用户名: 密码: 验证码:
低氧活性污泥法除污及污泥减量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥工艺是目前应用最为广泛的污水处理技术,占城市污水处理工艺的90%以上和工业废水处理工艺的50%左右。但在运行过程中还有着种种的弊端:其一是污泥膨胀问题,这是活性污泥工艺中最常见、最主要也是最严重的问题;其二是能源消耗问题,活性污泥工艺处理城市污水过程中消耗的电费约占常规运行成本的三分之一以上;其三是剩余污泥问题,在处理污水的过程中,由于微生物的增殖,活性污泥会产生大量的剩余污泥,对这部分污泥的处理费用更是高达常规运行成本的50%以上。
     针对活性污泥工艺在运行过程中所表现出的三种弊端,众多学者开展了广泛的研究。基于低溶解氧(DO)污泥丝状菌微膨胀工艺,其核心是人为地控制活性污泥系统在低DO状态下运行,引发一定程度的污泥膨胀,其膨胀程度受控而不会导致严重的污泥流失;同时低溶解氧浓度,降低了曝气电耗。研究发现在低氧浓度条件下,污泥产率的下降,剩余污泥产量也将有所减少。为了更好地掌握和发挥低溶解氧污泥工艺的应用潜能,有必要对其进行深入的研究。
     本论文对低溶解氧活性污泥工艺的污染物去除、稳定性和减量效果及其作用机制、数学模拟进行了较系统的研究。主要从宏观分析了低氧活性污泥的污染物去除、参数影响和低氧污泥的减量效果及机制,从微观角度分析低氧活性污泥的种群及胞外酶的分布特征,并建立数学模型探讨了低氧活性污泥工艺的机理,获得了如下主要结论:
     1)与参照的传统活性污泥工艺相比,低溶解氧活性污泥工艺存在的最大弊端在于稳定性不强,易发膨胀。研究通过低氧适应性培养使反应器处于一种稳定的微膨胀状态,首次依据数学模型从理论上论证了这种状态存在的稳定性。实验观察证实低溶解氧活性污泥工艺曝气能耗降低50%,且可稳定有效去除进水中的污染物质,并具备短程硝化特性。其COD的去除率为95%,氨氮去除率达到95%以上,亚硝化率达到80%以上,总氮去除率均达到70%以上,PO43--P去除率达到95%以上,总体效果强于参照活性污泥工艺;研究发现低温条件会抑制活性污泥工艺的污染物去除,低溶解氧会进一步加剧低温对活性污泥工艺的不利影响;SRT在10d-20d范围内变化时,不会对低氧反应器污染物的去除效果造成明显影响。
     2)与参照的传统活性污泥工艺相比,低溶解氧活性污泥工艺的污泥产率下降了13.3%。为对这一现象的本质进行研究,根据对污泥表观产率影响的差异,将引起污泥减量的因素分为两部分进行分析,其一为间接因素,其二为直接因素,间接因素如污泥活性、污泥粒径及EPS等,可通过直接因素影响污泥的表观产率。直接因素如污泥真实产率、污泥衰减率及水解性能等,可以直接对污泥的表观产率造成影响。通过以上两方面,对污泥的减量机理进行了分析,结果表明,长期在低氧条件下驯化活性污泥,导致其真实产率变低,污泥水解衰减率变低。结合Lawrence-Mccarty模型,可知低氧污泥减量效果为13.3%,其中低污泥真实产率贡献占16%,污泥衰减量贡献占84%。
     3)在低溶解氧浓度下长期驯化,将诱导活性污泥微生物发生改变,并表现出一些显著的特点,这些特点是活性污泥微生物特殊性质所构成的功能表现。由454高通量测序法检测发现,低溶解氧和参照系统污泥样品微生物群落中细菌均表现出较高的多样性,共检测到18门、368属的细菌序列,低溶解氧反应器中菌门多为Acidobacteria、 BD1-5、 Bacteroidetes、 Candidate_division_SR1、Candidate_division_TM7、Chlorobi、Firmicutes等专性或兼性厌氧菌或氧亲和系数较低的菌门,而参照反应器中的菌门多为Chloroflexi、Nitrospirae、Proteobacteria等好氧异氧型菌门,但优势菌门均为变形菌门,各占低溶解氧和参照系统污泥样品细菌总序列的50.86%及68.55%,其中低溶解氧污泥微生物群落优势菌属为发硫菌,即引起污泥膨胀的主要细菌;低溶解和参照系统污泥样品微生物群落中均含有多种脱氮功能细菌,但优势脱氮功能菌属有较大差异,优势AOB菌属为uncultured Nitrosomonadaceae属及Nitrosomonas属,在低溶解氧污泥样品中分别占0.14%及0%,在参照污泥样品中分别占0%及0.16%;优势NOB菌属为Nitrospiraceae_Nitrospira属,在低溶解氧污泥样品中占0.47%,在参照污泥样品中占0.93%;优势反硝化细菌属为Flexibacter、 Nitrosomonas、 unculturedComamonadeceae及Thauera,在低溶解氧污泥样品中占1.063%、0.06%、0.41%及1.85%、在参照污泥样品中占2.02%,0.16%、0.35%及2.55%;优势聚磷菌属菌属为Acinetobacter及具有反硝化功能Arcobacter,在低溶解氧污泥样品中占0.19%及1.75%在参照污泥样品中占0.1%及0.89%。
     4)分析发现,低氧污泥水解菌属更多,与实验中低氧污泥水解率较低的结论相左,其可能受No Rank序列或EPS的影响,为进一步确定污泥中的胞外酶含量,采用LCMS法测序活性污泥胞外蛋白质,在污泥胞外蛋白组中,发现低氧污泥及参照污泥胞外蛋白组中与水解类相关的蛋白个数分别为8及14个,属于生物合成的种类,分别为12及38个,属于能量产生和转换相关蛋白的种类分别为15及22个,这说明有很大一部分EPS是来源于破碎的污泥细胞,同时可见低氧污泥胞外蛋白数目大大低于参照污泥,因此低氧污泥的自身水解性略差。5)在目前ASM3模型构架的基础上,采用时间平衡、体积平衡及物料平衡方法,通过对低氧工艺下低氧污泥独特的生物动力学参数的分析研究,首次提出并建立了低氧/参照SBR-ASM3-SMP模型。并且以污泥SRT为变量,初步模拟和探讨了SRT变动、污泥真实产率及污泥衰减率等对污泥增长、出水水质、污泥活性、污泥惰性颗粒积累等的影响,发现污泥衰减率、曝气时长、污泥龄、真实产率均会对污泥的出水及污泥性质带来较大影响,同等条件下,其会导致15%的出水水质差异,12%的污泥表观产率差异,6%的污泥活性差异,低氧污泥的优势在于较低的bH及较长的TRO,使其可以在保持甚至提高污染物降解率的同时,降低污泥产率。
The activated sludge process is currently the most widely used and the mostpromising wastewater treatment technology, which treats more than90%of municipalsewage and about50%industrial wastewater of the world. However, during wastewatertreatment,there are a few disadvantages: the first problem is the sludge bulking, which isthe most common problem of the activated sludge process; the second problem is aboutenergy consumption, the electric bill accounts for about1/3of the total operating costsduring the municipal wastewater treatment plant; the third problem is the remainingsludge due to the proliferation of microorganisms, a large amount of sludge is generatedduring the treatment process,and the disposal of the excess sludge costs higher than50%of total operating costs For the three disadvantages occurred during the activatedsludge process, many scientists have carried out extensive research,that is filamentoussludge bulking in low dissolved oxygen(DO)condition. The core of the process is tocontrol artificially the activated sludge wastewater treatment system run in low DOcondition, and the level of the sludge bulking do not result in the serious sludge loss;Meanwhile the low DO level means low power consumption for aeration; many expertshave found that sludge production was reduced under low DO condition;and so theremaining sludge is reduced too. In order to better understand the potential of the lowDO sludge process, it is necessary tomake the further research.
     This paper studied the theremoval efficiency for contaminants, sludge reductioneffect, ts stability,the mechanisms and the mathematical modeling of the low DOactivated sludge process. The research has focused on the removal efficiency forcontaminants and the influential factors,the effect of sludge reduction and themechanismin in low DO situation. Besides, we analyzed the presence ofmicroorganisms and profiles of extracellular enzyme from a microscopic point of viewin low DO situation,and built a mathematical model to understand the mechanism ofactivated sludge process in low DO condition from a macro perspective. The mainresults are as follows:
     Compared with the conventional activated sludge process, the greatestdisadvantage present in the low dissolved oxygen activated sludge process is that itsstability is not strong and is prone to bulking. According to the research, sludge reactorwas in a steady bulking state by low DO adaptation training, it was the first time for analyzing the existence of a stable state from a mathematical point of view,and itshowed that the low dissolved oxygen activated sludge process reduced the energyconsumption, and could effectively remove contaminants in influent, and had short-cutnitrification characteristics. the removal efficiencies of NH4+-N, PO43--P and CODwere all more than95%, and removal rate of total nitrogen exceeded70%, andnitrosation rate was over80%, Altogether, the removal efficiencies for thesecontaminants in low dissolved oxygen activated sludge process were greater than thosein the control, namely, the activated sludge process. Moreover, the obtained results haveshowed that the activated sludge process for the removal of pollutants would beinhibited in low temperatures, and low dissolved oxygen would further aggravate theadverse effects, and SRT varied within a certain range would not reduce the removal ofpollutants.
     Compared with the conventional activated sludge process, sludge yield wasreduced13.3%in low dissolved oxygen activated sludge process, in order to study thenature of this phenomenon, we divided sludge reduction into three parts, according tothe difference of activated sludge and hydrolysis kinetic parameters, EPS, etc., the firstdifference is the nature of the sludge, the second difference is the sludge dynamics, thethird aspect is the difference of hydrolysis. Though these differences, we analyzed themechanism of the reduction of sludge. It was concluded that the real sludge yields weredecreased under long-term low DO conditions and sludge endogenous oxygen uptakerate and the decay rate also become low, and under the combined action, the activatedsludge yield was reduced, sludge yield was reduced by13.3%compared to control,and the contribution of low real sludge yield was16%, and the sludge decay contributed84%.
     Long-term low dissolved oxygen levels would lead tothechangesofmicroorganisminsludge and exhibits some remarkable characteristics, andthese characteristics are the core of the activated sludge-the special nature of themicroorganisms constituting the appearance, In low DO process, the removal of organicmatter, nitrogen and phosphorus and sludge reduction are the particularity ofmicroorganisms, Therefore, in order to clearly understand the difference between lowDO process and the control, we analyzed the influence on microbial reactor and sludgecharacteristics of extracellular enzymes in low DO conditions using454pyrosequencingfrom the microscopic point of view,It was found that the microbial communities ofbacteria from low dissolved oxygen sludge samples and the reference system both showed a higher diversity,totally18,368bacterial sequences genus, the dominantbacteria weredetectedProteobacteria, with50.86%of the total low dissolved oxygensludge sequence and68.55%of the total reference bacterial system sludge samplesequence. The major of the Actinobacteria of the sludge sample in low dissolved oxygenwas Acidobacteria, BD1-5, Bacteroidetes, Candidate_division_SR1,Candidate_division_TM7、Chlorobi、Firmicutes et.al. The major of the Actinobacteriaofthe reference sludge sample was Chloroflexi、Nitrospirae、Proteobacteria et.al.
     Base on the current framework of the model ASM3,Using material balancetheory, and through analysis of kinetic parameters of unique biological process underlow DO sludge process, first proposed and established the low DO referenceSBR-ASM3-SMP model, besides, with sludge SRT was variable Preliminarilysimulated and discussed the impact of sludge real yield rate, sludge decay to waterquality, active sludge, sludge accumulation of inert particles, etc. during the changesSRT. It was also Found that pH, HRT, SRT, yHwould all cause greater impact on thenature of the sludge and water of sludge, the advantages of low DO sludge lies in lowerpH and longer HRT, which can maintain and even improve pollutant degradation ratewhile reducing sludge yield.
引文
[1] Gabriel Bitton. Wastewater Microbiology[M]. new york: Wiley,2010
    [2]中华人民共和国国务院.中华人民共和国国民经济和社会发展第十二个五年规划纲要[R],2011
    [3]高莎,金德才,赵志瑞等. A~2O工艺活性污泥中可培养丝状细菌的多样性[J].环境科学,2013(07):2912-2917
    [4]张永健,邢旭.传统活性污泥法与吸附—再生活性污泥法的比较[J].环境保护与循环经济,2008(08):22-24
    [5]叶芬霞.解偶联代谢对活性污泥工艺中剩余污泥的减量化作用[D]:浙江大学,2004
    [6]谢敏丽,孙彤,刘雨等.减少活性污泥法中剩余污泥产率的研究[J].北京工商大学学报(自然科学版),2004(04):20-22
    [7]郝晓地,朱景义,曹秀芹.污泥膨胀形成机理及控制措施研究现状和进展[J].环境污染治理技术与设备,2006(05):1-9
    [8]郝晓地,朱景义,曹秀芹.污泥膨胀形成机理及控制措施研究现状和进展[J].环境污染治理技术与设备,2006(05):1-9
    [9]任伯帜,唐艳,李和志.活性污泥膨胀机理及控制方法研究[J].南华大学学报(自然科学版),2010(02):103-107
    [10]彭永臻,郭建华,王淑莹等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础[J].环境科学,2008(12):3342-3347
    [11] AMP Martins, K. Pagilla, J. J. Heijnenet al. Filamentous bulking sludge-a critical review[J].Water Research,2004,38(4):793-817
    [12] J. Chudoba, j. Blaha, v. Madera. Control of activated-sludge filamentous bulking.3. effect ofsludge loading[J]. Water research,1974,8(4):231-237
    [13] J. Chudoba, M. Dohanyos, P. Grau. Control of activated-sludge filamentous bulking.4. effectof sludge regeneration[J]. Water science and technology,1982,14(1-2):73-93
    [14] J. Chudoba, p. Grau, v. Ottova. Control of activated-sludge filamentous bulking.2. selectionof microorganisms by means of a selector[J]. Water research,1973,7(10):1389
    [15] J. Chudoba, v. Ottova, v. Madera. Control Of Activated-Sludge Filamentous Bulking.1. EffectOf Hydraulic Regime Or Degree Of Mixing In An Aeration Tank[J]. water research,1973,7(8):1163
    [16]羊寿生.城市污水厂的能源消耗[J].建筑技术通讯(给水排水),1984(06):15-19
    [17]金昌权,汪诚文,曾思育等.污水处理厂能耗特征分析方法与节能途径研究[J].给水排水,2009(S1):270-274
    [18]常江,杨岸明,甘一萍等.城市污水处理厂能耗分析及节能途径[J].中国给水排水,2011(04):33-36
    [19]杨健,吴敏.3种活性污泥法处理工艺的生命周期能耗分析[J].上海环境科学,2001(12):582-585
    [20] N. J. Horan. Biological Wastewater Treatment Systems[M]: Wiley,1990
    [21] Y. Liu, J. H. Tay. Strategy for minimization of excess sludge production from the activatedsludge process[J]. Biotechnology Advances,2001,19(2):97-107
    [22] E. Abad, K. Martinez, C. Planaset al. Priority organic pollutant assessment of sludges foragricultural purposes[J]. Chemosphere,2005,61(9):1358-1369
    [23] F. Laturnus, K. von Arnold, C. Gron. Organic contaminants from sewage sludge applied toagricultural soils-False alarm regarding possible problems for food safety?[J]. EnvironmentalScience And Pollution Research,2007,14(1SI):53-60
    [24] P. Ginestet. Comparative Evaluation of Sludge Reduction Routes[M]: London: IWAPublishing,2007
    [25] D. H. Zitomer. Stoichiometry of combined aerobic and methanogenic cod transformation[J].Water Research,1998,32(3):669-676
    [26] Sadaie T, Sadaie A, Takada Met al. Reducing sludge production and the domination ofcomamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of afood-processing factory[J]. Bioscience, Biotechnology, and Biochemistry,2007,71(3):791-799
    [27] L. L. Hu, J. L. Wang, X. G. Wenet al. Study on performance characteristics of SBR underlimited dissolved oxygen[J]. PROCESS BIOCHEMISTRY,2005,40(1):293-296
    [28]初里冰,张兴文,李晓惠等.微氧膜生物反应器同时去除有机物和氮的研究[J].环境污染治理技术与设备,2005(05):78-82
    [29]胡林林,王建龙,文湘华等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报,2003(04):444-447
    [30] J. L. Wang, N. Yang. Partial nitrification under limited dissolved oxygen conditions[J].Process Biochemistry,2004,39(10):1223-1229
    [31]张小玲,李斌,杨永哲等.低DO下的短程硝化及同步硝化反硝化[J].中国给水排水,2004,20(5):13-16
    [32] Qingjuan MENG, Fenglin YANG, Lifen LIUet al. Effects of COD/N ratio and DOconcentration on simultaneous nitrifcation and denitrifcation in an airlift internal circulationmembrane bioreactor[J]. Journal of Environmental Sciences,2008,20(8):933-939
    [33] Sheng-bing He, Gang Xue, Bao-zhen Wang. Factors affecting simultaneous nitrification andde-nitrification (SND) and its kinetics model in membrane bioreactor[J]. Journal of HazardousMaterials,2009,168(2–3):704-710
    [34] H. K. Barrenscheen, H. A. Beckh-Widmanstetter. über baktefielle reduktion organischgebundener phosphofllure[M],1923:279-283
    [35] Liebert F. Reduzieren mikroben phosphate[M],1927:369-374
    [36] R. O. Jenkins, T. A. Morris, P. J. Craiget al. Phosphine generation by mixed-andmonoseptic-cultures of anaerobic bacteria[J]. Science Of The Total Environment,2000,250(1-3):73-81
    [37]白璐,王淑莹,宋乾武等.不同温度低溶解氧条件下活性污泥法处理污水的效果研究[J].安全与环境工程,2006(04):39-42
    [38]陈滢,彭永臻,杨向平等.低溶解氧SBR除磷工艺研究[J].中国给水排水,2004(08):40-42
    [39]丁丽丽,朱益新,梁瀚文等.大型UASB系统磷化氢分布及磷平衡研究[J].南京大学学报(自然科学版),2005(06):620-626
    [40]廖志民.兼氧型MBR工艺“气化除磷”效果研究[J].中国给水排水,2010(11):51-52
    [41]王淑莹,白璐,宋乾武等.低氧丝状菌污泥微膨胀节能方法[J].北京工业大学学报,2006(12):1082-1086
    [42]郭建华,王淑莹,彭永臻等.低溶解氧污泥微膨胀节能方法在A/O中的试验验证[J].环境科学,2008(12):3348-3352
    [43] J. H. Guo, Y. Z. Peng, C. Y. Penget al. Energy saving achieved by limited filamentous bulkingsludge under low dissolved oxygen[J]. Bioresource Technology,2010,101(4):1120-1126
    [44]彭赵旭,彭永臻,桂丽娟等.低溶解氧丝状菌污泥微膨胀在SBR中的可行性[J].化工学报,2010(06):1534-1539
    [45] C. Cenens, I. Y. Smets, V. G. Ryckaertet al. Modeling the competition between floc-formingand filamentous bacteria in activated sludge waste water treatment systems I. Evaluation ofmathematical models based on kinetic selection theory[J]. Water Research,2000,34(9):2525-2534
    [46] X. J. Yuan, D. W. Gao. Effect of dissolved oxygen on nitrogen removal and process control inaerobic granular sludge reactor[J]. Journal of Hazardous Materials,2010,178(1-3):1041-1045
    [47] D. Rosso, S. E. Lothman, M. K. Jeunget al. Oxygen transfer and uptake, nutrient removal, andenergy footprint of parallel full-scale IFAS and activated sludge processes[J]. Water Research,2011,45(18):5987-5996
    [48] Owen William F.废水处理节能[M]:化学工业出版社,1993
    [49] T. Mahmood, A. Elliott. A review of secondary sludge reduction technologies for the pulp andpaper industry[J]. Water Research,2006,40(11):2093-2112
    [50] Y. S. Wei, R. T. Van Houten, A. R. Borgeret al. Minimization of excess sludge production forbiological wastewater treatment[J]. Water research,2003,37(18):4453-4467
    [51]孙艳玲,杜兵,司亚安等.城市污水水解-厌氧-微氧联合处理工艺[J].环境科学,2000(06):77-79
    [52] T. G. Casey, M. C. Wentzel, G. A. Ekama. Filamentous organism bulking in nutrient removalactivated sludge systems-Paper10: Metabolic behaviour of heterotrophic facultative aerobicorganisms under aerated/unaerated conditions[J]. Water Sa,1999,25(4):425-442
    [53] D. Orhon, S. Sozen, N. Artan. The effect of heterotrophic yield on the assessment of thecorrection factor for anoxic growth[J]. Water Science And Technology,1996,34(5-6):67-74
    [54] Z. R. Hu, M. C. Wentzel, G. A. Ekama. Anoxic growth of phosphate-accumulating organisms(PAOs) in biological nutrient removal activated sludge systems[J]. Water Research,2002,36(19):4927-4937
    [55] X. D. Hao, Q. L. Wang, J. Y. Zhuet al. Microbiological Endogenous Processes in BiologicalWastewater Treatment Systems[J]. Critical Reviews In Environmental Science And Technology,2010,40(3):239-265
    [56] E. W. Low, H. A. Chase. The effect of maintenance energy requirements on biomassproduction during wastewater treatment[J]. Water Research,1999,33(3):847-853
    [57] D. W. Tempest, o. M. Neijssel. The status of yatp and maintenance energy as biologicallyinterpretable phenomena[J]. Annual review of microbiology,1984,38:459-486
    [58] S. J. Pirt. Maintenance energy-a general-model for energy-limited and energy-sufficientgrowth[J]. Archives of microbiology,1982,133(4):300-302
    [59] S. J. Pirt. Maintenance energy of bacteria in growing cultures[J]. Proceedings of the royalsociety series b-biological sciences,1965,163(991):224
    [60] P. L. Dold, g. A. Ekama, G. R. Marais. The activated sludge process1. a general model for theactivated sludge process[J]. Progress in Water Technology,1980,12(6):47-77
    [61] MCM Van Loosdrecht, M. Henze. Maintenance, endogeneous respiration, lysis, decay andpredation[J]. Water Science And Technology,1999,39(1):107-117
    [62] D. D. Sun, S. L. Khor, C. T. Hayet al. Impact of prolonged sludge retention time on theperformance of a submerged membrane bioreactor[J]. Desalination,2007,208(1-3):101-112
    [63] X. H. Wang, J. J. Qian, X. F. Liet al. Influences of sludge retention time on the performance ofsubmerged membrane bioreactors with the addition of iron ion[J]. Desalination,2012,296:24-29
    [64] N. Cicek, J. Macomber, J. Davelet al. Effect of solids retention time on the performance andbiological characteristics of a membrane bioreactor[J]. Water Science And Technology,2001,43(11):43-50
    [65] R. H. Siddiqi. Unified basis for biological treatment design and operation[J]. Journal Of TheSanitary Engineering Division-Asce,1971,97(nsa1):127
    [66] M. Heran, C. Wisniewski, J. Oranteset al. Measurement of kinetic parameters in a submergedaerobic membrane bioreactor fed on acetate and operated without biomass discharge[J]. BiochemicalEngineering Journal,2008,38(1):70-77
    [67] E. W. Low, H. A. Chase. The effect of maintenance energy requirements on biomassproduction during wastewater treatment[J]. Water Research,1999,33(3):847-853
    [68] T. G. Watson. Effects Of Sodium Chloride On Steady-State Growth And Metabolism OfSaccharomyces-Cerevisiae[J]. Journal of general microbiology,1970,64(nov):91
    [69] L. F. Strachan, LMF DosSantos, D. J. Leaket al. Minimisation of biomass in an extractivemembrane bioreactor[J]. Water Science And Technology,1996,34(5-6):273-280
    [70] M. F. Hamoda, ims alattar. Effects of high sodium-chloride concentrations on activated-sludgetreatment[J]. WATER SCIENCE AND TECHNOLOGY,1995,31(9):61-72
    [71] X. D. Hao, Q. L. Wang, J. Y. Zhuet al. Microbiological Endogenous Processes in BiologicalWastewater Treatment Systems[J]. Critical Reviews In Environmental Science And Technology,2010,40(3):239-265
    [72] S. H. Lee, H. Satoh, H. Katayamaet al. Isolation, physiological characterization ofbacteriophages from enhanced biological phosphorus removal activated sludge and their putativerole[J]. Journal Of Microbiology And Biotechnology,2004,14(4):730-736
    [73] K. Otawa, S. H. Lee, A. Yamazoeet al. Abundance, diversity, and dynamics of viruses onmicroorganisms in activated sludge processes[J]. Microbial Ecology,2007,53(1):143-152
    [74] N. J. Horan. Biological Wastewater Treatment Systems[M]. Chichester: Wiley,1990:310
    [75]胡颖华,高廷耀,周增炎.污水厂剩余污泥的厌氧、微氧与好氧消化研究[J].中国给水排水,2006(05):71-73
    [76] P. Liang, X. Huang, Y. Qianet al. Determination and comparison of sludge reduction ratescaused by microfaunas' predation[J]. Bioresource Technology,2006,97(6):854-861
    [77] J. L. Wang, J. Z. Wang. Application of radiation technology to sewage sludge processing: Areview[J]. Journal Of Hazardous Materials,2007,143(1-2):2-7
    [78] T. H. Kim, Y. K. Nam, C. Parket al. Carbon source recovery from waste activated sludge byalkaline hydrolysis and gamma-ray irradiation for biological denitrification[J]. BioresourceTechnology,2009,100(23):5694-5699
    [79] L. B. Chu, J. L. Wang, B. Wang. Effect of gamma irradiation on activities andphysicochemical characteristics of sewage sludge[J]. Biochemical Engineering Journal,2011,54(1):34-39
    [80] C. Bougrier, C. Albasi, J. P. Delgeneset al. Effect of ultrasonic, thermal and ozonepre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J]. ChemicalEngineering And Processing,2006,45(8):711-718
    [81] Neis U. Intensification of biological and chemical processes by ultrasound[J]. TUHamburg-Harburg Reports on Sanitary Engineering,2002,35:79-90
    [82] C. Bougrier, H. Carrère, J. P. Delgenès. Solubilisation of waste-activated sludge by ultrasonictreatment[J]. Chemical Engineering Journal,2005,106(2):163-169
    [83] J. B. Bien, E. S. Kempa, J. D. Bien. Influence of ultrasonic field on structure and parameters ofsewage sludge for dewatering process[J]. Water Science And Technology,1997,36(4):287-291
    [84] Guangming Zhang, Junguo He, Panyue Zhanget al. Ultrasonic reduction of excess sludge fromactivated sludge system II: Urban sewage treatment[J]. Journal of Hazardous Materials,2009,164(2–3):1105-1109
    [85] S. T. Yan, L. B. Chu, X. H. Xinget al. Analysis of the mechanism of sludge ozonation by acombination of biological and chemical approaches[J]. Water Research,2009,43(1):195-203
    [86] S. Saby, M. Djafer, G. H. Chen. Feasibility of using a chlorination step to reduce excesssludge in activated sludge process[J]. Water Research,2002,36(3):656-666
    [87] C. Eskicioglu, A. Prorot, J. Marinet al. Synergetic pretreatment of sewage sludge bymicrowave irradiation in presence of H(2)O(2) for enhanced anaerobic digestion[J]. Water Research,2008,42(18):4674-4682
    [88] H. J. Roman, J. E. Burgess, B. I. Pletschke. Enzyme treatment to decrease solids and improvedigestion of primary sewage sludge[J]. African Journal Of Biotechnology,2006,5(10):963-967
    [89] Q. Yang, K. Luo, X. M. Liet al. Enhanced efficiency of biological excess sludge hydrolysisunder anaerobic digestion by additional enzymes[J]. Bioresource Technology,2010,101(9):2924-2930
    [90] M. S. Miah, Chika Tada, Yingnan Yanget al. Aerobic thermophilic bacteria enhance biogasproduction[J]. Journal of Material Cycles and Waste Management,2005,7(1):48-54
    [91]逺矢泰典.剩余污泥的微生物减量方法及装置[P]
    [92]小川安正.污泥的生物处理[P]
    [93] X. Flores-Alsina, J. Comas, I. Rodriguez-Rodaet al. Including the effects of filamentousbulking sludge during the simulation of wastewater treatment plants using a risk assessmentmodel[J]. Water Research,2009,43(18):4527-4538
    [94]编委会国家环境保护总局水和废水监测分析方法.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [95] A. Fenu, G. Guglielmi, J. Jimenezet al. Activated sludge model (ASM) based modelling ofmembrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities[J].WATER RESEARCH,2010,44(15):4272-4294
    [96] J. Chudoba, j. S. Cech, J. Farkacet al. Control of activated-sludge filamentous bulking-experimental-verification of a kinetic selection theory[J]. Water Research,1985,19(2):191-196
    [97] I. Takacs, e. Fleit. Modeling Of The Micromorphology Of The Activated-Sludge Floc-LowDo, Low F/M Bulking[J]. Water Science And Technology,1995,31(2):235-243
    [98] J. H. Guo, Y. Z. Peng, C. Y. Penget al. Energy saving achieved by limited filamentous bulkingsludge under low dissolved oxygen[J]. Bioresource Technology,2010,101(4):1120-1126
    [99]白璐,王淑莹,高守有.低曝气量与实时控制下的常温短程硝化研究[J].中国给水排水,2006(09):30-33
    [100] S. Vermande, K. Simpson, K. Essemianiet al. Impact of agitation and aeration on hydraulicsand oxygen transfer in an aeration ditch: Local and global measurements[J]. Chemical EngineeringScience,2007,62(9):2545-2555
    [101]李美娣,齐鲁,张晓军等.曝气充氧性能测定中历时的控制与数据处理方法探讨[J].给水排水,2012(01):123-126
    [102]裴烨青,陈东辉,周恭明等. MBBR工艺中不同曝气方式充氧效率的比较及工程应用[J].环境工程,2011(01):5-9
    [103]王中玮,彭永臻,王淑莹等.不同运行方式下低溶解氧污泥微膨胀的可行性研究[J].环境科学,2011(08):2347-2352
    [104]彭赵旭,彭永臻,桂丽娟等.低溶解氧丝状菌污泥微膨胀在SBR中的可行性[J].化工学报,2010(06):1534-1539
    [105]彭赵旭,彭永臻,王淑莹等.丝状菌污泥膨胀的工艺控制策略[J].北京工业大学学报,2011(09):1416-1423
    [106]高春娣,武联菊,郝坤等.低温条件下低溶解氧污泥微膨胀的发生及分子生态学解析[J].北京工业大学学报,2011(07):1085-1089
    [107] D. W. Gao, Y. Fu, N. Q. Ren. Tracing biofouling to the structure of the microbial communityand its metabolic products: A study of the three-stage MBR process[J]. Water Research,2013,47(17):6680-6690
    [108] W. M. Xie, B. J. Ni, T. Seviouret al. Characterization of autotrophic and heterotrophic solublemicrobial product (SMP) fractions from activated sludge[J]. Water Research,2012,46(19):6210-6217
    [109]左金龙,彭永臻,姜安玺等.低溶解氧污泥微膨胀污染物去除性能的研究[J].哈尔滨商业大学学报(自然科学版),2009(03):283-286
    [110] K. Hanaki, c. Wantawin, s. Ohgaki. Nitrification at low-levels of dissolved-oxygen with andwithout organic loading in a suspended-growth reactor[J]. Water Research,1990,24(3):297-302
    [111] C. Helmer, S. Kunst. Simultaneous nitrification/denitrification in an aerobic biofilm system[J].Water Science And Technology,1998,37(4-5):183-187
    [112] J. M. Garrido, WAJ VanBenthum, MCM VanLoosdrechtet al. Influence of dissolved oxygenconcentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnology AndBioengineering,1997,53(2):168-178
    [113] K. Hanaki, c. Wantawin, S. Ohgaki. Nitrification at low-levels of dissolved-oxygen with andwithout organic loading in a suspended-growth reactor[J]. Water Research,1990,24(3):297-302
    [114] R. Lemaire, M. Marcelino, Z. G. Yuan. Achieving the nitrite pathway using aeration phaselength control and step-feed in an SBR removing nutrients from abattoir wastewater[J].Biotechnology And Bioengineering,2008,100(6):1228-1236
    [115] H. P. Chuang, A. Ohashi, H. Imachiet al. Effective partial nitrification to nitrite by down-flowhanging sponge reactor under limited oxygen condition[J]. Water Research,2007,41(2):295-302
    [116] N. Artan, D. Orhon, E. Choi. Appropriate design of activated sludge systems for nitrogenremoval from high strength wastewaters[J]. Journal Of Environmental Science And Health PartA-Toxic/Hazardous Substances&Environmental Engineering,2004,39(7):1913-1924
    [117] Y. F. Li, Y. Hao, J. B. Yaoet al. Study the Effects of Environmental Factors on SimultaneousNitrification and Denitrification in SBBR[J]. Environment Materials And Environment ManagementPTS1-3,2010,113-116(1-3):904-907
    [118] E. V. Munch, P. Lant, J. Keller. Simultaneous nitrification and denitrification in bench-scalesequencing batch reactors[J]. Water Research,1996,30(2):277-284
    [119] X. Yang, Y. Z. Peng, N. Q. Renet al. Nutrient removal performance and microbial communitystructure in an EBPR system under the limited filamentous bulking state[J]. Bioresource Technology,2013,144:86-93
    [120]蒋山泉,郑泽根,翟俊等. A_2ON工艺反硝化除磷机理及影响因素[J].工业水处理,2008(07):34-38
    [121]杨志泉,周少奇,何伟等.改良A~2/O工艺生物脱氮除磷应用研究[J].中国给水排水,2010(01):79-82
    [122]白璐,王淑莹,彭永臻等.低溶解氧条件下活性污泥沉降性的研究[J].工业水处理,2006(05):54-56
    [123]白璐,王淑莹,宋乾武等.不同温度低溶解氧条件下活性污泥法处理污水的效果研究[J].安全与环境工程,2006(04):39-42
    [124]陈滢,彭永臻,杨向平等.低溶解氧SBR除磷工艺研究[J].中国给水排水,2004(08):40-42
    [125]丁丽丽,任洪强,华兆哲等.内循环式厌氧反应器启动过程中颗粒污泥的特性[J].环境科学,2001(03):30-34
    [126]廖志民.兼氧型MBR工艺“气化除磷”效果研究[J].中国给水排水,2010(11):51-52
    [127]王中玮,彭永臻,王淑莹等.不同运行方式下低溶解氧污泥微膨胀的可行性研究[J].环境科学,2011(08):2347-2352
    [128] A. J. Schuler, D. Jassby. Filament content threshold for activated sludge bulking: Artifact orreality?[J]. Water Research,2007,41(19):4349-4356
    [129]天津大学物理化学教研室.物理化学(第五版)下册[M].北京:高等教育出版社,2009
    [130] P. M. Dees, W. C. Ghiorse. Microbial diversity in hot synthetic compost as revealed byPCR-amplified rRNA sequences from cultivated isolates and extracted DNA[J]. Fems MicrobiologyEcology,2001,35(2):207-216
    [131] F. Miyatake, K. Iwabuchi. Effect of compost temperature on oxygen uptake rate, specificgrowth rate and enzymatic activity of microorganisms in dairy cattle manure[J]. BioresourceTechnology,2006,97(7):961-965
    [132]姜安玺,孟雪征,曹相生等.耐冷菌的分离及在低温污水处理中的应用研究[J].哈尔滨工业大学学报,2002(04):563-565
    [133] C. T. Green, K. M. Scow. Analysis of phospholipid fatty acids (PLFA) to characterizemicrobial communities in aquifers[J]. Hydrogeology Journal,2000,8(1):126-141
    [134] P. B. Price, T. Sowers. Temperature dependence of metabolic rates for microbial growth,maintenance, and survival[J]. Proceedings Of The National Academy of Sciences of The UnitedStates Of America,2004,101(13):4631-4636
    [135] G. T. Daigger, m. H. Robbins, b. R. Marshall. The Design of a Selector To Control Low-F/MFilamentous Bulking[J]. journal water pollution control federation,1985,57(3):220-226
    [136]林学政,边际,何培青.极地微生物低温适应性的分子机制[J].极地研究,2003(01):75-82
    [137] Leslie Grady C. P,Glen T. D,Henry C. L.废水生物处理[M].北京:化学工业出版社,2002
    [138] M. A. Head, J. A. Oleszkiewicz. Bioaugmentation for nitrification at cold temperatures[J].Water Research,2004,38(3):523-530
    [139]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报,2001(05):569-572
    [140]尚会来,彭永臻,张静蓉等.温度对短程硝化反硝化的影响[J].环境科学学报,2009(03):516-520
    [141]马娟,彭永臻,王丽等.温度对反硝化过程的影响以及pH值变化规律[J].中国环境科学,2008(11):1004-1008
    [142] B. Balmelle, K. M. Nguyen, B. Capdevilleet al. Study of factors controlling nitrite buildup inbiological processes for water nitrification[J]. Water Science And Technology,1992,26(5-6):1017-1025
    [143] C. Hellinga, AAJC Schellen, J. W. Mulderet al. The SHARON process: An innovative methodfor nitrogen removal from ammonium-rich waste water[J]. Water Science And Technology,1998,37(9):135-142
    [144]陈徉,陈英文,沈树宝.环境温度下短程硝化反硝化试验研究[J].中国给水排水,2008(15):93-96
    [145] K. Yoo, K. H. Ahn, H. J. Leeet al. Nitrogen removal from synthetic wastewater bysimultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor[J].Water Research,1999,33(1):145-154
    [146]袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮[J].中国给水排水,2000(02):29-31
    [147] C. Helmer, S. Kunst. Low temperature effects on phosphorus release and uptake bymicroorganisms in EBPR plants[J]. Water Science And Technology,1998,37(4-5):531-539
    [148]姜体胜,杨琦,尚海涛等.温度和pH值对活性污泥法脱氮除磷的影响[J].环境工程学报,2007(09):10-14
    [149] S. Marklund, s. Morling. Biological phosphorus removal at temperatures from3-degrees-c to10-degrees-c-a full-scale study of a sequencing batch reactor unit[J]. Canadian Journal Of CivilEngineering,1994,21(1):81-88
    [150] D. Brdjanovic, MCM VanLoosdrecht, C. M. Hooijmanset al. Temperature effects onphysiology of biological phosphorus removal[J]. Journal Of Environmental Engineering-Asce,1997,123(2):144-153
    [151]唐旭光,王淑莹,张婧倩.温度变化对生物除磷系统的影响[J].化工学报,2011,62(4):1103-1109
    [152]祝贵兵,彭永臻.生物除磷设计与运行手册[M].北京:中国建筑工业出版社,2002
    [153] D. Mamais, A. Andreadakis, C. Noutsopouloset al. Causes of, and control strategies for,Microthrix parvicella bulking and foaming in nutrient removal activated sludge systems[J]. WaterScience And Technology,1998,37(4-5):9-17
    [154] Mogens Henze. Activated Sludge Models Asm1, Asm2, Asm2d and Asm3[M]: IWAPublishing,2000
    [155]王凯军.活性污泥膨胀机理与控制[M].北京:中国环境出版社,1993
    [156] D. L. Ford, w. W. Eckenfel. Effect Of Process Variables On Sludge Floc Formation AndSettling Characteristics[J]. Journal Water Pollution Control Federation,1967,39(11):1850
    [157] W. O. Pipes. Activated-sludge bulking and settling tank performance[J]. Journal WaterPollution Control Federation,1979,51(10):2534-2537
    [158] A. C. Chao, t. M. Keinath. Influence Of Process Loading Intensity On Sludge ClarificationAnd Thickening Characteristics[J]. Water Research,1979,13(12):1213-1223
    [159] B. M. Wilen, P. Balmer. The effect of dissolved oxygen concentration on the structure, sizeand size distribution of activated sludge flocs[J]. Water Research,1999,33(2):391-400
    [160] AMP Martins, J. J. Heijnen, MCM van Loosdrecht. Effect of dissolved oxygen concentrationon sludge settleability[J]. Applied Microbiology And Biotechnology,2003,62(5-6):586-593
    [161] L. D. Benefield, c. W. Randall, p. H. King. Stimulation of filamentous microorganisms inactivated-sludge by high oxygen concentrations[J]. Water Air And Soil Pollution,1975,5(1):113-123
    [162] J. C. Palm, d. Jenkins, d. S. Parker. Relationship between organic loading, dissolved-oxygenconcentration and sludge settleability in the completely-mixed activated-sludge process[J]. JournalWater Pollution Control Federation,1980,52(10):2484-2506
    [163] B. B. Wang, L. Zhang, D. C. Penget al. Extended filaments of bulking sludge sink in the floclayer with particulate substrate[J]. Chemosphere,2013,93(11):2725-2731
    [164] J. H. Guo, Y. Z. Peng, C. Y. Penget al. Energy saving achieved by limited filamentous bulkingsludge under low dissolved oxygen[J]. Bioresource Technology,2010,101(4):1120-1126
    [165] X. Flores-Alsina, J. Comas, I. Rodriguez-Rodaet al. Including the effects of filamentousbulking sludge during the simulation of wastewater treatment plants using a risk assessmentmodel[J]. Water Research,2009,43(18):4527-4538
    [166] I. Takacs, e. Fleit. Modeling of the micromorphology of the activated-sludge floc-low do,low f/m bulking[J]. Water Science and Technology,1995,31(2):235-243
    [167] G. A. Ekama G. V. R. Marais. The activated sludge process Part I–Steady State Behaviour[J].Water SA,1976,2(4):163-200
    [168] Antonio Domingues Benetti. Composition, fate, and transformation of extracellular polymersin wastewater and sludge treatment processes[M]: Cornell University,2000
    [169]丛峰松编.生物化学实验(第一版)_x000a_[M].上海_x000a_:上海交通大学出版社_x000a_,2005
    [170] Y. C. Chiu, C. N. Chang, J. G. Linet al. Alkaline and ultrasonic pretreatment of sludge beforeanaerobic digestion[J]. Water Science And Technology,1997,36(11):155-162
    [171] N. J. Horan, c. R. Eccles. Purification and characterization of extracellular polysaccharidefrom activated sludges[J]. Water Research,1986,20(11):1427-1432
    [172] Lawrence A. W, McCarty P. L. Kinetics of methane fermentation in anaerobic treatment[J].Water Poll Cont,1969,41(2):1-17
    [173] M. Pribyl, F. Tucek, P. A. Wildereret al. Amount and nature of soluble refractory organicsproduced by activated sludge microorganisms in sequencing batch and continuous flow reactors[J].Water Science And Technology,1997,35(1):27-34
    [174]左宁,吉芳英,万小军等.污泥龄对LSP&PNR污泥减量新工艺运行效能的影响[J].环境工程学报,2008(01):105-109
    [175]陶丽佳. SRT对MBR运行特性影响的研究[D]:江南大学,2010
    [176]谭学军,田兆运,张辰等.城市污水A~2/O处理工艺剩余污泥产率研究[J].给水排水,2012(07):43-46
    [177]徐静,徐高田,董黎静.污泥特性对膜生物反应器处理生活污水效果的影响分析[J].中北大学学报(自然科学版),2009(05):457-461
    [178]尚会来,彭永臻,张静蓉等. SRT对于污水脱氮过程中N_2O产生的影响[J].环境科学学报,2009(04):754-758
    [179]刘秀红,杨庆,吴昌永等.不同污水生物脱氮工艺中N_2O释放量及影响因素[J].环境科学学报,2006(12):1940-1947
    [180]张自杰.排水工程下册(第四版)[M],2000
    [181]王建龙,彭永臻,王淑莹.污泥龄对A~2/O工艺脱氮除磷效果的影响[J].环境工程,2007(01):16-18
    [182] L. M. Whang, J. K. Park. Competition between polyphosphate-and glycogen-accumulatingorganisms in enhanced-biological-phosphorus-removal systems: Effect of temperature and sludgeage[J]. Water Environment Research,2006,78(1):4-11
    [183] D. Brdjanovic, MCM Van Loosdrecht, P. Versteeget al. Modeling COD, N and P removal in afull-scale wwtp Haarlem Waarderpolder[J]. Water Research,2000,34(3):846-858
    [184] B. Q. Liao, D. G. Allen, I. G. Droppoet al. Surface properties of sludge and their role inbioflocculation and settleability[J]. Water Research,2001,35(2):339-350
    [185]郑兴灿.城市污水处理技术决策与典型案例[M].北京:中国建筑工业出版社,2007
    [186]刘娜. SRT对生化处理系统运行特性的影响[D]:重庆大学,2013
    [187] M. S. Moussa, C. M. Hooijmans, H. J. Lubberdinget al. Modelling nitrification, heterotrophicgrowth and predation in activated sludge[J]. Water Research,2005,39(20):5080-5098
    [188] H. S. Shin, S. T. Kang. Characteristics and fates of soluble microbial products in ceramicmembrane bioreactor at various sludge retention times[J]. Water Research,2003,37(1):121-127
    [189] P. Kos. Short SRT (solids retention time) nitrification process/flowsheet[J]. Water ScienceAnd Technology,1998,38(1):23-29
    [190]方茜,张朝升,张可方等.污泥龄及pH值对同步硝化反硝化过程的影响[J].广州大学学报:自然科学版,2008,7(3):50-54
    [191]刘娜. SRT对生化处理系统运行特征的影响[D]:重庆大学,2013
    [192] S. Aslan, L. Miller, M. Dahab. Ammonium oxidation via nitrite accumulation under limitedoxygen concentration in sequencing batch reactors[J]. Bioresource Technology,2009,100(2):659-664
    [193] Yong-wei DING, Lin WANG, Bao-zhen WANGet al. Removal of nitrogen and phosphorus ina combined A2/O-BAF system with a short aerobic SRT[J]. Journal of Environmental Sciences,2006,18(6):1082-1087
    [194]史彦伟,钟琼,李小明等. S-TE污泥好氧减量技术的研究与应用[J].中国给水排水,2006(18):16-20
    [195] H. Zhu, J. H. Chen. Study of hydrolysis and acidification process to minimize excess biomassproduction[J]. Journal Of Hazardous Materials,2005,127(1-3):221-227
    [196]宋勇,施周,陈世洋等.水解溶菌酶污泥减量过程中的污泥特性[J].中国环境科学,2012(06):1007-1010
    [197]窦艳艳,周健,韩懿等. DO对SBBR反应器污泥减量效能的影响[J].中国给水排水,2011(21):15-18
    [198] B. Abbassi, S. Dullstein, N. Rabiger. Minimization of excess sludge production by increase ofoxygen concentration in activated sludge flocs; Experimental and theoretical approach[J]. WATERRESEARCH,2000,34(1):139-146
    [199] D. C. Peng, N. Bernet, J. P. Delgeneset al. Simultaneous organic carbon and nitrogen removalin an SBR controlled at low dissolved oxygen concentration[J]. Journal Of Chemical TechnologyAnd Biotechnology,2001,76(6):553-558
    [200]孙艳玲,杜兵,司亚安等.城市污水水解-厌氧-微氧联合处理工艺[J].环境科学,2000(06):77-79
    [201] Li He, Fang-ying Ji, Xiao-ling Heet al. Validation of accumulation models for inorganicsuspended solids of different particle size in an activated sludge system[J]. Bioresource Technology,2013,149(0):51-57
    [202] Jian-Hua Guo, Yong-Zhen Peng, Cheng-Yao Penget al. Energy saving achieved by limitedfilamentous bulking sludge under low dissolved oxygen[J]. Bioresource Technology,2010,101(4):1120-1126
    [203] W. Chesbro, m. Arbige, r. Eifert. When nutrient limitation places bacteria in the domains ofslow growth-metabolic, morphological and cell-cycle behavior[J]. Fems Microbiology Ecology,1990,74(2-3):103-119
    [204] B. M. Wilen, P. Balmer. The effect of dissolved oxygen concentration on the structure, sizeand size distribution of activated sludge flocs[J]. Water Research,1999,33(2):391-400
    [205] C. F. Forster. Factors involved in the settlement of activated-sludge.1. nutrients and surfacepolymers[J]. Water Research,1985,19(10):1259-1264
    [206] B. Q. Liao, D. G. Allen, I. G. Droppoet al. Surface properties of sludge and their role inbioflocculation and settleability[J]. Water Research,2001,35(2):339-350
    [207] W. J. Payne. energy yields and growth of heterotrophs[J]. Annual review of microbiology,1970,24:17
    [208] A. Cadoret, A. Conrad, J. C. Block. Availability of low and high molecular weight substratesto extracellular enzymes in whole and dispersed activated sludges[J]. Enzyme and microbialtechnology,2002,31(1-2):179-186
    [209] J. Wawrzynczyk, M. Recktenwald, O. Norrlowet al. The function of cation-binding agents inthe enzymatic treatment of municipal sludge[J]. Water research,2008,42(6-7):1555-1562
    [210] A. Cadoret, A. Conrad, J. C. Block. Availability of low and high molecular weight substratesto extracellular enzymes in whole and dispersed activated sludges[J]. Enzyme And MicrobialTechnology,2002,31(1-2):179-186
    [211] E. S. Dey, E. Szewczyk, J. Wawrzynczyket al. A novel approach for characterization ofexopolymeric material in sewage sludge[J]. Journal Of Residuals Science&Technology,2006,(32):97-103
    [212] S. Tsuneda, H. Aikawa, H. Hayashiet al. Extracellular polymeric substances responsible forbacterial adhesion onto solid surface[J]. Fems Microbiology Letters,2003,223(2):287-292
    [213]李延军,李秀芬,华兆哲等.好氧颗粒污泥胞外聚合物的产生及其分布[J].环境化学,2006(04):439-443
    [214]刘阳,张捍民,杨凤林.活性污泥中微生物胞外聚合物(EPS)影响膜污染机理研究[J].高校化学工程学报,2008(02):332-338
    [215]龙向宇,龙腾锐,唐然等.污泥龄对胞外聚合物组分与表面性质的影响[J].中国给水排水,2008(15):1-6
    [216] J. A. Gilbert, S. Thomas, N. A. Cooleyet al. Potential for phosphonoacetate utilization bymarine bacteria in temperate coastal waters[J]. Environmental Microbiology,2009,11(1):111-125
    [217] A. Chao. Estimating the population-size for capture recapture data with unequal catchability[J].Biometrics,1987,43(4):783-791
    [218] Measurement Of Diversity. Measurement of Diversity[M],1949:688
    [219] Anne E. Magurran. Ecological Diversity and Its Measurement[M]: Springer Netherlands,1988
    [220] L. Jia, X. Gao, Y. P. Chenet al. Studies on excess sludge reduction and microbial communitygrowing in a novel a plus osa reactor[J]. Environmental Engineering And Management Journal,2013,12(11):2097-2105
    [221] Y. M. Jiang, Y. G. Chen, X. Zheng. Efficient Polyhydroxyalkanoates Production from aWaste-Activated Sludge Alkaline Fermentation Liquid by Activated Sludge Submitted to theAerobic Feeding and Discharge Process[J]. Environmental Science&Technology,2009,43(20):7734-7741
    [222] A. Quaiser, T. Ochsenreiter, C. Lanzet al. Acidobacteria form a coherent but highly diversegroup within the bacterial domain: evidence from environmental genomics[J]. MolecularMicrobiology,2003,50(2):563-575
    [223] Susan M. Barns, Elizabeth C. Cain, Leslie Sommervilleet al. Acidobacteria Phylum Sequencesin Uranium-Contaminated Subsurface Sediments Greatly Expand the Known Diversity within thePhylum[M]:3113-3116
    [224] M. S. Rappe, S. J. Giovannoni. The uncultured microbial majority[J]. Annual Review OfMicrobiology,2003,57:369-394
    [225]刘倩,阳习龙.不同污水除磷工艺中α-变形杆菌群落结构的分析[J].工业用水与废水,2011(06):20-23
    [226] F. Backhed, R. E. Ley, J. L. Sonnenburget al. Host-bacterial mutualism in the humanintestine[J]. SCIENCE,2005,307(5717):1915-1920
    [227] V. R. Hill, A. M. Kahler, N. Jothikumaret al. Multistate evaluation of an ultrafiltration-basedprocedure for simultaneous recovery of enteric microbes in100-liter tap water samples[J]. AppliedAnd Environmental Microbiology,2007,73(13):4218-4225
    [228] T. R. Thomsen, B. V. Kjellerup, J. L. Nielsenet al. In situ studies of the phylogeny andphysiology of filamentous bacteria with attached growth[J]. Environmental Microbiology,2002,4(7):383-391
    [229] Y. Xia, Y. Kong, P. H. Nielsen. In situ detection of protein-hydrolysing microorganisms inactivated sludge[J]. Fems Microbiology Ecology,2007,60(1):156-165
    [230] Y. Xia, Y. H. Kong, T. R. Thomsenet al. Identification and ecophysiological characterizationof epiphytic protein-hydrolyzing Saprospiraceae ("Candidatus epiflobacter" spp.) in activatedsludge[J]. Applied And Environmental Microbiology,2008,74(7):2229-2238
    [231] C. Roller, M. Wagner, R. Amannet al. In-situ probing of gram-positive bacteria with high dnag+c content using235-ribosomal-rna-targeted oligonucleotides[J]. Microbiology-Uk,1994,140(10):2849-2858
    [232] P. Larsen, J. L. Nielsen, D. Otzenjet al. Amyloid-like adhesins produced by floc-forming andfilamentous bacteria in activated sludge[J]. Applied And Environmental Microbiology,2008,74(5):1517-1526
    [233] C. Kragelund, C. Levantesi, A. Borgeret al. Identity, abundance and ecophysiology offilamentous Chloroflexi species present in activated sludge treatment plants[J]. Fems MicrobiologyEcology,2007,59(3):671-682
    [234] M. Schade, C. Beimfohr, H. Lemmer. Phylogenetic and physiological characterization of a"Nostocoida limicola"-like organism isolated from activated sludge[J]. Water Science AndTechnology,2002,46(1-2):91-97
    [235] Mathava Kumar, Yan-Liang Ou, Jih-Gaw Lin. Co-composting of green waste and food wasteat low C/N ratio[J]. Waste Management,2010,30(4):602-609
    [236]赵林林,王海燕,杨慧芬等. PCR-DGGE研究臭氧耦合ASBR/SBR控氮磷污泥减量化工艺中的细菌多样性[J].环境工程技术学报,2011(02):123-130
    [237] D. G. Cirne, P. Bond, S. Prattet al. Microbial community analysis during continuousfermentation of thermally hydrolysed waste activated sludge[J]. Water Science And Technology,2012,65(1):7-14
    [238] M. Wolf, T. Muller, T. Dandekaret al. Phylogeny of Firmicutes with special reference toMycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data[J].International Journal Of Systematic And Evolutionary Microbiology,2004,54(3):871-875
    [239]马宏瑞,章欣,王晓蓉等.芽孢杆菌Z5溶铜绿微囊藻特性研究[J].中国环境科学,2011(05):828-833
    [240]王惠,易鹏,张树军等.短程硝化-ANAMMOX反应器处理城市污水过程中脱氮微生物的群落解析[J].中国科学院研究生院学报,2012(01):38-46
    [241]邵军,孙海美,孙卫玲等.垃圾渗滤液处理系统中微生物群落结构变化研究[J].北京大学学报(自然科学版),2010(03):435-441
    [242]窦娜莎,王琳.16S rDNA克隆文库法分析Biostyr曝气生物滤池处理城市污水的细菌多样性研究[J].环境科学学报,2011(10):2117-2124
    [243] M. Ikenaga, S. Asakawa, Y. Muraokaet al. Phylogenetic study on CTO primer-amplifiedammonia-oxidizing bacteria and beta-Proteobacteria associated with rice roots grown in a floodedpaddy soil[J]. Soil science and plant nutrition,2003,49(5):719-727
    [244] J. P. Shapleigh. Oxygen control of nitrogen oxide respiration, focusing onalpha-proteobacteria[J]. Biochemical Society Transactions,2011,39(1):179-183
    [245] AMP Martins, K. Pagilla, J. J. Heijnenet al. Filamentous bulking sludge-a critical review[J].WATER RESEARCH,2004,38(4):793-817
    [246] A. S. Kim, H. Q. Chen, R. Yuan. EPS biofouling in membrane filtration: An analytic modelingstudy[J]. Journal Of Colloid And Interface Science,2006,303(1):243-249
    [247] V. Prouzet-Mauleon, L. Labadi, N. Bougeset al. Arcobacter butzleri: Underestimatedenteropathogen[J]. Emerging Infectious Diseases,2006,12(2):307-309
    [248] D. A. Bryant, AMG Costas, J. A. Marescaet al. Candidatus Chloracidobacteriumthermophilum: An aerobic phototrophic acidobacterium[J]. Science,2007,317(5837):523-526
    [249] T. Iizuka, Y. Jojima, R. Fudouet al. Isolation of myxobacteria from the marine environment[J].Fems Microbiology Letters,1998,169(2):317-322
    [250] J. P. Euzeby, B. J. Tindall. Status of strains that contravene Rules27(3) and30of theBacteriological Code. Request for an Opinion[J]. International Journal Of Systematic AndEvolutionary Microbiology,2004,54(1):293-301
    [251] David R. Boone, Richard W. Castenholz, George M. Garrityet al. Bergey's Manual ofSystematic Bacteriology[M]: Springer,2005
    [252] A. M. Vanniekerk, d. Jenkins, m. G. Richard. The competitive growth of zoogloea-ramigeraand type-021n in activated-sludge and pure culture-a model for low f-m bulking[J]. Journal WaterPollution Control Federation,1987,59(5):262-273
    [253]赵红霞,詹勇,许梓荣.乳酸菌的研究及其应用[J].江西饲料,2003(01):9-12
    [254] Y. Nakagawa, T. Sakane, M. Suzukiet al. Phylogenetic structure of the genera Flexibacter,Flexithrix, and Microscilla deduced from16S rRNA sequence analysis[J]. Journal Of General AndApplied Microbiology,2002,48(3):155-165
    [255]陈熙,张明,郭怡雯.氨氧化古细菌(AOA)的研究进展[J].上海化工,2009(02):1-6
    [256]张辉,李培军,胡筱敏等.亚硝化细菌的筛选及培养条件的研究[J].化工环保,2006(05):366-369
    [257]陈亚平,叶宏,王娟.亚硝化单胞菌的分离鉴定及其降解特性的研究[J].环境科学与技术,2007(09):24-25
    [258]何晓红,杨暖,陶勇等.高浓度氨氮废水短程硝化及氨氧化菌群分析[J].应用与环境生物学报,2013(02):313-317
    [259]崔有为,丁洁然,李晶等.嗜盐污泥处理高盐生活污水的短程硝化及其诱因辨析[J].应用基础与工程科学学报,2012(04):552-562
    [260] Q. X. Kong, X. W. Wang, M. Jinet al. Development and application of a novel and effectivescreening method for aerobic denitrifying bacteria[J]. Fems Microbiology Letters,2006,260(2):150-155
    [261] T. C. Zhang, D. G. Lampe. Sulfur: limestone autotrophic denitrification processes fortreatment of nitrate-contaminated water: Batch experiments[J]. Water Research,1999,33(3):599-608
    [262]司文攻,吕志刚,许超.耐受高浓度氨氮异养硝化菌的筛选及其脱氮条件优化[J].环境科学,2011(11):3448-3454
    [263]王慧荣,韦彦斐,梅荣武等.一株好氧反硝化菌的分离及特性研究[J].环境保护科学,2012(01):13-18
    [264]龙雯,陈存社,汪萍等.一株好氧反硝化细菌的分离与鉴定[J].中国酿造,2006(08):28-30
    [265] K. L. Marsh, G. K. Sims, R. L. Mulvaney. Availability of urea to autotrophicammonia-oxidizing bacteria as related to the fate of C-14-and N-15-labeled urea added to soil[J].Biology And Fertility Of Soils,2005,42(2):137-145
    [266] J. Mergaert, M. C. Cnockaert, J. Swings. Thermomonas fusca sp nov and Thermomonas brevissp nov., two mesophilic species isolated from a denitrification reactor withpoly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genusThermomonas[J]. International Journal Of Systematic And Evolutionary Microbiology,2003,53(6):1961-1966
    [267] L. Calvo, X. Vila, C. A. Abellaet al. Use of the ammonia-oxidizing bacterial-specificphylogenetic probe Nso1225as a primer for fingerprint analysis of ammonia-oxidizercommunities[J]. Applied Microbiology And Biotechnology,2004,63(6):715-721
    [268] Y. G. Zhao, J. Huang, H. Zhaoet al. Microbial community and N removal of aerobic granularsludge at high COD and N loading rates[J]. Bioresource Technology,2013,143:439-446
    [269] T. Mechichi, BKC Patel, S. Sayadi. Anaerobic degradation of methoxylated aromaticcompounds by Clostridium methoxybenzovorans and a nitrate-reducing bacterium Thauera sp strainCin3,4[J]. International biodeterioration&biodegradation,2005,56(4):224-230
    [270]王晓丹,翟振华,赵爽等.北京翠湖表流和潜流湿地对细菌多样性的影响[J].环境科学,2009(01):280-288
    [271]王海燕,周岳溪,刘海涛等.亚硝化/电化学生物反硝化全自养脱氮工艺细菌形态及多样性研究[J].环境科学学报,2010(02):327-339
    [272]吴昌永,彭永臻,万春黎等.碳源对EBPR代谢过程及微生物特性的影响[J].环境科学,2009(07):1990-1994
    [273]陈燕,杨小龙,曹郁生.1株高效聚磷节杆菌的分离鉴定及其聚磷特性研究[J].安徽农业科学,2011(01):447-450
    [274]罗宁,罗固源,吉方英等.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水,2003(08):33-35
    [275]罗宁,罗固源,吉芳英等. SBR的反硝化吸磷脱氮现象研究[J].重庆环境科学,2003(09):14-16
    [276]李军,彭永臻,杨秀山等.序批式生物膜法反硝化除磷特性及其机理[J].中国环境科学,2004(02):92-96
    [277]李军,赵琦,王宝贞等.序批式生物膜法同步除磷脱氮特性研究[J].城市环境与城市生态,2002(01):1-3
    [278] A. Wachtmeister, T. Kuba, MCM VanLoosdrechtet al. A sludge characterization assay foraerobic and denitrifying phosphorus removing sludge[J]. Water Research,1997,31(3):471-478
    [279]龙向宇,龙腾锐,唐然等.阳离子交换树脂提取活性污泥胞外聚合物的研究[J].中国给水排水,2008(03):29-33
    [280] A. I. Stamou. Modelling of oxidation ditches using an open channel flow1-Dadvection-dispersion equation and ASM1process description[J]. Water Science And Technology,1997,36(5):269-276
    [281] H. M. Van Veldhuizen, MCM Van Loosdrecht, J. J. Heijnen. Modelling biological phosphorusand nitrogen removal in a full scale activated sludge process[J]. Water Research,1999,33(16):3459-3468
    [282] SCF Meijer, MCM Van Loosdrecht, J. J. Heijnen. Metabolic modelling of full-scale biologicalnitrogen and phosphorus removing WWTP's[J]. Water Research,2001,35(11):2711-2723
    [283] DGV de Silva, B. E. Rittmann. Nonsteady-state modeling of multispecies activated-sludgeprocesses[J]. Water Environment Research,2000,72(5):554-565
    [284] C. S. Laspidou, B. E. Rittmann. A unified theory for extracellular polymeric substances,soluble microbial products, and active and inert biomass[J]. Water Research,2002,36(11):2711-2720
    [285]. Evaluation of Microbiological Aerosols Associated with the Application of Wastewater toLand[M]
    [286]姚重华,刘勇弟.活性污泥过程数学模型进展[J].环境化学,2002(06):521-527
    [287] W. Gujer, m. Henze, t. Minoet al. The activated-sludge model no-2-biological phosphorusremoval[J]. Water Science And Technology,1995,31(2):1-11
    [288] M. A. VanAalastvanLeeuwen, M. A. Pot, MCM VanLoosdrechtet al. Kinetic modeling ofpoly(beta-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamicsubstrate supply[J]. Biotechnology And Bioengineering,1997,55(5):773-782
    [289] K. Dircks, J. J. Beun, M. van Loosdrechtet al. Glycogen metabolism in aerobic mixedcultures[J]. Biotechnology And Bioengineering,2001,73(2):85-94
    [290] J. J. Beun, F. Paletta, MCM Van Loosdrechtet al. Stoichiometry and kinetics ofpoly-beta-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures[J].Biotechnology And Bioengineering,2000,67(4):379-389
    [291] MCM van Loosdrecht, J. J. Heijnen. Modelling of activated sludge processes with structuredbiomass[J]. Water Science And Technology,2002,45(6):13-23
    [292] C. T. Goudar, K. A. Strevett. Estimating growth kinetics of Penicillium chrysogenum throughthe use of respirometry[J]. Journal Of Chemical Technology And Biotechnology,1998,72(3):207-212
    [293] E. M. Contreras, L. Giannuzzi, N. E. Zaritzky. Growth kinetics of the filamentousmicroorganism Sphaerotilus natans in a model system of a food industry wastewater[J]. WaterResearch,2000,34(18):4455-4463
    [294] S. J. McIlroy, R. Kristiansen, M. Albertsenet al. Metabolic model for the filamentous'Candidatus Microthrix parvicella' based on genomic and metagenomic analyses[J]. ISME Journal,2013,7(6):1161-1172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700