys.J.Thermal Spray Tech.,1998,7(5):427-428.
    [36]蒋守国,李鸿寿.增压流化床的测温热电偶.仪表技术与传感器,1998,35(2):31-40.
    [37]Ma W M,Xiu Z M,Wen L,et al.Sintering densification and properties of Al_2O_3/PSZ(3Y) ceramic composites.The Chinese Journal of Nonferrous Meta,2003,13(2):260-264.
    [38]Stearns L C,Zhao J H,Harmer M P.Processing microstructure development in Al_2O_3-SiC nanocomposites.Journal of European Ceramic Society,1992(10):473-477.
    [39]Bowen B P.Micromechanisms of toughening in a particulate reinforced ceramics matrix composite.Ceramic Engineering and Science Proceedings,1992(5):99-114.
    [40]徐利华.不同形态ZrO_2复合Al_2O_3陶瓷的抗热震性设计与表征.硅酸盐学报,2000,28(8): 412-418.
    [41]Nitin P P,Stephen J B,Helen M C.Flaw tolerance and crack resistance properties of alumina-aluminium titanate composites with tailored microstructure.J.Am.Ceram.Soc.,1993,76(9):2312-2320.
    [42]Hasselman D P H,Kimberly Y D.Effect of thermal history on the thermal diffusivity and thermal expansion of an alumina-aluminium titanate composite.J.Am.Ceram.Soc.,1993,76(9):2180-2184.
    [43]Uhlenhut H,Pandolfelli V C,Salvini V R,et al.Production of alumina-aluminium titanate compositions by infiltration.Ceramica,1994,40(2):1-4.
    [44]Barolome J F,Requwna J,Moya J S,et al.Cyclic fatigue crack growth resistance of Al_2O_3-Al_2TiO_5 compositions.Acta Mater,1996,44(4):1361-1370.
    [45]王宏志,高濂,郭景坤.SiC颗粒尺寸对Al_2O_3-SiC纳米复合陶瓷的影响.无机材料学报,1999,14(4):679-683.
    [46]王宏志,高濂,归林华等.Al_2O_3-ZrO_2(3Y)-SiC纳米复合材料的制备及性能.无机材料学报,1999,14(2):280-286.
    [47]马伟民,修稚萌,毕孝国等.Al_2O_3-ZrO_2(Y_2O3)复合材料断裂过程中的相变及力学性能.金属学报,2005,41(1):93-98.
    [48]宋怀凤,贾继华,杨金等.高炉风口小套设计理论思考与建议.河北理工学院学报,2000,22(1):19-24.
    [49]韩亚苓.Al_2O_3/SiC纳米复相陶瓷制备、性能及耐蚀轴套的研究:(博士学位论文).沈阳:中国科学院金属研究所,1999.
    [50]周亚曦,高钦,周健等.微波烧结ZTA细晶复合陶瓷.硅酸盐学报,1998,26(6):740-744.
    [51]王宏志,高濂,陈洪光等.Al_2O_3复合材料中纳米SiC对显微结构的影响.无机材料学报,1998,13(4):603-607.
    [52]陈国华,刘心宇.高能球磨对堇青石基陶瓷的相组成和相变机理的影响.中国有色金属学报,2003,13(6):1420-1424。
    [53]陈国华,刘心宇,成均.高能球磨作用对合成堇青石基陶瓷的相组成和相变机理的影响.开发与应用,2003,37(5):282-285.
    [54]任强,武秀兰.合成堇青石陶瓷材料的研究进展.中国陶瓷,2004,40(5):23-29.
    [55]陈玉清,沈志坚,丁子上.低膨胀陶瓷的结构特征.中国陶瓷,1994,30(1):46-52.
    [56]刘智恩,袁建君,方玉.钛酸铝基陶瓷复合材料的研究.硅酸盐学报,1995,23(3):279-285.
    [57]方青,张联盟,沈强等.钛酸铝陶瓷及其研究进展.硅酸盐通报,2003,22(1):49-53.
    [58]康列军,刘彤,苏志梅等.β-霞石负膨胀微晶玻璃的制备技术及结构特征.功能材料,2005,36(6):825-827.
    [59]马南钢,施占华,李熙章.低温烧结的高强刚玉瓷研究.武汉交通科技大学学报,1995,19(1): 57-65.
    [60]单妍.王昕,尹衍升等.ZTA纳米复相陶瓷的研究.硅酸盐通报,2002,21(2):43-46.
    [61]田雨霖.低温合成堇青石.南京化工大学学报,1995,17(4):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700