用户名: 密码: 验证码:
线虫体细胞和生殖细胞命运的决定与维持需要细胞自我吞噬,LSY-2和SUMO化修饰通路的协同作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大部分有性生殖的动物中,生殖细胞会在胚胎发育的早期就同其它的体细胞分离开。很多生物,包括秀丽隐杆线虫和果蝇,生殖细胞的形成过程中,卵母细胞特异的生殖细胞质会分布到下一代的原始生殖细胞中。秀丽隐杆线虫早期胚胎发育过程中,体细胞和生殖细胞各自的前体细胞的建立需要母性遗传而来的蛋白,比如PIE-1和MEX-1的作用。而维持体细胞生殖细胞命运的差异则需要多个染色质重塑复合物的活性,包括lin-35 Rb通路和NURD复合物,在这些基因的突变体中,体细胞会异位表达生殖细胞的特性。生殖细胞体细胞的差异是怎么建立起来得?除了PIE-1和MEX-1是否还有其它的关键因子或者信号通路参与了这一过程?在体细胞中,lin-35Rb通路和NURD复合物是如何定位到它们的靶基因(生殖细胞特异的基因)上去,并如何维持这些基因的抑制状态得?对这些关于动物发育过程中决定和维持体细胞和生殖细胞命运的机制,我们还知之甚少。
     为了研究体细胞和生殖细胞的命运是如何被决定和维持得,我们做了一个全基因组的RNA干扰筛选,去寻找在体细胞里有P颗粒(生殖细胞的标记物)的报告基因,pgl-1∷gfp,异位表达的突变体。我们发现,细胞自我吞噬(autophagy)通路基因的突变体的体细胞在胚胎发育早期以及幼虫早期,会有P颗粒的异位聚集。这显示在秀丽隐杆线虫中,基础水平的细胞自我吞噬作用参与了体细胞中对生殖细胞特异的基因产物的降解过程。
     细胞自我吞噬是真核生物中主要的降解途径之一,而且是唯——个可以降解整个细胞器的途径。细胞自我吞噬广泛地存在于从酵母到人类的真核生物中。但是细胞自我吞噬确切的分子机制和生理功能还不是很清楚,现在我们也缺乏方便可靠的工具来研究细胞自我吞噬。以前一般认为细胞自我吞噬是一种没有选择性的降解过程,但是,最近越来越多的证据证明,细胞自我吞噬可能可以选择性得降解底物,至少在一些情况下是有选择性得。但是细胞自我吞噬是如何来选择底物得,还不清楚。发现新的更多的被细胞自我吞噬降解的底物,会有助于我们对选择性细胞自我吞噬的分子机制以及功能的了解。
     我们的研究表明,细胞自我吞噬作用在秀丽隐杆线虫胚胎发育过程中,选择性地降解体细胞中的P颗粒,细胞自我吞噬作用通过这种方式参与了秀丽隐杆线虫体细胞生殖细胞命运差异的建立过程。这一发现不但提示我们细胞自我吞噬作用在动物发育过程中的一个重要的生理学作用,而且给我们提供了一个很好的秀丽隐杆线虫细胞自我吞噬的标记物—pgl-1∷gfp,pgl-1∷gfp可以用来监测线虫中的细胞自我吞噬作用。如果细胞自我吞噬作用正常,体细胞中就没有pgl-1∷gfp颗粒状的聚集,如果细胞自我吞噬作用被破坏了,在胚胎发育早期的体细胞中就会有P颗粒的聚集。因此我们可以用GFP来监测秀丽隐杆线虫中的细胞自我吞噬作用。这样,我们就可以把强大的遗传筛选模型动物——秀丽隐杆线虫和方便的检测方法pgl-1∷gfp结合起来,用于研究细胞自我吞噬作用的分子机制和调控机理,及其生理作用。
     我们还发现锌指蛋白LSY-2和SUMO修饰通路的突变体的体细胞表现出了许多生殖细胞的特性,比如有P颗粒的表达。而且,在体细胞命运的维持过程中,lsy-2和lin-35 Rb通路的基因有相互促进的作用。我们进一步发现LSY-2中的一个碱性结构域能够直接结合RNA,这显示在体细胞中,RNA可能参与了抑制生殖细胞特异基因的表达。我们的研究揭示了在线虫体细胞和生殖细胞的命运决定和维持过程,需要细胞的自我吞噬,染色质重塑复合体,RNA结合蛋白LSY-2和翻译后的SUMO修饰通路的协同作用。
Germ cells are set aside from other somatic cells at early embryonic stage in most sexually reproducing animals and formation of germ cells in many organisms, including in C.elegans and Drosophila,involves the segregation of specialized germ plasma from oocyte to germ precursor cells.Establishment of somatic and germ precursor cells during early embryogenesis in C.elegans requires maternal distributed proteins,such as PIE-1 and MEX-1,while maintenance of the soma/germ distinction requires the activities of multiple chromatin remodeling complexes, including the 1in-35 Rb pathway and the NURD complex,whose mutants lead to the ectopic expression of germline traits by somatic cells.How the germ/soma distinction is established? Whether other critical factors or pathways are involved in this process besides PIE-1 and MEX-1? How the lin-35 Rb pathway and the NURD complex are targeted to and the repressive state of germline specific genes is maintained in somatic cells? So,the mechanisms that specify and maintain the distinct somatic and germ cell fates during animal development are poorly understood.
     To understand how the somatic and germ cell fate is specified and maintained, we screened a library of bacterial clones expressing dsRNA designed to individually inactivation of 16,540 genes(targeting about 86%of the genome) for mutants with ectopic expression of the P granule specific reporter,pgl-1::gfp,in somatic cells.
     In this study,we show that a basal level of autophagy is required for eliminating the germ cell-specific gene products in somatic cells in C.elegans. Mutations in the autophagy pathway lead to the accumulation of germ P granules in various somatic tissues during embryogenesis and early larvae.
     Autophagy is one of the major degradative pathways in eukaryotic cells,and it is the only one with the capacity to degrade entire organelles.This process is ubiquitous among eukaryotes and has been discovered from yeast to man.But the exact molecular mechanism and the physiological function of autophagy are still unclear and we lack convenient tool to answer these questions.
     It is generally believed that autophagy is a non-selective,bulk degradation system of long-lived proteins and organelles.However,this general belief has been challenged recently.Emerging evidence indicates that autophagic degradation is highly selective,at least in certain cases.Right now,how autophagy specifically selects cargo is still largely unknown.Identification of more selectively degraded cargoes will help determine the molecular basis of the selective action and functions of autophagy.
     In our study we found that C.elegans P granules were selectively degraded in somatic cells in early embryo by autophagy.Mutations in the autophagy pathway lead to the accumulation of germ P granules in various somatic tissues during embryogenesis and early larvae.So this discovery provides a good marker(pgl-1::gfp) to monitor autophagy process in C.elegans.If function of autophagy machinery is normal,pgl-1::gfp will not accumulated in somatic tissues in embryo and early larvae. If the autophagy machinery was disrupted,pgl-1::gfp would be accumulated in somatic tissues.So we can use GFP to monitor autophagy in C.elegans easily.
     We found that mutations in lsy-2,encoding a zinc finger protein,result in various somatic cells adopting characteristics of germ cells including ectopic expression of P granules and this transformation requires the activitieds of multiple chromatin remodeling complexes.Moreover,lsy-2 functions synergistically with the lin-35 Rb pathway in specifying larval development and the maintaining the soma/germ distinctions.We further show that a basic domain in LSY-2 directly binds to RNA,suggesting a role for RNA in repressing germ cell-specific genes in somatic cells.We also found that mutations in sumoylation pathway,including ubc-9, uba-2/aos-1 and smo-1,lead to the expressin of germ cell fate by somatic cells.
     Our analysis reveal that the establishment and maintenance of the soma/germ distinction in C.elegans requires the concerted action of autophagy,chromatin remodeling complexes,the RNA binding protein LSY-2 and the post-translational sumoylation pathway.That autophagy pathway involes in soma/germ distinction provides a convenient tool(pgl-1::gfp) to monitor autophagy in C.elegans.
引文
Ashford TP & Porter KR.Cytoplasmic components in hepatic cell lysosomes.J Cell Biol.1962 Jan;12:198-202.
    Abeliovich H,Dunn Jr WA,Kim J,Klionsky DJ.Dissection of autophagosome biogenesis into distinct nucleation and expansion steps.J Cell Biol 2000;151:1025-34.
    Andersen,E.C,Lu,X.& Horvitz,H.R.C.elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates.Development 133,2695-704(2006).
    Baumeister,W.,J.Walz,F.Zuhl,and E.Seemuller.1998.The proteasome:paradigm of a self-compartmentalizing protease.Cell.92:367-380.
    Beams HW,Kessel RG.The problem of germ cell determinants.Int Rev Cytol.1974;39:413-79.
    Blommaart EF,Luiken JJ,Meijer AJ.Autophagic proteolysis:control and specificity.Histochem J.1997 May;29(5):365-85.
    Bjorkoy,G et al.p62/SQSTMl forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J Cell Biol 171,603-14 (2005).
    Brenner S:1973.The genetics of behaviour.British Medical Bulletin 29:269-271
    Chu CT,Zhu J,Dagda R.Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress:implications for neurodegeneration and cell death.Autophagy.2007 Nov-Dec;3(6):663-6.
    Cui,M,Kim,E.B.& Han,M.Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C.elegans.PLoS Genet 2,e74 (2006).
    Dunn WA Jr.Autophagy and related mechanisms of lysosome-mediated protein degradation.Trends Cell Biol.1994 Apr;4(4):139-43.
    Fay,D.S.& Yochem,J.The SynMuv genes of Caenorhabditis elegans in vulval development and beyond.Dev Biol 306,1-9 (2007).
    G.Mari(?)o and C.Lopez-Otin.Autophagy:molecular mechanisms,physiological functionsand relevance in human pathology.CMLS,Cell.Mol.Life Sci.61 (2004)1439-1454
    Goldberg,A.L.2003.Protein degradation and protection against misfolded or damaged proteins.Nature.426:895-899.
    Gozuacik,D.& Kimchi,A.Autophagy and cell death.Curr Top Dev Biol 78,217-45 (2007).
    Guedes,S.& Priess,J.R.The C.elegans MEX-1 protein is present in germline blastomeres and is a P granule component.Development 124,731-9 (1997).
    Hara,T.et al.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.Nature 441,885-9 (2006).
    Hemelaar J,Lelyveld VS,Kessler BM,Ploegh HL.A single pro tease,Apg4B,is specific for the autophagy-related ubiquitin-like proteins GATE-16,MAP1-LC3,GABARAP,and Apg8L.J Biol Chem 2003;278:51841-50.
    Hird,S.N.,Paulsen,J.E.& Strome,S.Segregation of germ granules in living Caenorhabditis elegans embryos:cell-type-specific mechanisms for cytoplasmic localisation.Development 122,1303-12 (1996).
    Johnston,R.J.,Jr.& Hobert,O.A novel C.elegans zinc finger transcription factor,lsy-2,required for the cell type-specific expression of the lsy-6 microRNA.Development 132,5451-60(2005).
    Kabeya Y,Mizushima N,Ueno T,Yamamoto A,Kirisako T,Noda T,et al.LC3,a mammalian homologue of yeast Apg8p,is localized in autophagosome membranes after processing.EMBO J 2000;19:5720-8.
    Kawasaki,I.et al.PGL-1,a predicted RNA-binding component of germ granules,is essential for fertility in C.elegans.Cell 94,635-45 (1998).
    Klionsky,D.J.,and S.D.Emr.2000.Autophagy as a regulated pathway of cellular degradation.Science.290:1717-1721.
    Klionsky DJ,Cregg JM,Dunn JrWA,Emr SD,Sakai Y,Sandoval IV,et al.A unified nomenclature for yeast autophagy-related genes.DevCell 2003;5:539-45.
    Klionsky,D.J.The molecular machinery of autophagy:unanswered questions.J Cell Sci 118,7-18(2005).
    Klionsky DJ,Cuervo AM,Seglen PO.Methods for monitoring autophagy from yeast to human.Autophagy.2007 May-Jun;3(3):181-206.
    Komatsu,M.et al.Loss of autophagy in the central nervous system causes neurodegeneration in mice.Nature 441,880-4 (2006).
    Levine,B.& Deretic,V.Unveiling the roles of autophagy in innate and adaptive immunity.Nat Rev Immunol 7,767-77 (2007).
    Levine,B.& Klionsky,D.J.Development by self-digestion:molecular mechanisms and biological functions of autophagy.Dev Cell 6,463-77 (2004).
    Levine B,Yuan J.Autophagy in cell death:an innocent convict? J Clin Invest.2005 Oct;115(10):2679-88.
    Majeski AE,Dice JF.Mechanisms of chaperone-mediated autophagy.Int J Biochem Cell Biol 2004;36:2435-44.
    Massey,A.,R.Kiffin,and A.M.Cuervo.2004.Pathophysiology of chaperone-mediated autophagy.Int.J.Biochem.Cell Biol.36:2420-2434.
    Mello,C.C,Draper,B.W.,Krause,M.,Weintraub,H.& Priess,J.R.The pie-1 and mex-1 genes and maternal control of blastomere identity in early C.elegans embryos.Cell 70,163-76(1992).
    Mello,C.C.et al.The PIE-1 protein and germline specification in C.elegans embryos.Nature 382,710-2 (1996).
    Melendez,A.et al.Autophagy genes are essential for dauer development and life-span extension in C.elegans.Science 301,1387-91 (2003).
    Mizushima N,Yamamoto A,Hatano M,Kobayashi Y,Kabeya Y,Suzuki K,et al.Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells.J Cell Biol 2001;152:657-68.
    Mizushima N,Kuma A,Kobayashi Y,Yamamoto A,Matsubae M,Takao T,et al.Mouse Apg16L,a novel WD-repeat protein,targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate.J Cell Sci 2003;116:1679-88.
    Mizushima N.Methods for monitoring autophagy.Int J Biochem Cell Biol.2004 Dec;36(12):2491-502.
    Mizushima,N.,The pleiotropic role of autophagy:from protein metabolism to bactericide.Cell Death Differ 12,1535 1541 (2005).
    Mizushima,N.& Klionsky,D.J.Protein turnover via autophagy:implications for metabolism.Annu Rev Nutr 27,19-40 (2007).
    N Mizushima.The pleiotropic role of autophagy:from protein metabolism to bactericide.Cell Death and Differentiation (2005)12,1535-1541
    Onodera,J.& Ohsumi,Y.Ald6p is a preferred target for autophagy in yeast,Saccharomyces cerevisiae.J Biol Chem 279,16071-6 (2004).
    Pandey,U.B.et al.HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS.Nature 447,859-63 (2007).
    Pitt JN,Schisa JA,Priess JR.P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA.Dev Biol.2000 Mar 15;219(2):315-33.
    Qu,X.et al.Autophagy gene-dependent clearance of apoptotic cells during embryonic development.Cell 128,931-46 (2007).
    Rubinsztein,D.C.The roles of intracellular protein-degradation pathways in neurodegeneration.Nature 443,780-6 (2006).
    Rubinsztein DC,Gestwicki JE,Murphy LO,Klionsky DJ.Potential therapeutic applications of autophagy.Nat Rev Drug Discov.2007 Apr;6(4):304-12.
    Saffman EE,Lasko P.Germline development in vertebrates and invertebrates.Cell Mol Life Sci.1999 Jul;55(8-9):1141-63.
    Saitou M,Barton SC,Surani MA.A molecular programme for the specification of germ cell fate in mice.Nature.2002 Jul 18;418(6895):293-300.
    Schisa JA,Pitt JN,Priess JR.Analysis of RNA associated with P granules in germ cells of C.elegans adults.Development.2001 Apr;128(8):1287-98.
    Seglen PO,Bohley P.Autophagy and other vacuolar protein degradation mechanisms.Experientia.1992 Feb 15;48(2):158-72.
    Seydoux G,Fire A.Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans.Development.1994 Oct;120(10):2823-34.
    Shin,T.H.& Mello,C.C.Chromatin regulation during C.elegans germline development.Curr Opin Genet Dev 13,455-62 (2003).
    Shibata,M.et al.Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1.J Biol Chem 281,14474-85 (2006).
    Shimada,M,Yokosawa,H.& Kawahara,H.OMA-1 is a P granules-associated protein that is required for germline specification in Caenorhabditis elegans embryos.Genes Cells 11,383-96(2006)
    Strome,S.& Lehmann,R.Germ versus soma decisions:lessons from flies and worms.Science 316,392-3(2007).
    Sun,Y.& Zhang,H.A unified mode of epigenetic gene silencing:RNA meets polycomb group proteins.RNA Biol 2,8-10 (2005).
    Suzuki K,Kirisako T,Kamada Y,Mizushima N,Noda T,Ohsumi YThe pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation.EMBO J 2001;20:5971-81.
    Tanaka,Y et al.Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice.Nature 406,902-6 (2000).
    Tanida I,Sou YS,Ezaki J,Minematsu-Ikeguchi N,Ueno T,KominamiE.HsAtg4B/HsApg4B/autophagin-l cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubuleassociated protein light chain 3-and GABAA receptor-associated protein-phospholipid conjugates.J Biol Chem 2004;279:36268-76.
    Takasaki,T.et al.MRG-1,an autosome-associated protein,silences X-linked genes and protects germline immortality in Caenorhabditis elegans.Development 134,757-67 (2007).
    Unhavaithaya,Y et al.MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C.elegans.Cell 111,991-1002 (2002).
    Wang,D.et al.Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants.Nature 436,593-7 (2005).
    Xiao G.Autophagy and NF-kappaB:fight for fate.Cytokine Growth Factor Rev.2007 Jun-Aug;18(3-4):233-43.Epub 2007
    Xie Z,Klionsky DJ.Autophagosome formation:core machinery and adaptations.Nat Cell Biol.2007 Oct;9(10):1102-9.
    Yu L,Wan F,Dutta S,Welsh S,Liu Z,Freundt E,Baehrecke EH,Lenardo M.Autophagic programmed cell death by selective catalase degradation.Proc Natl Acad Sci U S A.2006 Mar28;103(13):4952-7.
    Zhang,H.et al.The C.elegans Polycomb gene SOP-2 encodes an RNA binding protein.Mol Cell 14,841-7(2004).
    Zhang,T.et al.RNA-binding proteins SOP-2 and SOR-1 form a novel PcG-like complex in C.elegans.Development 133,1023-33 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700