用户名: 密码: 验证码:
有机膦稳定的银(Ι)配合物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术的快速发展,电路的集成度越来越高,线宽也越来越窄,从大规模集成电路发展到超大规模集成电路。银相比其他金属具有极低的电阻率和极好的热传导性,因此在微电子行业引起人们广泛的关注。金属有机化学气相沉积(MOCVD)相比其他物理沉积技术有着独特的优点如:选择性沉积、对薄膜密度以及厚度的可控性等等。这正是制备微电子电路所需的连续、均匀、具有良好阶梯覆盖率的高质量银薄膜互连材料的技术。而研制出适合于MOCVD技术的金属有机配合物(前驱体)是MOCVD技术中的关键。
     本论文主要工作是设计以及制备两大系列以有机膦稳定的银(I)配合物。以有机膦[PPh3、P(OEt)3、P(OMe)3]作为辅助配体,以丁二酰亚胺类化合物作为主要配体制备得到了两个系列有机膦稳定的丁二酰亚胺类的银(I)配合物[(R3P)m?AgL,m=1,2 or 3;R=CH3O,CH3CH2O,Ph;L=C4H4O2N,C4H4NO3]。对制备得到的配合物用红外光谱、核磁共振、元素分析以及X-射线单晶衍射等方法进行了表征。最后,利用TG-DSC对所合成的配合物的热稳定性和分解机理进行了初步研究。
With the rapid development of microelectronics technology, the density of integration of circuits is becoming higher, the linewidth is becoming narrower, and the large scale integration is becoming the Ultra Large Scale Integration (ULSI). Silver is a promising interconnect material in microelectronics due to the lowest resistivity and the highest thermal conductivity. Metal Organic Chemical Vapor Deposition (MOCVD) is one of the best methods for the thin film materials manufacturing, because it provides many advantages over other physical deposition techniques. MOCVD, for example, could deposit the continuous, uniform and good step coverage of high-quality thin silver film. The key to achieve success for MOCVD, however, is the selection of suitable precursors.
     In this thesis, two series of organophosphine/phosphite stabilized silver(I) succinimide or N-hydroxysuccinimide of type [(R3P)m?AgL] [m=1, 2 or 3; R = CH3O, CH3CH2O, Ph; L=C4H4O2N, C4H4NO3] have been synthesized. The complexes obtained have been characterized by IR spectroscopy, 1H NMR, 13C{H} NMR, elemental analysis and X-ray single crystal analysis, respectively. Finally, the thermal analysis of the complexes was studied by ThemoGravimetry (TG) and Differential Scanning Calorimetric (DSC).
引文
[1]陆剑侠,王效平,苏舟.微电子技术的发展趋势与展望.微处理机,1999,2(1):1~7.
    [2]徐述.微电子技术的发展与展望.成都教育学院学报,2002,16(10):72~73.
    [3] Y. K. Chae, Y. Shimogaki, H. Komiyama. The role of gas-phase reactions during chemical vapor deposition of copper from (hfac)Cu(tmvs). J. Electrochem. Soc., 1998, 145(12): 4226~4233.
    [4] J. H. Son, M. Y. Park, S. W. Rhee. Growth rate and microstructure of copper thin films deposited with metalorganic chemical vapor deposition from hexafluoroacetylacetonate copper(I) allyltrimethylsilane. Thin Solid Films, 1998, 335(1-2): 229~236.
    [5]徐毓龙,周晓华,徐玉成.集成电路铜连线技术.物理,1999,28(6):364~367.
    [6]吴德馨.迈进二十一世纪的集成电路.世界科技研究与发展,1999,21(4):1~9.
    [7]陈智涛,李瑞伟.集成电路片内铜互连技术的发展.微电子学,2001,31(4):239~241.
    [8]杜鸣,郝跃.超深亚微米集成电路的铜互连技术布线工艺与可靠性.西安电子科技大学学报,2005,32(1):56~59.
    [9] T. T. Kodas, M. J. Hampden-Smith. The Chemistry of Metal CVD. VCH, Weinheim, 1994, 178~327.
    [10] K. Young-Soon, K. Hyung, C. Joong-Hee, et al.. Electrochemical deposition of copper and ruthenium on titanium. Electrochim. Acta, 2006, 51(25): 5445~5451.
    [11]张炜,成旦红,王建泳,等.超大集成电路互连线电沉积铜的研究动态.材料保护,2005,38(12):33~38.
    [12] H. Helneder, H. K?rner, A. Mitchell, at al.. Comparison of copper damascene and aluminum RIE metallization in BICMOS technology, Microelectron. Eng., 2001, 55(1-4): 257~268.
    [13]徐小城.深亚微米集成电路工艺中铜金属互联技术.微电子技术,2001,29(6):1~7.
    [14]黄浩,魏良,唐电.半导体金属互连集成技术的进展与趋势.金属热处理,2004,29(8):26~31.
    [15] Y. S. Diamand, A. Inbern, I. E. Sverdlov, et al.. Electroless Silver with Tunsten Thin Films for Microelectronics and Microelectromechanical System Applications. J. Electrochem. Soc., 2000, 147(9): 3345~3349.
    [16]周菊先,赵峰.金属化纺织材料的研制与应用.上海纺织科技,2001,29(1): 47~48.
    [17]岳升彩,王用梅.现代科技在纺织品上的应用—银纤维.山东纺织经济,2007,40:60~62.
    [18]杨娜,严玉蓉,赵耀明.银系抗菌剂及其在纺织材料中的应用.化纤与纺织技术,2004,3:20~23.
    [19]金太权,雷军.溅射法制作银薄膜.吉林工学院学报,1992,12(4):73~76.
    [20]陈红萍,韩建军,赵修建.传输太阳能用Ag/PMMA空芯光纤的制备.激光与红外,2007,37(3):255~261.
    [21]张国海,钱鹤,夏洋,等.ULSI铜互连线技术中的电镀工艺.半导体学报,2001,22(8):1093~1096.
    [22] Y. Y. Chiang, Y. Y. Wang, C. C. Wan. Research on applying direct plating to additive process for printed circuit board. J. Electron. Mater., 2000, 29(8): 1001~1006.
    [23]张国海,夏洋,龙世兵,等.ULSI中铜互连线技术的关键工艺.微电子学,2001,31(2):146~149.
    [24]王豫,水恒勇.化学气相沉积制膜技术的应用与发展.热处理,2001,16(4):1~4.
    [25]郑慧雯.金属有机化学气相沉积法制备功能梯度材料的方法和机理的研究,郑慧雯硕士论文.重庆:西南师范大学,2004.
    [26] K. L. Choy. Chemical vapor deposition of coatings. Prog. Mater. Sci., 2003, 48(2): 57~170.
    [27] J. L. Han, Y. Z. Shen, C. X. Li. Synthesis and characterization of triphenylphosphine stabilized silverα,β-unsaturated carboxylate: Crystal structure of [Ag(O2CCH=C(CH3)2)(PPh3)2]. Inorg. Chim. Acta, 2005, 358(15): 4417~4422.
    [28] J. Teichgraber, S. Dechert, F. Meyer. Dicopper(I) oxalate complexes as molecular precursors for the deposition of copper compounds. J. Organomet. Chem., 2005, 690(23): 5255~5263.
    [29] W. Partenheimer, E. H. Johnson. The Syntheses of Some New Silver Olefin Compounds of the Type (Olefin) (β-diketonato)silver(I). Inorg. Chem., 1972, 11(11): 2840~2841.
    [30] W. Partenheimer, E. H. Johnson. Heats of Reaction of Triphenylphssphhe with Compounds of the Type Hexafluoroacetylacetonato(olefin)silver(I). Inorg. Chem., 1973, 12(6): 1274~1278.
    [31] T. Haase. Phosphane and Phosphite Silver(I) Complexes: Synthesis, Reaction Chemistry and their Use as CVD Precursors, Thomas Haase’s doctor thesis. Technische Universit?t Chemnitz, 2004.
    [32] J. Rickerby, J. H. G. Steinke. Current Trends in Patterning with Copper. Chem. Rev., 2002, 102(5): 1525~1549.
    [33] A. Jain, K. Chi, T. T. Kodas, M. J. Hampden-Smith. Chemical Vapor Deposition of Copper from Hexafluoroacetylacetonato Copper(I) Vinyltrimethylsilane. J. Electrochem. Soc., 1993, 140(5): 1434~1439.
    [34] N. Awaya, Y. Arita. Proceedings of the 1991 Symposium on VLSI Thchnology. Japan: Orso, 1991, p. 37.
    [35] J. E. Parmeter, G. A. Petersen, P. M. Smith, et al.. Characterization of thin copper films grown via chemical vapor deposition using liquid coinjection of trimethylvinylsilane and (hexafluoroacetylacetonate) Cu (trimethylvinylsilane). J. Vac. Sci. Technol., 1995, B13(1): 130~136.
    [36] G. Braeckelmann, D. Manger, A. Burke, et al.. Chemical vapor deposition of copper from CuI hexafluoroacetylacetonate trimethylvinylsilane for ultralarge scale integration applications. J. Vac. Sci. Technol., 1996, B14(3): 1828~1836.
    [37] S. Kim, D. J. Choi, K. R. Yoon, et al.. Four-Coordinate Gold(I), Silver(I), and Copper(I) Complexes with a Large-Span Chiral Ditertiary Phosphine Ligand. Thin Solid Films, 1997, 311(1): 218~221.
    [38] D. B. Beach, F. K. LeGoues, C. K. Hu. Low-temperature chemical vapor deposition of high purity copper from an organometallic source. Chem. Mater., 1990, 2(3): 216~219.
    [39] T. L. Alford, J. Li, J. W. Mayer, et al.. Copper-based metallization and interconnects for ultra-large-scale integration applications. Thin Solid Films, 1995, 262(1-2): R7.
    [40] P. L. Pai, C. H. Ting. Selective electroless copper for VLSI interconnection. IEEE Electron Device Lett., 1989, 10(9): 423~425.
    [41] H. K. Shin, M. J. Hampden-Smith, E. N. Duesler, et al.. The chemistry of copper(I)β-diketonate compounds. Part V. Syntheses and characterization of (β-diketonate)CuLn species where L = PBu3, PPh3, and PCy3; n = 1 and 2; crystal and molecular structures of (acac)Cu(PCy3), (tfac)Cu(PCy3), (hfac)Cu(PCy3), and (hfac)Cu(PCy3)2. Can. J. Chem., 1992, 70: 2954~2966.
    [42] R. J. H. Voorhoeve, J. W. Merewether. Selective Deposition of Silver on Silicon by Reaction with Silver Fluoride Vapor. J. Electrochem. Soc., 1972, 119(3): 364~368.
    [43] N. A. Clinton, J. K. Kochi. The catalytic decomposition of tetraethyllead by copper(I). Acetolysis of alkylcopper(I) intermediates. J. Organomet. Chem., 1972, 42(1): 229~240.
    [44] A. Bayler, A. Schier, H. Schmidbaur. Four-Coordinate Gold(I), Silver(I), and Copper(I) Complexes with a Large-Span Chiral Ditertiary Phosphine Ligand. Inorg. Chem., 1998, 37(17): 4353~4359.
    [45] M. B. Dines. Phosphine and olefin complexes of copper(I) trifluoroacetate. Inorg. Chem., 1972, 11(12): 2949~2952.
    [46] B. G. Lor, M. Iglesias, C. Cascales, et al.. A Diamine Copper(I) Complex Stabilized in Situ within the Ferrierite Framework. Catalytic Properties. Chem. Mater., 2001, 13(4): 1364~1368.
    [47] J. K. Kochi. Electron-transfer mechanisms for organometallic intermediates in catalytic reactions. Acc. Chem. Res., 1974, 7(10): 351~360.
    [48] H. Schmidt, Y. Shen, M. Leschke, et al.. Phosphanstabilisierte Silber(I)-Carboxylate: Synthese Und Verwendung in der silber-CVD. Journal of Organomet. Chem., 2003, 669(1-2): 25~31.
    [49] W. R. Benson, E. T. McBee, L. Rand, et al.. Organic Synthesis, coll.vol 5. New York. 1973, p. 663
    [50] W. L. F. Armarego, C. L. L. Chai. Purification of Laboratory Chemicals (5th ed.). Butterworth-Heinernann publications, 2003.
    [51] H. Lang, K. K?hler, S. Blau.η2-Alkyne copper(I) and silver(I) compounds from polymeric [MIR]n to monomeric [MIR] units (M = Cu, Ag). Coord. Chem. Rev., 1995, 143(1): 113~148.
    [52] R. Aroza, F. Mohrb, E. Cerradaa, et al.. One-pot self-assembly of trinuclear silver(I) clusters containing propargyl alcohols and bis(diphenylphosphino)methane (dppm) ligands. Polyhedron, 2006, 25(15): 3066~3070.
    [53] G. Doyle, K. A. Eriksen, D. V. Engen. Alkene and Carbon Monoxide Derivatives of Copper(I) and Silver(I), and Diketonates. Organometallics. 1985, 4(5): 830~835.
    [54] T. Yamamoto, Y. Ehara, M. Kubota, et al.. Preparation of Copper(I)-Phosphine Complexes Having Cu-N Bonds and Their Reactions with Organic Halides. Bull. Chem. Soc. Jpn., 1980, 53(5): 1299~1302.
    [55] J. Perron, A. L. Beauchamp. Silver complexes with succinimide as models for the interaction of silver(I) with the uracil residue. Inorg. Chem., 1984, 23(18): 2853~2859.
    [56] D. M. Roundhill. Reaction of imides with some zerovalent platinum and palladium complexes. Inorg. Chem., 1970, 9(2): 254~258.
    [57] M. S. Robert, X. W. Francis, J. K. David. Spectrometric Identification of Organic Compounds (7th ed.). VCH, 2005 (中译本:秦川等,有机化合物的波谱解析,上海:华东理工大学出版社,2006).
    [58] Bruker AXS Inc.. SAINT, Area detector control and data integration and reduction software, USA: Madison, WI, 1997.
    [59] G. M. Sheldrick. SADABS, Program for Empirical Absorption Correction of Area Detector Data, Germany: University of Gottingen, 1997.
    [60] G. M. Sheldrick. SHELX-97, Programs for Crystal Structure Analysis (Release 97-2), Germany:University of Gottingen, 1997.
    [61] L. Zsolnai, G. Huttner. ORTEP, Germany: University of Heidelberg, 1994.
    [62] B. K. Teo, J. C. Calabrese. Stereochemical systematics of metal clusters. Structural characterization of tetrameric triphenylphosphine silver chloride. An analysis of bonded vs. nonbonded interactions in the cubane-like (R3Y)4M4X4 species. Inorg. Chem., 1976, 15(10): 2467~2474.
    [63] Yi-Ying Zhang, Yan Wang, Xian Tao, et al.. Synthesis and characterization of organophosphine/phosphite stabilized silver(I) methanesulfonates: Crystal structures of [Ph3PAgO3SCH3] and [(Ph3P)2AgO3SCH3]. Polyhedron, 2008, 27(11): 2501~2505.
    [64] D. R. Whitcomb, M. Rajeswaran. Variable Ag—O bonding patterns in silver cyclic amide tri-aryl-phosphine complexes. J. Chem. Crytallogr., 2006, 36(9): 587~598.
    [65] G. W. Aderson, J. E. Zimmerman, F. M. Callahan. The Use of Esters of N-Hydroxysuccinimide in Peptide Synthesis. J. Amer. Chem. Soc., 1964, 86(9): 1839~1842.
    [66]范如霖.有机合成特殊技术.上海:上海交通大学出版社,1985,109.
    [67]张启昆,卢峰.现代无机合成化学.汕头:汕头大学出版社,1995,59.
    [68] A. Jakob, H. Schmidt, B. Walfort, et al.. Tri-n-Butyl-Phosphane Silver(I) Complexes with Carboxylate-, Tropolonateor N-Hydroxyphthalimide Building Blocks; Synthesis and their Use as Spin-on Precursors. Z. Anorg. Allg. Chem., 2005, 631(6-7), 1079~1086.
    [69] M. Struga, J. Kossakowski, J. Stefańska, et al.. Synthesis and antibacterial activity of bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.02,6]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride. Eur. J. Med. Chem., 2008, 43(6): 1309~1314.
    [70] C. Einhorn, J. Einhorn, C. M. Abbadi. Mild and convenient one pot synthesis of N-hydroxyimides from N-unsubstituted imides. Synth. Commun., 2001, 31(5): 741~748.
    [71] H. Krawczyk, L. Albrecht, J. Wojciechowski, et al.. Spontaneous Nef reaction of 3-aryl-2-(diethoxyphosphoryl)-4-nitroalkanoic acids. Tetrahedron. 2006, 62(39): 9135~9145.
    [72] C.Govindan. Preparation of N-(organocarbonyloxy)-succin-imide derivatives of N-hydroxy succinimide, USA, US: 5426190, 1995206220.
    [73]杜敬星,郑人卫,肖孝辉.N-羟基丁二酰亚胺的合成.应用化学,2003,20(6):611~612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700