用户名: 密码: 验证码:
黄土塬石油污染土壤的降解规律及生物修复优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油类污染物在典型油区的生物降解规律和土壤修复技术的研究已成为国内外环境、生物学领域的热点。针对陇东黄土塬石油污染土壤的区域性和重要性,通过石油污染物在土壤中的吸附行为和自然生物降解规律的试验,选择本源土壤微生物中能够降解石油的菌株,优化构建了降油菌群及其环境适应因子,研究了翻耕、添加锯末、氮磷营养剂强化技术条件对修复过程的作用;通过混合菌中各菌株分子水平的鉴定与同源性分析,提出了不同菌种的保藏条件。主要研究成果如下:
     (1)陇东黄土对原油吸附等温线很好地符合Langmuir和线性吸附方程,其吸附系数分别为0.013和0.012ml/g;5种介质吸附原油能力从大到小依次为石英砂、高岭土、黄绵土、高压灭菌土、硅藻土。水相pH、温度和石英砂含量的升高,不利于原油在土壤中的吸附,而盐度会加大原油的吸附量。模拟自然条件下生物降解土壤中的石油类污染物发现:未污染土壤中加0.15%、0.3%、0.5%石油降解的半衰期分别为17.2、18.2和23.7d,生物降解系数分别为0.040、0.038和0.029mg/d;在不同含油浓度下,石油降解率随添加量呈下降趋势,说明石油污染浓度过大会抑制微生物的自然降解效率。
     (2)在陇东油田受石油污染的土壤中,以原油为唯一碳源,通过富集分离的方法筛选出13株菌株,各菌株均能在pH值为5-9的范围内生长,但在pH值为8左右的石油培养基里石油降解率最大,可达到95%以上。各菌降解石油表现出先降解高碳数正构烷烃为低碳数正构烷烃,高碳数正构烷烃中奇数碳向偶数碳正构烷烃演化的规律;各菌作用霍烷需要比正构烷烃更高的能量,对芳烃的作用最难,降解率也最低,主要表现形式是对稠环边上的甲基具有去甲基作用,这也是产生天然气的过程,其中F1、A5、D4表现更为突出。混合菌对于正构烷烃的降解率要高于各个单菌的作用;在正交配比优化实验中,假单胞菌属菌(A6)对维持混合菌株的高降解率起到重要的作用。在盐度为8g/1、pH为8、温度在30℃左右以及油浓度为400-600mg/1条件下,混合菌降解率达到最高,且稳定性和适应性比单株菌系好,能更好地适应不同条件下的土壤或水环境。
     (3)向土壤中加入混合菌并结合翻耕、添加锯末技术,一方面从细菌数量、水分、氧气等方面改善了土壤的环境,另一方面有利于微生物分解得到的小分子代谢产物的挥发,从而大大加快残油的去除速度。加入混合菌使土壤中细菌含量提高一个数量级的条件下,土壤中石油的半衰期比自然土壤(不加菌)缩短了近4倍。土壤湿度为24.1%时,加入混合菌使土壤中细菌含量达到1.09×108个/kg土,治理5%油污土壤的半衰期是41d,治理62d后,向土壤中加入混合菌并结合翻耕技术的降解率达到了84.64%。添加膨松剂(锯末)提高了土壤的保水和通气能力,而且对于生物修复过程中土壤的脱氢酶活性有明显的促进作用。在每天翻耕的样品中,第62天测量时酶活性已经增长到4.0左右,比不添加膨松剂和翻耕频率较低的土壤高出2倍左右。混合菌剂与有机肥联合作用能够加强石油污染土壤的修复能力,添加2%、4%与8%菌剂和有机肥48天后的降解效率为68.01%、80.42%和78.47%,均大于CK的降解率,四种处理中4%菌剂和有机肥的修复效果最显著。添加的有机肥中氮磷的含量是影响石油降解率的主要因素,只有加适量的有机肥才能使降解效果达到最好,4%的有机肥添加量使降解效果达到最好。
     (4)经分子鉴定,菌种A6为铜绿假单胞菌属、D4为蒙氏假单胞菌属、A5为鲁菲不动杆菌属、F1为黄色类诺卡氏菌属、F2为暗黑微绿链霉菌属。各菌种可以冻干粉或不同斜面培养基,于37℃培养24h后置于4℃冰箱备用。
The study of biological degradation and soil remediation technology to the petroleum pollutants in typical region has become focus in the domestic and international environment, biological field. In the light of regional and importance for Longdong Loess Plateau polluted by petroleum, the study of sorption behaviors of crude oil in soil and law of natural biodegradation of petroleum contaminated soil is applied. Then oil-degradation bacterial strain are selected from local microorganisms in soil, the oil-degradation mixed bacterium and adaptal factors has been optimized and constructed; and technology conditions of aggrandizeing bioremediation, such as plowing, added sawdust, nitrogen and phosphorus-nutrient agent are studied on repairing process, the role and influence of these measures are studied. Lastly, the mixed bacteria strains from the molecular level are identificated and analyzed from homology, put forward preservation conditions for every bacteria. The main study results are as follows:
     (1) Static experiments for sorption behaviors of crude oil for loess soil in Longdong area are carried out, the adsorption isotherms of crude oil in loess soils are well described by the Langmuir and linear equation. The adsorption coefficients are0.013and0.012mg/1; The adsorption capacity of oil in the five media in turn is:Silica sand, Kaolin, Loessal soil, High pressure sterilized soil, Diatomite; The increase of pH, temperature and silica sand are not favorable to adsorption of crude oil in soil, increasing the salinity can increase adsorption of crude oil. Situ-biodegradation to depredate petroleum pollutants in soil under simulating natural conditions are applied,and find that the half-life of degradations of petroleum oil in no-polluted soil added0.15%,0.3%,0.5%petroleum are17.2,18.2,23.7d, the bio-degradation coefficients are0.0401,0.0388,0.0293mg/d; In different petroleum concentrations, petroleum degradation rate shows trend of decline with increase of petroleum's addition. This performance shows that excessive concentration of petroleum can inhibit microbial natural degradation efficiency.
     (2) The soil samples come from Huaqing/XiFeng oil areas of Gansu province which have being polluted by oil for a long time. Using crude oil as the sole carbon source,13strains are screened and isolated with the enrichment and separation method, the strains can all grow up in the pH5-9, and in oil medium (0.5%standard oil), at the pH8, the oil degradation rates reach a maximum (more than95%). The degrading appears that after being treated with various bacteria and the mixed bacterium, firstly, the higher molecular weight n-alkanes are degraded into lower molecular weight n-alkanes, and the n-alkanes in odd-numbered carbon are degraded into n-alkanes in even-numbered carbon. Every bacterium degradating hopane needs higher energy than n-alkanes, Aromatic hydrocarbons are degradated most difficultly, the degradation rate is lowest, mainly form is demethylation effection for the side of methyl on fused ring, which is the process of natural gas. Several bacteria and mixed bacterium all have stronger demethylation effect for methyl on fused ring, among them F1, A5, D4's performance is more outstanding. Mixed bacterium's degradation rate is higher than that of each single bacterium for n-alkanes (except for a positive role:n-tridecane). In process of orthogonal and optimizational experiment, Pseudomonas (A6) plays an important role on maintenance of high degradation rate in mixed strains. The bacteria agent'environmental conditions of crude oil degradation are:salinity is8g/l, pH is8, at30℃,400-600mg/1oil concentration conditions, the mixed strains'degradation rate is highest, and the stability and adaptability are better than individual strains. Therefore, the mixed bacterium has stronger adaptability to different soil and water environment in the practical application.
     (3) Joining the mixed bacterium into soil and tillage technology, on the one hand, the soil environment is improved at bacteria, water, oxygen and other aspects; on the other hand tillage is in favor of volatilization of the small molecule metabolite by microbial decomposition, so as to greatly accelerate the speed of removal of residual oil. Under the condition of bacterium content increasing one order of magnitude by adding mixed bacterium into the soil, the half-life reduces nearly4times than the natural soil (without bacteria).When soil moisture is24.1%, the mixed bacterium is added into the soil, bacteria content reachs1.09×10, the half-life of treatment of5%soil polluted by petroleum is41days, after61d, degradation rate reachs84.64%by adding mixed bacterium into soil and tilling technology. Adding leavening agents (sawdust) can increase water retention and ventilation capacity of soil, but also has advantageous to improve dehydrogenase activity in the bioremediation process. In the samples turned every day, add leavening agents, on the sixty-second day, measuring enzyme activity has increased to about4.0, is about2times higher than not added leavening agents. Remediation ability of petroleum contaminated soil with mixed bacterium and organic fertilizer jointly is improved:after48days, under oil contents of50g/kg in the contaminated soil, the oil degradation rate of2%,4%,8%bacterium reach68.01%,80.42%,78.47%, which are clearly improved the biodegrading efficiency higher than CK degradation rate. The4%mixed bacterium's degradation efficiency is most significant. In organic fertilizer, Nitrogen and Phosphorus content is the main factor affected oil degradation rate, only the amount needed to a certain range could have active degradation efficiency, the4%organic fertilizer can achieve the best degradation efficiency.
     (4) Through molecular identification, strain A6is Pseudomonas aeruginosa genus, D4is Montessori Pseudomonas, Acinetobacter lwoffii species as A5, F1is yellow class of Nocardia genus, F2is dark green streptomyces. Every bacteria Can be freezed dried powder or be made from various slant of culture medium, at37℃, after24h cultured, conserved in4℃refrigerator spare.
引文
[1]Alejandro RG, Mar AC, Ferre-RO, et al. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes [J]. International Biodete-rioration& Biodegradation,2006,57(4):222-228.
    [2]Alexander. Biodegradation of chemical of environmental concern.science,1981, 211:132-138.
    [3]Andersson Be,Henrysson T. Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi[J].Applied Microbiology and Biotechnology,1996,46(5/6):647-652.
    [4]Atlas R, Bartha R. Microbial Ecology [M].Third Edition The Enjamin/Cummings Publishing Co.,1993.
    [5]Ayotamuno M J, Kogbara R B, Ogajs O T, et al. Bioremediation of a crude-oil polluted agricultural-soilat PortHarcourt, Nigeria[J]. Applied Energy,2006,83(11):1249-1257.
    [6]Bel haj A, Desnoues N, El mer ich C. A 1 ka ne. Biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone:Identification of alkB and alkB-related genes. Res Microbiol[J],2002,153 (6):339-344.
    [7]Carriere PRE. Enhanced biodegradation of creosote-contaminated soil[J], Waste Management,1995.579-583
    [8]Cecch A.M., Koshinen W.C., Cheng H.H. et al. Sorption-desorption of phenolic acids as affected by soil properties [J]. Biology and Fertility of Soils,2004,39(4):235-242.
    [9]Christopher J. Engler et al. Bioremediation of Petroleum produets in soil.[J], The Dragun Corporation Farm ington Hills, Miehigan.
    [10]David C, Mark D, John H. Soil respiration from four aggrading forested watersheds measured over a quarter century. Forest Ecology and Management, 2002(157):247-253.
    [11]Halmemies S., Grondahl S., Nenonen K., Tuhkanen T.2003. Estimation of the time periods and processes for penetration of selected spilled oils and fuels in different soils in the laboratory[J].Research,8(5-6):451-465.
    [12]Holt JA, Hodgen MJ, Lamb D. Soil respiration in the seasonally dry tropics near Townsville, North Queensland.Aust J Soil Res,2005(28):737-745.
    [13]Grierson P F, Ad ams M A. PI ant species affect acid ph os phat as e, ergost er ol and microbial P in a jarrah (Eucalyp lus mar ginata Donn exsm.) fores t in south-west ern Aus t ral ia[J]. Soil Biol Biochem,2000,32:1817-1828.
    [14]Kishore E D, Ashis K M. Crude petroleum-oil biodeg-radation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contami-nated soil from North-East India [J]. Bioresource Tech-nology,2007,98(7):1339-1345.
    [15]Labud V., Garcia C., Hernandez T.2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil [J].Chemosphere,66:1863-1871.
    [16]LEYVAL C, BINET P. Effect of polyaromatic hydrocarbons in soil on ar-buscular mycorrhizal plants [J].Journal of Environmental Quality,1998,27(2):402-407.
    [17]Li Chunrong,Wang Wenke,Cao Yuqing, et al.Petroleum pollutions degraded by microorganisms[J].Journal of earth sciences and environment,2007,29(2):214-216.
    [18]Mark A S, James S B, Cheryl A P, et al. Evaluat ion of two commercial bio-augmentation products for enhanced removel of petroleum from a wet land [J].Ecological Engineering, 2004,23:263-277.
    [19]Maria S Kuyukina, Irena B Ivshina, Marina I Ritchkova, James C Philp, et al. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques[J].Boca Raton,2003,12 (1):85-100.
    [20]Margesin R,Schinner F. Bioremedation(Natural Attenuation and Biostimulation) of Diesel-oil-contaminated Soil in An Alpine Glacier Sking Area[J].Appl Environ on Microbio,2001,67(7):3127-3133.
    [21]Margesin R, Schinner F. Effect of temperature on oil degradation by a psychrot rophic yeast in liquid culturend in soil [J].FEMS Microbiology Ecology,1997, (24):243-249.
    [22]Saadoun I. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel[J]. J Basic Microbiol,2002,42 (6):420-428.
    [23]Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS. Crude oil and hydrocarbon degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait[J]. Environ Pollut,1990,65 (1):1-17.
    [24]Song RH, Hua ZZ, Chen J. Effects of different substrates and environmental factors on hydrocarbon accsess mode and degrading ability of two Pseudomonas aeruginosa strain. Chin J Appl Environ Biol [J],2007,13 (6):843-847.
    [25]Straight P D, Willey JM, Roberto Kolter. Interactions between streptomyces coelicolor and bacillus subtilis:role of surfactants in raising aerial structures[J]. J Bacterio,l 2006,188(13): 4918-4925.
    [26]Thomas M. Walski, R. Bernard Biga. Case study in sludge handling. Proceedings of the 1991 [J].Specialty Conference on Enviromenntal Engineering.,1991.667-672.
    [27]Will umsen P A, Arvin E. Kinetics of degradation of surfactant solubilized fluoranthene by a Sphingomonas paucimobilis[J]. Environmental Science & Technology,1999,33: 2571-2578.
    [28]Zhu L Z. Zhang M. Effect of rhamnolipids on the uptake of PAHs byryegrass [J]. Environment Pollution,2008,156(1):46-52.
    [29]曹志平.土壤生态学[M].北京:化学工业出版社,2007.7:150-153.
    [30]曾宪军,刘登魁.微生物修复受石油污染土壤的研究进展[J].湖南农业科学,2006,(2):36-38
    [31]陈声明,张立钦.微生物学研究技术[M].北京:科学出版社,2006.
    [32]陈雪婷,郭婷婷,田威等.1株土壤放线菌的分类鉴定及其抗菌活性的研究[J].微生物学杂志2010,30(2):68-71.
    [33]程国玲,李培军石油污染土壤的植物与微生物修复技术[J].环境工程学报,2007,(1):91-96.
    [34]戴冬娟等.酸性土壤环境石油烃生物降解效应.环境科学,2005,26(3):146-151.
    [35]丁克强,尹睿,刘世亮等.石油污染土壤堆制微生物降解研究[J].应用生态学报,2002,13(9):1137-1140
    [36]丁明宇,黄健,李永祺.海洋微生物降解石油的研究[J].环境科学学报,2001,21(1):84-88.
    [37]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:20-86.
    [38]董志涛,吴金伟.石油污染土壤的生物修复研究进展.2010,38(6).
    [39]冯欣,韩志勇等.黄土对含油废水的吸附作用研究,2010.11:121-126
    [40]冯晋阳.石油烃优良降解菌的筛选分离及其降解性能的研究[D].西安:西安建筑科技大学,2004.
    [41]冯树,张中泽.混合菌—一类值得重视的微生物资源[J].世界科技研究与发展.2000
    [42]弓建国,等.微生物与工农业生产[J].集宁师专学报,2006.
    [43]顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究[J].生态科学,2000,19(4):67-71.
    [44]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986.
    [45]郭伟,何孟常,杨志峰土壤/沉积物中石油烃微生物降解研究综述[J].矿物岩石地球化学通报,2007,126(3):276-283
    [46]国家环保局主编.水和废水监测分析方法[M](第三版).北京:中国环境科学出版社,1989.
    [47]韩慧龙,陈镇,杨健民等.真菌-细菌协同修复石油污染土壤的场地试验.环境科学,2008,29(2):454-461.
    [48]何良菊,李培杰,魏德洲.石油类物质微生物降解的营养平衡及降解机理[J].环境科学,2004,25(1):91-94.
    [49]何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究[J].环境科学进展,1999,7(3):110-115.
    [50]胡家俊,周群英.环境工程微生物学[M].北京:高等教育出版社,1988.
    [51]胡俊.微生物学实验技术[M].呼和浩特:内蒙古文化出版社,2000
    [52]胡开辉.微生物学实验[M].北京:中国林业出版社,2004.8:105-107.
    [53]胡佩蒲,万芬,胡星琪.油田污染土壤微生物治理现状及研究趋势[J].皮革科学与工程,2004,12:43-45.
    [54]黄廷林,徐金兰,唐智新等.生物菌剂对石油污染土壤生物修复作用的研究[J],环境科学,2009,30(6):1838-1843.
    [55]黄廷林,任磊.黄土地区油类污染物的径流污染模拟及模型预测[J].中国环境科学2000,20(4):345-348
    [56]黄廷林,肖洲强,徐金兰,等.生物菌剂修复陕北石油污染土壤实验研究[J].西安建筑科技大学学报:自然科学版,2007,39(1):14-17.
    [57]晃晓波,赵文谦,张萍.石油从泥沙上解吸的特性研究.环境科学学报.1997,17(4):435-438.
    [58]纪雪雁,刘晓艳,李兴伟,戴春雷,楚伟华.分层土柱法研究石油类污染物在土壤中的迁移[J].能源环境保护,2005,19(1):43-46.
    [59]贾建丽.石油污染土壤微生物学特性与生物修复效应研究[D].北京:清华大学环境科学与工程系,2005:3-51
    [60]金志刚.污染物生物降解.上海:华东理工大学出版社,1997.154-16.
    [61]李崇明等.河流泥沙对石油的吸附、解吸规律及影响因素的研究.中国环境科学,1997,17(1):23-26.
    [62]李春荣,黄文科,曹玉清,王丽娟.石油污染物的微生物降解[J].地球科学与环境科学,2007.29(2):214-217,
    [63]李东坡,武志杰,陈利军等.长期培肥黑土脱氢酶活性动态变化及其影响因素[J].土壤通报,2005,10:680-683.
    [64]李鸿杰,高见.环境统计学[M].西北农林科技大学出版社.2004.8:41-42.
    [65]李培军,台培东,张海荣等.石油污染土壤的生物修复与土壤酶活性的关系[J].生态学杂志,2005,24(10):1226-1229
    [66]李晓华,许嘉琳,王华东.污染土壤环境中石油组分迁移特征研究[J].中国环境科学,2006,18(Suppl):54-58.
    [67]李秀艳,魏德洲,何良菊等.氮磷营养盐对微生物降解作用的影响[J].东北大学资源与土木工程学,2000,11:238-239.
    [68]李毅然.复合菌剂修复石油污染土壤的影响因素研究[J].衡阳师范学院学报,2010.12:61-63.
    [69]李颖,贾丽娜,张鹏.高效生物修复菌株的筛选及其降解能力的研究[J].化工环保,2004,24(增刊):15-17.
    [70]李振高,骆永明,滕应.土壤与环境微生物研究方法[M].北京:科学出版社,2008.5:135-137.
    [71]廉景燕,杜永亮,张凯瑞,刘沛,李忠媛,李鑫钢.有机溶剂脱附法处理高浓度石油污染土壤的研究[M],天津大学化工学院化工研究所.
    [72]梁冰,薛强,刘晓丽.油气田地区土壤-水环境中有机污染物的数值模拟及模型预测[J].中国地质灾害与防治学报,2002,13(3):19-22.
    [73]梁慧星,陈欣.污染土壤微生物修复技术的研究发展[J].中国科技信息,2006,8:131-132.
    [74]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010.3:74-79.
    [75]林义成,丁能飞,傅庆等.土壤溶液电导率的测定及其相关因素的分析[J].浙江农业学报,17(2):83-86,2005.
    [76]刘鹏,李大平,王晓梅等.石油污染土壤的生物修复技术研究[J].化工环保,2006,26(2):91-94.
    [77]刘晓艳,李兴伟,纪学雁刘晓冬.油田城市地表土壤石油污染特点及其防治对策[M].大庆石油学院地球科学学院.
    [78]马淑敏,刘金娜,金文标等.有机污染土壤的生物修复研究进展[J].河北建筑合计学院学报,2006,23(3):39-42
    [79]毛丽华,吕华,李子君.石油污染土壤生物强化修复的机制与实施途径2006,58(1).
    [80]庞艳华,丁永生,公维民.紫外分光光度分测定水中油含量[J].大连海事大学学报,2002,28(4):69-71.
    [81]齐建超,张承东,乔俊.微生物与有机肥混合剂修复石油污染土壤的研究[J].农业环境科学学报,2010,29(1):66-72.
    [82]齐永强,王红旗,刘敬奇.土壤石油微生物降解影响因子的正交实验分析[J].地球学报,2003,4:279-284.
    [83]乔俊,陈威,张承东.添加不同营养助剂对石油污染土壤生物修复的影响[J].环境化学,2010,1:7-11.
    [84]任南琪,李建政.环境污染防治中的生物技术[M].北京:化学工业出版社,2004.
    [85]阮志勇.石油降解菌株的筛选、鉴定及其石油降解特性的初步研究[D].北京:中国农业科学院,2006.
    [86]沈萍,陈向东.微生物学实验(第四版)[M].北京:高等教育出版社,2007,111-120.
    [87]沈薇,杨树林,陆晓等,铜绿假单胞菌BS-03对原油的降解作用[J].环境科学与技术,2006,29(1):16-19.
    [88]孙庆峰,余仁焕.石油污染土壤处理技术研究的进展[J].国外金属矿选,2002.12:4-6.
    [89]孙天然.植物强化微生物修复多环芳烃污染土壤研究[D].济南:山东师范大学,2009.
    [90]孙铁珩,周启星,李培军等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005:100-101
    [91]孙文杰,刘勇弟.微生物共代谢作用的研究进展[J].安阳师范学院学报,2003(2):23-25.
    [92]孙艺萍,魏巍,赵敏.石油烃类污染土壤的微生物修复技术[J].东北林业农业大学学报,2009,10:64-84.
    [93]孙远军.降解石油烃优势菌的筛选、分离及性能研究[D].西安:西安建筑科技大学,2006.
    [94]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报:自然科学版,2005,33(6):86-92
    [95]汪洋,史典义,聂春雨,张楠楠.石油污染土壤的微生物修复技术[J].生物技术,2009,19(2):94-96.
    [96]王红旗,陈延君,孙宁宁.土壤石油污染物微生物降解机理与修复技术研究[J].地学前缘,2006,1:135-139.
    [97]王辉,赵春燕,李宝明等.石油污染土壤中细菌的分离筛选[J].沈阳农业大学,2005.
    [98]王莉,张宝军,瞿群等.事故状态下输油管线对地下水污染的模拟分析[J].兰州大学学报(自然科学版),2007,43(1):29-32.
    [99]王艳,孙杰,吴金水.有机物料对污染土壤微生物碳和磷的影响[J].植物营养与肥料学报,2000,6(3):300-305.
    [100]王志强.地下水石油污染高效生物降解研究[J].环境科学,2005,26(6):61-64.
    [101]卫扬保.微生物生理学[M].北京:高等教育出版社,1989.
    [102]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用[M],河北科技大学纺织服装学院.
    [103]武秀琦,西北黄土地区石油污染土壤生物修复影响因素研究[M],西安建筑科技大学.
    [104]谢丹平,叶锦,韶张娜,等.混合菌对石油的降解[J].应用与环境生物学报,2004,10(2):210-214.
    [105]谢飞,吴芳云,刘建刚等.洗涤法处理含油土壤的研究.[J]油气田环境保护,1997,5(1):5-9.
    [106]徐金兰,黄廷林,黄志超,等.添加膨松剂和翻耕对石油污染土壤生物修复的影响试验研究[J].西安建筑科技大学学报:自然科学版,2010.2,42(1):65-70.
    [107]徐玉林.石油污染土壤降解与土壤的环境关系[M].浙江大学,生物系统工程与食品科学学院.
    [108]许华夏,张春桂.微生物降解石油污染的土壤[J].辽宁城乡环境科技,1998,18(6):22-24.
    [109]雅菁.掺杂纳米光催化剂的可见光抗菌活性研究[J].天津大学,2007.7:36-37.
    [110]杨翠云,郭淑政,刘琪等.石油污染土壤微生物多样性的研究技术及进展[J].安微农业科学,2009,37(33):16479-16482.
    [111]移桂荪,刘小秩.增塑剂酞酸二丁酯的微生物降解.[J]环境科学,1986.6:25-27.
    [112]于晓丽,落地原油对土壤污染及治理技术[J].农业环境发展,2000,(3):28-29.
    [113]袁红莉等.降解石油微生物菌种的筛选及降解特性。中国环境科学,2003,23(2):157-161.
    [114]詹研.中国土壤石油污染的危害及治理对策[J].环境污染及防治,2008,30(3):91-96.
    [115]张纪忠.微生物分类学[M].上海:复旦大学出版社,1990.
    [116]张娇,耿永娟,朱世富,昌晶,陈翔.有机质对土壤吸附性能的影响研究[M],青岛农业大学资源与环境学院,青岛理工大学环境与市政工程学院.
    [117]张杰等.多环芳烃降解菌筛选及其降解特性[J].应用生态学报,2003,14(10):1783-1786
    [118]张松林,董庆士,周喜滨等.人为石油污染土壤紫花苜蓿田间修复试验[J].兰州大学学报(自然科学版),2008,44(1):47-50.
    [119]张妍.黄土区石油污染的现状及其修复[J].商洛学院学报,2008.4(22):56-58.
    [120]张子间,刘勇弟,孟庆梅,张立辉.微生物降解石油烃污染物的研究进展[J].化工环保,2009,29(3):193-198.
    [121]章永松,林咸永,罗安程.有机肥(物)对土壤中磷的活化作用及机理的研究[J].植物营养与肥料学报,1998,4(2):145-150.
    [122]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002.3:75-77.
    [123]赵连梅,池勇志,张春青.TTC—脱氢酶活性测定中标准曲线的影响因素研究[J].实验室科学,2009,4:72-74.
    [124]赵敏,马宏瑞.石油降解菌的降解特性研究[J].油气田环境保护,2007,17(2):8-10.
    [125]郑金秀.高效石油烃降解菌群的构建及其在生物修复中的强化作用研究[D].武汉:武汉大学,2005.
    [126]郑西来,王秉忱,佘宗莲.土壤-地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004-09.
    [127]国科学院南京土壤研究所微生物室,土壤微生物研究[M].北京:科学出版社,1985
    [128]中国科学院南京土壤研究所微生物室,土壤微生物研究[M].北京:科学出版社,1985
    [129]周群英,王士芬.环境工程微生物学[M].北京:高等教育出版社,2008.3:402-403.
    [130]朱雄文.石油污染土壤修复技术进展研究[M],江汉油田盐化工总厂

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700