用户名: 密码: 验证码:
超高性能混凝土堆积密实度和火山灰效应量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文扼要介绍了可压缩堆积模型的理论基础和比强度法的基本原理,在现有的研究成果基础上,分析了不同水胶比和不同矿物掺合料掺量条件下,矿物掺合料的堆积密实效应和化学效应对超高性能混凝土硬化性能的影响;深入讨论了可压缩堆积模型应用于粉体颗粒体系堆积密实度计算时,堆积密实度与火山灰效应存在的某种关系;并通过数学工具将堆积密实度和火山灰效应进行了合理量化;最后通过实例,得出了超高性能混凝土配合比设计方法,为超高性能混凝土的配合比设计提供了一条有效的途径。取得了如下主要成果:
     (1)根据可压缩堆积模型计算的堆积密实度,可以数值化地反映混合料的堆积密实程度;为了能够建立堆积密实度与火山灰效应之间的关系,对堆积密实度进行了无量纲化,定义了堆积密实度贡献值和堆积密实度贡献率,并提出了相应的计算公式。
     (2)矿物掺合料单掺时,不论水胶比的变化,随着掺量的变化,其堆积密实度与混凝土的抗压强度具有相类似的变化趋势;且通过计算可知,硅灰在四种水胶比下,随着堆积密实度贡献值增大,其火山灰效应强度贡献率也随之增大,堆积密实度与火山灰效应具有相关性,且用堆积密实度量化火山灰效应是合理的。
     (3)在两个双掺体系中,矿物掺合料的堆积密实效应对超高性能混凝土硬化性能有重要影响,其堆积密实效应根据水胶比、矿物掺量和混凝土的龄期变化而发生变化。且不同水胶比下矿物掺合料的堆积密实度与火山灰效应强度贡献率具有相关性,用堆积密实度贡献率可以模拟不同水胶比下复合掺加矿物掺合料的火山灰效应强度贡献率的变化。
     (4)在不同水胶比下,无论是单掺硅灰体系还是双掺体系,都可以利用数学工具建立堆积密实度贡献率与火山灰效应强度贡献率之间的关系,从而可以通过混凝土的堆积密实度贡献率计算其火山灰效应强度贡献率的大小。
     (5)根据不同水胶比,不同矿物掺合料掺量下的混凝土堆积密实度贡献率和火山灰效应强度贡献率之间的数学关系,建立了超高性能混凝土配合比设计模型,并编制了MATLAB计算程序,通过实例进行了超高性能混凝土配合比设计,实现了通过可压缩堆积模型和比强度法来配制超高性能混凝土的目的。
According to the compressible packing model and the method of specific strength, basing on the current research results,the paper improves the combined action of the packing effect and chemical effect of mineral particles to the influence on hardened properties of ultra-high performance concrete under different water-binder ratios and different proportion of mineral micro-power.Then the paper mainly carries on research of some relationships between the packing density and pozzolanic effect when compressible packing model is applied to fine powder mixture systems, and carries on the fitting among packing density and pozzolanic effect through the mathematical instrument.Finally,obtains the design method and procedure of concrete through a example which has important guiding significance to mix design that is preparing for ultra-high performancr concrete.The major research accomplishments were summarized as follows:
     (1)According to the characteristic that the packing density,which is calculated through the compressible packing model,may reflect the packing degree in order to establish the relations between the packing density and the pozzolanic effect.The packing density was handled dimensionlessly which was in order to define the contribution value of packing density and the contribution rate of packing density and proposed the corresponding formula.
     (2)When doped,under the different water-binder ratios,the variation law of packing density is similar with the value of compressive strength.The packing density and the pozzolanic effect with various constant of silica fume are close related under different water-binder ratios,the bigger contribution value of packing density is,the higher contribution rate of pozzolanic effect, and changing tendency of the packing density may approximately simulate the pozzolanic effect.
     (3)When co-doped,the packing effect of mineral particles has influence on the hardened properties of ultra-high performance concrete,the contribution rate of packing density and the contribution rate of pozzolanic effect under the different wanter-binder ratios are close related,and the changing tendency of the packing density may approximately simulate the variation of the contribution rate of pozzolanic effect.
     (4)Whether doped or co-doped,the relationship between the contribution rate of packing density and the contribution rate of pozzolanic effect can be established under different water-binder ratios,and the contribution rate of pozzolanic effect could be calculated through the contribution rate of packing density in 28d curing condition.
     (5)Under different water-binder ratios,through the relevance between the contribution rate of packing density and the contribution rate of pozzolanic effect with various content of mineral micro-power, establishes the model of mix design and primarily realizes computerizing, and the goal of guiding the mix design of ultra-high performance concrete is realized that using the compressible packing model and the method of specific strength.
引文
[1]覃维祖.聚羧酸系高效减水剂的发展与应用.施工技术,2007,36(4):9-12
    [2]吴建华.高强高性能大掺量粉煤灰混凝土研究:[重庆大学博士学位论文].重庆:重庆大学土木工程学院,2006,15-20
    [3]杨剑,方志.超高性能混凝土单轴受压应力-应变关系研究.混凝土2008,12(7):13-14
    [4]蒲心诚.超高强高性能混凝土.重庆:重庆大学出版社,2004,64-70
    [5]毛丹.矿物微粉在水泥基复合胶凝材料材料中的颗粒剂配效应研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2004,12-16
    [6]龚建清,曹荣奎.矿物微粉对水泥基混合材料抗压强度的影响.企业技术开发,2008,27(6):22-25
    [7]王勇威.超高强高性能混凝土的组成、结构及其收缩与补偿的研究:[重庆大学硕士学位论文].重庆:重庆大学土木工程学院,2001,12-14
    [8]AdelineR, LachemeM, Blaif P Designand. Behavior of the Sherbrooke foot bridge. In:Intenrational Symposium on High Performance and Reactive Particle Concrete. Sherbrooke,1998,55-60
    [9]蒲心诚,王冲,刘芳等.特超强高性能混凝土的研究与展望.混凝土与水泥制品,2008,15(2):1-5
    [10]蒲心诚,甘昌成等.碱矿渣混凝土的研制及应用前景.混凝土与水泥制品,2002,19(5):40-42
    [11]Mielenz R C. Mineral Admixtures-History and Background. Concerte Internatio-nal,1983,38(8):40-43
    [12]赵华玮,朱宏平.绿色高性能混凝土研究.混凝土,2009,30(6):92-95
    [13]Olga Shtepenko, Colin Hills. The effect of carbon dioxide on β-dicalcium silicate and Portland cement. Chemical Engineering,2006,118(1):107-118
    [14]吴建华,刘芳.大掺量粉煤灰高性能混凝土配制技术.重庆大学学报,2005,28(5):54-55
    [15]A.Kilic, C.D.Atis, A.Teymen etal. The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cement and Concrete Composites,2008,30(6):290-296
    [16]梁松,莫海鸿,陈尤雯.掺矿渣微粉砂浆和混凝土的抗硫铝酸盐侵蚀性能.华南理工大学学报,2003,31(5):93-95
    [17]邓旭华,陶仁成,詹国良.C70高强高性能混凝土的正交试验与应用.混凝土,2009,23(4):95-98
    [18]孙巍巍,孟少平,栾文彬.混凝土温度应力参数分析.特种结构,2009,16(5):58-61
    [19]M. R. H. Dunstan, M. D. A. Thomas, J. B. Cripwell, D. J. harrison. Investigation into the Long time in Situ Performance of High Fly Ash Content Concrete Used for Structural Application. In:Proceedings Fourth In ternational Conference. Istanbul,1992,1-20
    [20]蒲心诚,王志军.超高强超高性能混凝土力学性能的研究.建筑结构学报,2002,23(6):49-55
    [21]杨文武,钱觉时,范美儒.磨细高炉矿渣对海工混凝土抗冻性和氯离子扩散性能的影响.硅酸盐学报,2009,14(1):20-26
    [22]路来军.复合掺合料配制高性能混凝土的研究.混凝土,2006,20(7):47-50
    [23]陈景.高性能混凝土制备与力学性能研究.南京:河海大学,2006,1 2-14
    [24]安宁.高性能混凝土配方优化方法的研究.混凝土,2006,12(9):72-74
    [25]梁文泉.沸腾炉燃煤固硫渣制作火山灰水泥的研究:[清华大学硕士学位论文].北京:清华大学.1997,6-10
    [26]贺鸿珠,史美伦,陈志源.粉煤灰火山灰活性与需水量比的电化学研究.建筑材料学报,2002,5(4):316-319
    [27]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,2004,44-50
    [28]V.A.Mhaisalkar, R.Paramasivam. Optimizing physical parameters of rapid mix design for coagulation-floaulation of turbid waters. Cement and Concrete Research,1991,25(1):43-52
    [29]Ping-Kun Chang. An approach to optimizing mix design for properties of high-performance concrete. Cement and Concrete Research,2004,34(4):623-629
    [30]Nan Su, Kong-Chung Hsu. A simple mix design method for self-compacting concrete. Cement and Concrete Research,2001,31 (2):1799-1807
    [31]邵.基于Matlab及ANN模型的高性能混凝土配合比优化设计:[合肥工业大学硕士学位论文].合肥:合肥工业大学土木工程学院,2007,14-16
    [32]王继宗,梁晓颖,梁宾桥.混凝土配合比设计方法的研究进展.河北工程大学学报,2003,20(2):39-40
    [33]雷元新,叶作楷,洗伟华.神经网络在配制高强预拌泵送混凝土中的应用。工业建筑,2002,32(6):62-64
    [34]Peter J. Tumidajski and G.W.Chan.Durability of High Performance Concrete in Magnesium Brine. Cement and Concrete Rresearch,2006.26(4):557-560
    [35]孟彬.基于神经网络模型的高性能混凝土配合比设计和性能预测:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学土木工程学院,2004,9-12
    [36]梁宾桥,王继宗.高性能混凝土强度预测的神经网络分析.计算机工程与应用,2008,32(8):4-7
    [37]万朝均.高强超高强高性能混凝土配合比设计经验探讨.混凝土2002,42(3):41-43
    [38]李丽娟,谢伟锋,刘锋等.100MPa超高强高性能混凝土的性能研究.混凝土2007,25(7):31-34
    [39]王震宇,王俊亭,袁杰.活性粉末混凝土配比试验研究.混凝土,2006,30(6):80-83
    [40]Aim R B, Goff P L. Effect de paroi les empilements desordonnes de sphereset application a la porosite de melanges binaries. Power Techology,1967:281-290
    [41]Toufar W, Bom M,Klosc E.Contribution of optimization of components of different density in polydispcrsed particles systems. Handbook Powder Techology,1976,38(9):29-44
    [42]Stovall T, De Larrard F, Buil M. Linear packing density model of grain mixtures. Power Technology,1986,48(1):108-122
    [43]Dewar J D.Ready-mixed concrete mix design.Municipal Engineering,1986, 32(3):2-22
    [44]Dewar J D. Computer Modelling of Concrete Mixtures. London,1999,22-24
    [45]De Larrard F. Concrete Mixture Proportioning:A Scientific Approach. In:Proc of Int Conf on Nonconventional Structures. London,1999,55-60
    [46]De Larrard F, Sedran T. Mixture-proportioning of high-performance concrete. Cement and Concrete Research,2002,32 (10):1699-1704
    [47]蒲心诚.高强与高性能混凝土火山灰效应的分析.混凝土,1998(6):4-7
    [48]Jones M R, Zheng L, Newlands M D.Comparison of particle packing models for proportioning concrete constituents for minimum voids ratio. Materials and Structures,2002,35 (2):301-309
    [49]Sedran T, De Larrard F. Computer-Aided Mix-Design Software published by Presses de I'Ecole Nationale des Ponts et Chaussees. Paris,2000,99-104
    [50]郭延辉,郭京有.聚羧酸系高性能减水剂及其工程应用发展综述。北京:中国铁道出版社,2007,5(3):1-9
    [51]温勇,罗玲,朱景伟.聚醚型高效聚羧酸减水剂结构与性能关系研究.混凝 土,2008,34(12):57-59
    [52]P.Rougeau, B.Borys. Ultra-high performance concrete with ultra fine particles other than silica fine. In:Proceeding of the international symposium on ultra-high performance concrete. Germany:Kassel,2004,213-226
    [53]何峰,黄政宇.硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析.混凝土,2006,(1):39-42
    [54]冯乃谦.使用混凝土大全.北京:科学出版社,2001,3-10
    [55]何峰,黄政宇.原材料对RPC强度的影响初探.湖南大学自然科学学报,2001,28(2):89-94
    [56]姚燕,王玲,田培.高性能混凝土.北京:化学工业出版社,2006,41-44
    [57]H.Abdul Razak, H.S. Wang.Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research, 2005,35(4):688-695
    [58]B.H.Bharatkumar, Narayanan, B.K.Raghuprasad etal. Mix proportioning of high performance concrete. Cement and Concrete Research,2001,23 (2):71-80
    [59]Halit Yazici*, Huseyin Yig iter,Anil S. Karabulut, Bulent Baradan. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Cement and Concrete Research,2008,87(2): 401-407
    [60]Tahir Kemal Erdem, Inder Kirca. Use of binary and ternary blends in high strength concrete. Construction and Building Materials,2008,22 (4):1477-1483

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700