用户名: 密码: 验证码:
UV/O_3降解水中新兴微污染物的特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业迅速发展和人们生活水平普遍提高的今天,水环境污染受到了越来越多的关注,尤其是饮用水的卫生和安全问题。然而,传统的给水处理工艺对于近年来微污染水源中出现的一些新兴有机污染物如医药品和个人护理品(PPCPs)、内分泌干扰物(ECDs)和微囊藻毒素(MCs)等的处理能力有限,很难将其降解。另外,加强和推广污水的再生利用即中水回用是缓解我国水资源短缺压力的有效方法。而这两者均需要有效的深度处理技术来支撑。因此,研究简单、易行、经济的可用于饮用水及中水回用的深度处理技术是非常必要和有意义的,而臭氧和紫外联用技术(UV/O_3)正是可选的技术之一。
     本文运用浓度去除率和生物毒性去除率两种评价指标对单独臭氧氧化工艺(O_3)、紫外辐射工艺(UV)和臭氧与紫外联用工艺(UV/O_3)降解几种典型的新兴有机物污染物的效能进行了评价和比较。并且考察了水质条件和操作参数对三种工艺降解污染物的效能的影响。同时,运用LC-TOF/MS和离子色谱等分析手段对降解过程中形成的中间产物进行了分析并提出了可能的降解途径。最后,基于非稳态的羟基自由基的假设结合半经验模型运用matlab建立了模拟天然水体本底的UV/O_3降解有机污染物的动力学模型。
     臭氧化对目标污染物(磺胺甲基异恶唑(SMX)、佳乐麝香(HHCB)、双酚A(BPA)、微囊藻毒素LR(MC-LR))的浓度去除效果均令人满意,20min的去除率都能达到90%以上,二级反应速率常数在102~106 M-1·s-1数量级范围。而UV工艺仅仅对于光解活性较好的SMX和MC-LR(ФSMX=0.0263 mol·Einstein-1,ФMC-LR=0.041 mol·Einstein-1)的去除效果较好。而对于HHCB和BPA,由于量子产率和(或)吸光效率的低下导致二者20min的浓度去除率低于20%。
     提高臭氧或紫外投量能够强化有机污染物的去除,而增加有机污染物的初始浓度则会导致降解效能的下降,这本质上是投配比(即臭氧或紫外投量与有机污染物的浓度比)决定了有机污染物的降解效能。对于O_3工艺,溶液的pH值能通过两方面影响有机污染的降解效能:一是pH的改变能够影响臭氧的直接反应和间接反应的贡献大小;二是pH的改变能够影响有机污染的离解状态从而影响其与臭氧分子的反应活性,尤其是那些与臭氧直接反应活性很高的有机物。对于UV工艺,pH值主要通过要影响有机物的离解状态进而影响其光解活性。重碳酸离子作为广为接受的羟基自由基捕获剂,其对臭氧氧化有机污染物的效能的影响分为两种情况:对于与臭氧反应活性相对较高的SMX、BPA和MC-LR,0~8mM的重碳酸根离子有利于水中臭氧残留的稳定,从而在一定程度上促进了三者的降解,而对于与臭氧反应活性相对较弱的HHCB,同样浓度范围的重碳酸根离子对其降解表现出了一定的抑制作用。重碳酸根离子的存在对四种目标有机物的UV降解基本上没有什么影响。当水体中存在0~5mg·L~(-1)的腐植酸时,其对四种目标有机物的臭氧氧化降解过程同样分为两种情况,对于与臭氧反应活性相对较高的SMX、BPA和MC-LR,腐植酸对他们的降解均表现除了不同程度的抑制作用;而对于与臭氧具有中等反应活性的HHCB,低浓度范围的腐植酸对其降解具有一定的促进作用,高浓度水平的腐植酸则表现出抑制作用。至于UV降解过程,考察浓度范围的腐植酸对四种目标有机物的降解均表现出了强化作用。操作参数和水质条件对UV/O_3工艺的影响类似于O_3工艺,但UV/O_3工艺抗水质波动的能力更强。需要说明的是,在考察的pH值范围(5.0~9.0)内,中性条件下的降解效能最好,这一点非常有利于其实际应用。
     使用大型蚤活动抑制试验、费希尔弧菌毒性试验、酵母菌雌激素筛选测试(YES)和蛋白磷酸酶(PP2A)活性抑制试验等毒性评价手段对四种目标有机物在O_3、UV、和UV/O_3降解过程中的生物毒性进行了考察。通过对TOC去除率的考察和中间产物的定性分析,发现O_3和UV降解有机污染物的过程中产生了大量的中间产物,而这些产物部分保留或完全保留了母体分子的中的某些官能团结构。这些中间产物的积累导致了在O_3和UV降解有机污染物的过程中,浓度去除和毒性去除之间出现了偏离。而UV/O_3工艺由于能有效的减少中间产物的积累,所以其在有效降低污染物浓度的同时也能有效降其生物毒性。
     在模拟天然水体本底条件下建立的UV/O_3体系的动力学模型能较好地预测模型化合物SMX的浓度变化,但是对体系中H_2O_2分解和积累在反应初期预测值不理想,另外模型对羟基自由基的浓度变化的预测值要较实测值低20%~35%。
With the rapid development and improvement of people’s living standard, the environmental pollution has been an issue of great concern, especially for the safety and sanitation of drinking water. However, there are no specific unites in the conventional drinking water treatment processes for the removal of emerging contaminants such as endocrine disrupting chemicals (ECDs), pharmaceutical and personal care products (PPCPs), microcystins (MCs) etc., so these emerging contaminants cannot be degraded by conventional drinking water treatment processes and then may enter into the drinking water . In addition, improving and promoting reclaimed water recycling is an effective method to relieve the stress of water source shortage. Based on the stated above, developing and designing efficient, easy, and economic advanced treatment technologies are in urgent need.
     Degradation of target compounds by ozonation (O_3), UV photolysis (UV), and combined use of ozone and UV (UV/O_3) was investigated, and the efficiencies of biotoxicity removal were also evaluated. The influences of operational parameters and water qualities on the three processes were also investigated. Finally, assuming that hydroxyl radicals are in a unsteady state, a kinetic model for the UV/O_3 system, containing water simulating the natural water, was established with matlab.
     Ozonation showed a satisfied performance on the removal of selected organic pollutants (sulfamethoxazole (SMX), galaxolide (HHCB), bisphenol A (BPA), and microcystin LR (MC-LR)), with removal rates over 90% in 20 min. The second-order rate constants of ozone with the four chemicals were on the order of 102~106 M-1·s-1 at neutral condition. The UV process only degraded SMX and MC-LR rapidly, but showed slow degradation rates for HHCB and BPA due to their low molar extinction coefficients and(or) quantum yields, with removal rates less than 20% in 20 min.
     The influences of operational parameters and water qualities on the O_3 and UV processes were studied. Increasing the ozone or UV dose can improve the degradation of organic pollutants, while increase in the initial concentration of target compounds would worsen the degradation efficiency. Essentially, the ratio of ozone (UV) dose to concentration of target compounds determined the degradation efficiency. For O_3 process,the solution pH exerted effect on the degradation from two aspects. First, the solution pH can change the proportion of direct ozonation and indirect ozonation involved in the degradation process. Second, the solution pH can influence the dissociation state of target compounds which show different reactivity towards ozone, especially for the organic compounds with high reactivity towards ozone. As to UV process,the solution pH made its contribution mainly by changing the dissociation state of target compound. Bicarbonate ion, as a widely accepted hydroxyl radical quencher, showed different performance on different target compounds. For the compounds with high reactivity towards ozone such as SMX、BPA and MC-LR, the presence of bicarbonate ion in the range of 0~8 mM was favored to stabilize the aqueous ozone residual and thus benefit the removal of pollutants. However, when the pollutants reacted slowly with ozone, such as HHCB, the presence of bicarbonate ion would inhibit the degradation process. On the contrary, there was little effect in the presence of bicarbonate ion for UV process. Similar to the case of bicarbonate ion, the presence of humic acid (HA) in the range of 0~5 mg·L~(-1) showed different performance on different target compounds. To SMX, BPA, and MC-LR,HA was an inhibitor. In the case of HHCB, low level of HA promoted the degradation but the high level of HA suppressed the degradation. HA at all the concentration levels (0~5 mg·L~(-1)) improved the degradation efficiencies of target compounds. The influences of operational parameters and water qualities on the UV/O_3 process was similar to that on O_3 process, but the UV/O_3 process seemed to more resistant to fluctuation of water quality.one point should be mentioned, in the investigated pH range(5.0~9.0), best performance was obtained in the neutral condition, which was very advantageous to practical application.
     The biotoxicity evolution of target compounds during the O_3, UV, and UV/O_3 processes was investigated with daphnia magna acute immobilisation test, vibrio fischeri toxicity test, yeast estrogen screen, and protein phosphatase 2A inhibition assay. Based on the results of TOC and intermidiates analysis, it can be concluded that a large amount of intermidiates were formed during the O_3 and UV processes. Unforunately, these intermidiates kept partial or intact functional groups contined in the parent moleceulars, which resulted in deviation between the concentration removal rates and biotoxicity rates. The UV/O_3process, with high mineralization ability, can effectively reduce the accumulation of intermidiates and thus decreased the biotoxicity meanwhile.
     The established kinetic model for the UV/O_3 system, containing water simulating the natural water, can predict the concentration variation of SMX well, but yield a unsatisfied prediction for the decay and accumulation of H_2O_2 on the early stage of reaction. In addition, the model underestimated the concentration of hydroxyl concentration by 20%~35% compared to the experimental data.
引文
1 Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle changes [J]. Environ. Health Perspect, 1999: 907-938.
    2 Carballa M, Omil F, Lema J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Res., 2004, 38, (12): 2918-2926.
    3 Duca G, Boldescu V. The Role of Ecological Chemistry in Pollution Research and Sustainable Development [J]. Pharmaceuticals and Personal Care Products in the Environment, 2009: 27-35.
    4 Ternes T, Meisenheimer M, McDowell D, et al. Removal of pharmaceuticals during drinking water treatment [J]. Environ. Sci. Technol., 2002, 36(17): 3855-3863.
    5 Bjorklund H, Bylund G. Temperature-related absorption and excretion of oxytetracycline in rainbow trout (Salmo gairdneri R.) [J]. Aquaculture, 1990, 84(3-4): 363-372.
    6 Tendencia E A, De La Pena L D. Antibiotic resistance of bacteria from shrimp ponds [J]. Aquaculture, 2001, 195(3-4): 193-204.
    7 Hoogenboom L A P, van Bruchem G D, Sonne K, et al. Absorption of a mutagenic metabolite released from protein-bound residues of furazolidone [J]. Environ. Toxicol. Environ. Pharmacol., 2002, 11(3-4): 273-287.
    8张雅斌,张祚新,郑伟,等.不同给药方式下鲤对诺氟沙星的药代动力学研究[J].水产学报, 2000, 24(6): 559-563.
    9 Mohney L L, Williams R R, Bell T A, et al. Residues of oxytetracycline in cultured juvenile blue shrimp, Penaeus stylirostris (Crustacea: Decapod), fed medicated feed for 14 days [J]. Aquaculture, 1997, 149(3-4): 193-202.
    10 Samuelsen O, Ervik A. Single dose pharmacokinetic study of flumequine after intravenous, intraperitoneal and oral administration to Atlantic halibut (Hippoglossus hippoglossus) held in seawater at 9°C [J].Aquaculture, 1997, 158(3-4): 215-227.
    11祝万菊,邓旭明,张艳萍,等.恩诺沙星缓释溶液在猪体内的药物动力学及生物利用度[J].吉林农业大学学报, 2003, 25(3): 335-338.
    12 Kumar N, Singh S, Jayachandran C. Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin and its interaction with diclofenac after intravenous administration in buffalo calves [J]. Veterinary journal, 2003, 165(3): 302.
    13 Kung K, Riond J L, Wanner M. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral administration of enrofloxacin in dogs [J]. J Vet Pharmacol Ther., 1993, 16(4): 462-468.
    14胡功政,冯淇辉.恩诺沙星及其活性代谢物在鸡体内的药物动力学[J].中国兽医学报, 1999, 19(2): 70-73.
    15 Zuccato E, Bagnati R, Fioretti F, et al. Environmental loads and detection of pharmaceuticals in Italy. Pharmaceuticals in the environment: sources, fate, effects and risks [M]. London, Springer-Verlag, 2001: 42-46.
    16 Richardson M L, Bowron J M. The fate of pharmaceutical chemicals in the aquatic environment [J]. J. Pharm. Pharmacol., 1985, 37(1): 1-12.
    17刘先利,刘彬,邓南圣.环境内分泌干扰物研究进展[J].上海环境科学, 2003, 22(1): 57-69.
    18祝红红,黄幸纾.植物性雌激素对人类的潜在影响[J].国外医学(卫生学分册), 1996, 23(4): 234-237.
    19宋宏宇,王捷.环境内分泌干扰物与农药[J].农药科学与管理, 2001, 22(2): 23-25.
    20 Brouwer A, Longnecker M P, Birnbaum L S, et al. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ [J]. Health Perspect., 1999, 107(Suppl 4):639.
    21王宏,沈英娃.烷基酚聚氧乙烯醚类物质的环境雌激素效应[J].中国环境科学, 1999, 19(5): 427-431.
    22 Olea N, Pazos P, Exposito J. Inadvertent exposure to xenoestrogens [J]. Eur. J. Cancer Prev., 1998, 7(1): 17.
    23胡建英,杨敏.自来水及其水源中的内分泌干扰物质[J].净水技术, 2001, 20(3): 3-6.
    24 Svrcek C, Smith D. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review [J]. Journal of environmental engineering and science, 2004, 3(3): 155-185.
    25 Paerl H W, Fulton 3rd R S, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J]. Sci. World J., 2001, 1(1):76-113.
    26 Codd G A, Morrison L F, Metcalf J S. Cyanobacterial toxins: risk management for health protection [J]. Toxicol. Appl. Pharm., 2005, 203(3): 264-272.
    27 Codd G A. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control [J]. Ecol. Eng., 2000, 16(1): 51-60.
    28 Carmichael W W. Health effects of toxin-producing cyanobacteria:―the CyanoHABs‖[J]. Hum. Ecol. Risk. Assess, 2001, 7(5): 1393-1407.
    29 Carmichael W W. The toxins of cyanobacteria. Sci. Am., 1994, 270(1): 64-70.
    30谢平.微囊藻毒素对人类健康影响相关研究的回顾[J].湖泊科学, 2009, 21(5): 603-613.
    31谢平.论蓝藻水华的发生机制:从生物进化,生物地球化学和生态学视点[M].科学出版社, 2007: 66-75.
    32 Chen J, Xie P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and-RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China [J]. Toxicon., 2005, 45(5): 615-625.
    33谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M].科学出版社, 2006: 42-47.
    34 Chen J, Zhang D, Xie P, et al. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms [J]. Sci. Total Environ., 2009, 407(10): 3317-3322.
    35 Nakada N, Tanishima T, Shinohara H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment [J]. Water Res. 2006, 40(17): 3297-3303.
    36 Johnson A C, Sumpter J P. Removal of endocrine-disrupting chemicals in activated sludge treatment works [J]. Environ. Sci. Technol., 2001, 35(24): 4697-4703.
    37徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿[D].中国科学院广州地球化学研究所,博士学位论文, 2007.
    38常红,胡建英,王乐征,等.城市污水处理厂中磺胺类抗生素的调查研究[J].科学通报, 2008, 53(2): 159-164.
    39 Kim S D, Cho J, Kim I S, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Res., 2007, 41(5): 1013-1021.
    40 Kim I, Yamashita N, Tanaka H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan [J]. J. Hazard. Mater., 2009, 166(2-3): 1134-1140.
    41徐维海,张干,邹世春,等.典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J].环境科学, 2007, 28(8): 1779-1883.
    42 Lishman L, Smyth S A, Sarafin K, et al. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada [J]. Sci Total Environ., 2006, 367(2-3): 544-558.
    43 Weigel S, Berger U, Jensen E, et al. Determination of selected pharmaceuticals and caffeine in sewage and seawater from Troms/Norway with emphasis on ibuprofen and its metabolites [J]. Chemosphere, 2004, 56(6): 583-592.
    44周海东,黄霞,文湘华.城市污水中有关新兴微污染物PPCPs归趋研究的进展[J].环境工程学报, 2007, 1(12): 1-9.
    45 Baronti C, Curini R, D'Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water [J]. Environ. Sci. Technol., 2000, 34(24): 5059-5066.
    46 Layton A C, Gregory B W, Seward J R, et al. Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA [J]. Environ. Sci. Technol., 2000, 34(18): 3925-3931.
    47 Vieno N M, Tuhkanen T, Kronberg L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection [J]. J. Chromatogr. A., 2006, 1134(1-2): 101-111.
    48 Stumpf M, Ternes T A, Wilken R D. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil [J]. Sci. Total. Environ., 1999, 225(1-2): 135-141.
    49 Dascenzo G, Corcia A D, Gentili A, et al. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities [J]. Sci. Total Environ., 2003, 302(1-3): 199-209.
    50 Lee I S, Lee S H, Oh J E. Occurrence and fate of synthetic musk compounds in water environment [J]. Water Res., 2010, 44(1): 214-222.
    51 Zhang X, Yao Y , Zeng X, et al. Synthetic musks in the aquatic environment and personal care products in Shanghai, China [J]. Chemosphere, 2008, 72(10): 1553-1558.
    52 Clara M, Strenn B, Gans O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants [J]. Water Res., 2005, 39(19): 4797-4807.
    53 Wu J L, Lam N P, Martens D, et al. Triclosan determination in water related to wastewater treatment [J]. Talanta., 2007, 72(5): 1650-1654.
    54 Yu J T, Bouwer E J, Coelhan M. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent [J]. Agr Water Manage., 2006, 86(1-2): 72-80.
    55 Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of triclosan in the River Ai re Basin, UK [J]. Water Res., 2003, 37(13): 3145-3154.
    56 Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers [J]. Water Res., 1998, 32(11): 3245-3260.
    57 Carballa M, Omil F, Ternes T, et al. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge [J]. Water Res., 2007, 41(10): 2139-2150.
    58 Sui Q, Huang J, Deng S, et al. Occurrence and removal of pharmaceuticals,caffeine and DEET in wastewater treatment plants of Beijing, China [J]. Water Res., 44(2): 417-426.
    59 Belfroid A C, Van der Horst A, Vethaak A D, et al. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands [J]. The Science of the Total Environment, 1999, 225(1-2): 101-108.
    60 Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil [J]. The Science of the Total Environment, 1999, 225(1-2): 81-90.
    61郑晓英,周玉文,王俊安.城市污水处理厂中邻苯二甲酸酯的研究[J].给水排水, 2006, 32(3): 19-22.
    62林兴桃,陈明,王小逸,等.污水处理厂中邻苯二甲酸酯类环境激素分析[J].环境科学与技术, 2004, 27(6): 79-81.
    63 Stasinakis A S, Gatidou G, Mamais D, et al. Occurrence and fate of endocrine disrupters in Greek sewage treatment plants [J]. Water Res., 2008, 42(6-7): 1796-1804.
    64 Jones-Lepp T L, Stevens R. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation [J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1173-1183.
    65 DiFrancesco A M, Pei C, Laurel C, Standley J, et al. Dissipation of fragrance materials in sludge-amended soils [J]. Environ. Sci. Technol., 2003, 38(1): 194-201.
    66 G Ying, R S Kookana. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants [J]. Environ. Int. 2007, 33(2): 199-205.
    67 Kaleta A, Ferdig M, Buchberger W. Semiquantitative determination of residues of amphetamine in sewage sludge samples [J]. J. Sep. Sci., 2006, 29(11): 1662-1666.
    68郭亚文,张晓岚,钱光人,等.城市污泥中合成麝香的分布特征[J].环境科学, 2009, 30(5): 1943-1948.
    69 Horii Y, Reiner J L, Loganathan B G, et al. Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA [J]. Chemosphere, 2007, 68: 2011-2020.
    70 Zeng X, Sheng G, Xiong Y, et al. Determination of polycyclic musks in sewage sludge from Guangdong, China using GC-EI-MS [J]. Chemosphere, 2005, 60(6): 817-823.
    71 Fromme H, Otto T, Pilz K. Polycyclic musk fragrances in different environmental compartments in Berlin (Germany) [J]. Water Res., 2001, 35(1): 121-128.
    72沈钢,余刚,蔡震霄,等.污水和污泥中两类酚类内分泌干扰物的分析方法[J].科学通报, 2005, 50(17): 51-57.
    73郑晓英,周玉文.城市污水污泥中邻苯二甲酸酯的研究[J].给水排水, 2005, 31(11): 27-30.
    74 Fauser P, Carlsen L. Phthalates, nonylphenols and LAS in an alternately operated wastewater treatment plant-fate modelling based on measured concentrations in wastewater and sludge [J]. Water Res., 2003, 37(6): 1288-1295.
    75 Pryor S W , Hay A G, Walker L P . Nonylphenol in anaerobically digested sewage sludge from New York State [J]. Environ. Sci. Technol., 2002, 36(17): 3678-3682.
    76乔玉霜,张晶,张昱,等.污水处理厂污泥中几种典型酚类内分泌干扰物的调查[J].环境化学, 2007, 26(5): 671-674.
    77 La Guardia M J, Hale R C, Harvey E, et al. Alkylphenol ethoxylate degradation products in land-applied sewage sludge (biosolids) [J]. Environ. Sci. Technol., 2001, 35(24): 4798-4804.
    78 Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, and perso nal care product chemicals during simulated drinking water treatment processes [J]. Environ. Sci. Technol., 2005, 39(17): 6649-6663.
    79 Rebhun M, Meir S, Laor Y. Using dissolved humic acid to remove hydrophobic contaminants from water by complexation-flocculation process [J]. Environ. Sci. Technol., 1998, 32(7): 981-986.
    80 Robeck G G, Dosta K A, Cohe J M. Effectiveness of water treatment processes in pesticide removal [J]. J. Am. Water Works Assoc., 1965, 57: 181-199.
    81 R J Miltner, D B Baker, T F Speth, et al. Treatment of seasonal pesticides in surface waters [J]. J. Am. Water Works Ass., 1989, 81(1): 43-52.
    82 Dodd M C, Huang C H. Aqueous chlorination of the antibacterial agent trimethoprim: Reaction kinetics and pathways [J]. Water Res., 2007, 41(3):647-655.
    83 Kawahata H, Ohta H, Inoue M, et al. Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan-within coral reefs and adjacent river mouths [J]. Chemosphere, 2004, 55(11): 1519-1527.
    84邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学报, 2002, 22(1): 12-16.
    85 Heemken O P, Reincke H, Stachel B, et al. The occurrence of xenoestrogens in the Elbe river and the North Sea [J]. Chemosphere, 2001, 45(3): 245-259.
    86 Sabik H, Gagne F, Blaise C, et al. Occurrence of alkylphenol polyethoxylates in the St. Lawrence River and their bioconcentration by mussels (Elliptio complanata) [J]. Chemosphere, 2003, 51(5): 349-356.
    87 Li D, Kim M, Shim W J, et al. Seasonal flux of nonylphenol in Han River, Korea [J]. Chemosphere, 2004, 56(1): 1-6.
    88 Tsuda T, Takino A, Kojima M, et al. 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa [J]. Chemosphere, 2000, 41(5): 757-762.
    89李海涛,黄岁樑.水环境中邻苯二甲酸酯的迁移转化研究[J].环境污染与防治, 2006, 28(11): 853-858.
    90 Yuan S Y, Liu C, Liao C S, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments [J]. Chemosphere, 2002, 49(10): 1295-1299.
    91 Van Wezel A P, Van Vlaardingen P, Posthumus R, et al. Environmental risk limits for two phthalates, with special emphasis on endocrine disruptiveproperties [J]. Ecotox Environ Safe., 2000, 46(3): 305-321.
    92 Vitali M, Guidotti M, Macilenti G, et al. Phthalate esters in freshwaters as markers of contamination sources-a site study in Italy [J]. Environ. Int., 1997, 23: 337-347.
    93 Giam C S, Chan H S, Neff G S, et al. Phthalate ester plasticizers: a new class of marine pollutant [J]. Science, 1978, 199(4327): 419
    94 Debska J, Kot-Wasik A, Namiesnik J. Fate and analysis of pharmaceutical residues in the aquatic environment [J]. Crit. Rev. Anal. Chem., 2004, 34(1): 51-67.
    95 Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999- 2000: A national reconnaissance [J]. Environ. Sci. Technol., 2002, 36(6): 1202-1211.
    96 Managaki S, Murata A, Takada H, et al. Distribution of Macrolides, sulfonamides, and trimethoprim in tropical Waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta [J]. Environ. Sci. Technol., 2007, 41(23): 8004-8010.
    97 Tamtam F, Mercier F, Le Bot B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions [J]. Sci. Total Environ., 2008, 393(1): 84-95.
    98 Kasprzyk-Hordern B, Dinsdale R, Guwy A J. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry [J]. J. Chromatogr. A., 2007, 1161(1-2): 132-145.
    99 Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data [J]. Toxicol. Lett., 2002, 131(1-2): 5-17.
    100 Zuccato E, Calamari D, Natangelo M, et al. Presence of therapeutic drugs in the environment [J]. The Lancet., 2000, 355(9217): 1789-1790.
    101 Jux U, Baginski R M, Arnold H G, et al. Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) andsurroundings [J]. Int J Hyg Envir Heal., 2002, 205(5): 393-398.
    102 Quintana J B, Rodil R, Muniategui-Lorenzo S, et al. Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry [J]. J. Chromatogr. A., 2007, 1174(1-2): 27-39.
    103 Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra-performance liquid chromatography-negative electrospray tandem mass spectrometry [J]. Talanta., 2008, 74(5): 1299-1312.
    104 Togola A , Budzinski H. Multi-residue analysis of pharmaceutical compounds in aqueous samples [J]. J. Chromatogr. A. 2008, 1177(1): 150-158.
    105 Z Moldovan. Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania [J]. Chemosphere, 2006, 64(11): 1808-1817.
    106 Buerge I J, Buser H R, Muller M D, et al. Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters [J]. Environ. Sci. Technol., 2003, 37(24): 5636-5644.
    107 Bester K. Polycyclic musks in the Ruhr catchment area transport, discharges of waste water, and transformations of HHCB, AHTN and HHCB-lactone [J]. J. Environ. Monit., 2004, 7(1): 43-51.
    108 Quednow K, Puttmann W. Organophosphates and synthetic musk fragrances in freshwater streams in Hessen/Germany [J]. Clean-oil, Air, Water, 2008, 36(1): 70-77.
    109 Vanderford B J, Snyder S A. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry [J]. Environ. Sci. Technol., 2006, 40(23): 7312-7320.
    110 Stumpf M, Ternes T A, Haberer K, et al. Determination of drugs in sewage treatment plants and river water [J]. Vom Wasser., 1996, 86: 291-303.
    111 Vieno N M, Tuhkanen T, Kronberg L. Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water [J]. Environ. Sci. Technol., 2005, 39(21): 8220-8226.
    112 Loraine G A, Pettigrove M E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California [J]. Environ. Sci. Technol., 2006, 40(3): 687-695.
    113 Stackelberg P E, Furlong E T, M Meyer T, et al. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant [J]. Sci. Total Environ., 2004, 329(1-3): 99-113.
    114 Stackelberg P E, Gibs J, Furlong E T, et al. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds [J]. Sci. Total Environ., 2007, 377(2-3): 255-272.
    115 Tauber R. Quantitative analysis of pharmaceuticals in drinking water from ten Canadian cities[C]. Enviro-Test Laboratories, Xenos Division, Ontario, Canada, 2003:1-13.
    116 Heberer T, Mechlinski A, Fanck B, et al. Field studies on the fate and transport of pharmaceutical residues in bank filtration [J]. Ground Water Monit. Remed., 2004, 24(2): 70-77.
    117 Hoffmann J. Removal of microcystis toxins in water purification processes [J]. Water SA., 1976, 2(2): 58-60.
    118 Himberg K, Keijola A, Hiisvirta L, et al. The effect of water treatment processes on the removal of hepatotoxins from microcystis and oscillatoria cyanobacteria: a laboratory study [J]. Water Res., 1989, 23(8): 979-984.
    119 Keijola A M, Himberg K, Esala A L, et al. Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments [J]. Toxicity assessment, 1988, 3(5): 643-656.
    120吴和岩,郑力行,苏瑾,等.上海市供水系统微囊藻毒素LR含量调查[J].卫生研究, 2005, 34(2): 152-154.
    121 Song W,Teshiba T,Rein K,et al.Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin).Environ. Sci. Technol., 2005, 39(16): 6300-6305.
    122 Shephard G S, Stockenstr S, De Villiers D, et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water [J]. Toxicon., 1998, 36(12): 1895-1901.
    123 Lambert T W, Holmes C, Hrudey S E. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment [J]. Water Res., 1996, 30(6): 1411-1422.
    124 Benotti M, Trenholm R, Vanderford B, et al. Pharmaceuticals and endocrine disrupting compounds in US drinking water [J]. Environ. Sci. Technol., 2008, 43(3): 597-603.
    125 Kuch H M, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC (NCI) MS in the Pictogram per Liter Range [J]. Environ. Sci. Technol., 2001, 35(15): 3201-3206.
    126张凤仙.江苏省典型地区水源水和饮用水拟/抗甲状腺激素活性筛查及关键致毒物质追踪[D].南京:南京大学硕士学位论文, 2011: 45-47.
    127 Blaha L, Marsalek B. Dissolved microcystins in raw and treated water in the Czech Republic [M]. Cyanotoxins (I. Chorus, ed.). Berlin, Heidelberg, New York: Springer, 2001: 212-216.
    128 Ling B. Health impairments arising from drinking water polluted with domestic sewage and excreta in China [J]. Schriftenr Ver Wasser Boden Lufthyg., 2000, 105: 43-46.
    129 Lahti K, Rapala J, Kivimaki A L, et al. Occurrence of microcystins in raw water sources and treated drinking water of Finnish waterworks [J]. Water Sci. Tech., 2001, 43(12): 225.
    130 Maatouk I, Bouaicha N, Fontan D, et al. Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant [J]. Water Res., 2002, 36(11): 2891-2897.
    131 Chorus I, Heinze R, Hubner C, et al. Elimination of microcystins at Dorte village: conventional treatment and pilot experimental treatment system[M]. Cyanotoxins (I. Chorus, ed.). Berlin, Heidelberg, New York: Springer, 2001: 221-225.
    132 Kruschwitz C, Chorus I, Heinze R, et al. Elimination of microcystins in the Rostock drinking-water treatment plant [M]. Cyanotoxins (I. Chorus, ed). Berlin, Heidelberg, New York: Springer, 2001: 217-221.
    133 Chorus I, Schlag G, Heinze R, et al. Elimination of microcystins through bank filtration at the Radeburg Reservoir [JM]. Cyanotoxins (I. Chorus, ed). Berlin, Heidelberg, New York: Springer, 2001: 226-228.
    134 Park H D, Kim B, Kim E, et al. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes [J]. Environ. Toxicol. Water. Qual., 1998, 13(3): 225-234.
    135 Nalecz-Jawecki G, Sawicki J, Tarczynska M. Occurrence of microcystins in drinking water reservoirs in central Poland. 2000, 203(3): 133-136.
    136孙昌盛,陈华,薛常镐,等.同安水环境藻类及藻类毒素分布调查[J].中国公共卫生, 2000, 16(2): 51-52.
    137陈刚,俞顺章,卫国荣,等.肝癌高发区不同饮用水类型中微囊藻毒素含量调查[M].中华预防医学杂志, 1996, 30(1): 8-11.
    138陆卫根,林文尧.海门市1969~1999年原发性肝癌死亡率趋势及高发因素的探讨[J].交通医学, 2001, 15(5): 469-470.
    139 Radjenovic J, Godehardt M, Hein A, et al. Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim [J]. Environ. Sci. Technol., 2009, 43(17): 6808-6815.
    140 Peyton G R, W Glaze H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. photolysis of aqueous ozone [J]. Environ. Sci. Technol., 1988, 22(7): 761-767.
    141 Prengle H W J, Mauk C E. New technology: ozone/UV chemical oxidation wastewater process for metal complexes, organic species and disinfection [C]. Clearance Center, Inc., New York, 1978:24-25.
    142林志芬,于红霞,许士奋,等.发光菌生物毒性测试方法的改进[J].环境科学, 2001, 22(2): 114-117.
    143况琪军,赵文玉,邓萍. DBP对斜生栅藻及天然混合藻类致毒效应研究[J].水生生物学报, 2003, 27(1): 103-105.
    144洪华嫦,周海云,蓝崇钰.五氯酚对斜生栅藻的毒性效应研究[J].环境科学研究, 2003, 16(6): 23-25.
    145邓朝晖,袁峻峰,陈德辉,等.三种除草剂对斜生栅藻生长的影响[J].上海师范大学学报(自然科学版), 2000, 29(1): 92-95.
    146 Connon R, Dewhurst R E, Crane M, et al. Haem peroxidase activity in daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater [J]. Ecotoxicology, 2003, 12(5): 387-395.
    147 Bader H, Hoigne J. Determination of ozone in water by the Indigo method [J]. Water Res., 1981, 15(4): 449-456.
    148 Steiner M G, Babbs C F. Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide [J]. Arch. Biochem. Biophys., 1990, 278(2): 478-481.
    149 Babbs C F, Gale M J. Colorimetric assay for methanesulfinic acid in
    49biological samples [J]. Anal. Biochem., 1987, 163(1): 67-73
    150 Acero J L, von Gunten U. Characterization of oxidation processes: ozonation and the AOP O3/H2O2 [J]. J. Am. Water Works Ass., 2001, 93(10): 90-100.
    151 Beltran F J, Ovejero G, Acedo B. Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide [J]. Water Res., 1993, 27(6): 1013-1021.
    152 Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen [J]. Environ Toxicol Chem., 1996, 15(3): 241-248.
    153 Rutishauser B V, Pesonen M, Escher B I, et al. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids [J]. Environ. Toxicol. Chem., 2004, 23(4): 857-864.
    154 Rate F, Dose-Red R. The status of UV technology in Europe [M]. National Water Research Institute, 2000: 35.
    155 Hoign J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water: II. dissociating organic compounds [J].Water Res., 1983, 17: 185-194.
    156 Pretsch E, Buhlmann P, Affolter C. Structure determination of organic compounds: tables of spectral data [M]. Springer Verlag, 2000:23-50.
    157 Rodriguez E, Onstad G D, Kull T P J, et al. Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate [J]. Water Res., 2007, 41(15): 3381-3393.
    158 Onstad G D, Strauch S, Meriluoto J, et al. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation [J]. Environ. Sci. Technol., 2007, 41(12): 4397-4404.
    159 von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation [J]. Water Res., 2003, 37(7): 1443-1467.
    160 Sulzberger B, Canonica S, Egli T, et al. Oxidative transformations of contaminants in natural and in technical systems [J]. Chimia International Journal for Chemistry, 1997, 51(12): 900-907.
    161 Xiong F, Graham N. Removal of atrazine through ozonation in the presence of humic substances [J]. Ozone Sci. Eng., 1992, 14(3): 263-268.
    162 Ma J, Graham N. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances [J]. Water Res., 1999, 33(3): 785-793.
    163 Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution [J]. J. Phys. Chem. Ref. Data, 1988, 17(2): 513-886.
    164 Baeza C, Knappe D R U. Transformation kinetics of biochemically active compounds in low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes [J]. Water Res., 45(15): 4531-4543.
    165 Welker M, Steinberg C. Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence [J]. Water Res., 1999, 33(5): 1159-1164.
    166 Neamtu M, Frimmel F. Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation [J]. Sci. Total. Environ., 2006, 369(1-3): 295-306.
    167 Cooper W J, Zika R G, Petasne R G, et al. Sunlight-induced photochemistry of humic substances in natural waters: major reactive species [J]. Adv. Chem. Ser., 1989, 219: 333-362.
    168 Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions [J]. Environ. Sci. Technol., 1985, 19(12): 1206-1213.
    169 Larson R A, Zepp R G. . Reactivity of the carbonate radical with aniline derivatives [J]. Environ Toxicol Chem., 1988, 7(4): 265-274.
    170 Trovo A G, Nogueira R F P, Aguera A, et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment [J]. Chemosphere, 2009, 77(10): 1292-1298.
    171 Gomez M J, Sirtori C, Mezcua M, et al. Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products [J]. Water Res., 2008, 42(10-11): 2698-2706.
    172 Lu M C, Ch J N en. Pretreatment of pesticide wastewater by photocatalytic oxidation [J]. Water Sci. Technol., 1997, 36(2-3): 117-122.
    173 Muneer M, Theurich J, Bahnemann D. Formation of toxic intermediates upon the photocatalytic degradation of the pesticide diuron [J]. Res. Chem. Intermed., 1999, 25(7): 667-683.
    174 Steinberg P, Fischer T, Arand M, et al. Acute hepatotoxicity of the polycyclic musk 7-acetyl-1, 1, 3, 4, 4, 6-hexamethyl-1, 2, 3, 4-tetrahydronaphthaline (AHTN) [J]. Toxicol. Lett., 1999, 111(1-2): 151-160.
    175 Steinberg P, Zschaler I, Thom E, et al. The polycyclic musk 7-acetyl-1, 1, 3, 4, 4, 6-hexamethyl-1, 2, 3, 4-tetrahydronaphthaline lacks liver tumor initiating and promoting activity in rats exposed to human-relevant doses [J]. Arch. Toxicol., 2001, 75(9): 562-568.
    176 Mersch-Sundermann V, Kevekordes S, Jenter C. Lack of mutagenicity of polycyclic musk fragrances in Salmonella Typhimurium [J]. Toxicol. Vitro., 1998, 12(4): 389-393.
    177 Mersch-Sundermann V, Kevekordes S, Jenter C. Testing of SOS induction of artificial polycyclic musk fragrances in E. coli PQ37 (SOS chromotest)[J]. Toxicol. Lett., 1998, 95(3): 147-154.
    178 Kevekordes S, Mersch-Sundermann V, Diez M, et al. In vitro genotoxicity of polycyclic musk fragrances in the micronucleus test [J]. Mutation. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 395(2-3): 145-150.
    179 Kevekordes S, Mersch-Sundermann V, Diez M, et al. Genotoxicity of polycyclic musk fragrances in the sister-chromatid exchange test. Anticancer Res., 1998, 18(1A): 449-452.
    180 Api A M, Ford R A. Evaluation of the oral subchronic toxicity of HHCB (1, 3, 4, 6, 7, 8-hexahydro-4, 6, 6, 7, 8, 8-hexamethylcyclopenta-[gamma]-2-benzopyran) in the rat [J]. Toxicol. Lett., 1999, 111(1-2): 143-149.
    181 Seinen W, Lemmen J G, Pieters R H H, et al. AHTN and HHCB show weak estrogenic-but no uterotrophic activity [J]. Toxicol. Lett., 1999, 111(1-2): 161-168.
    182 Schreurs R H M M, Quaedackers M E, Seinen W, et al. Transcriptional activation of estrogen receptor ER [ ] and ER [β] by polycyclic musks is cell type dependent [J]. Toxicol Appl. Pharm., 2002, 183(1): 1-9.
    183 Bitsch N, Dudas C, Koner W, et al. Estrogenic activity of musk fragrances detected by the E-screen assay using human mcf-7 cells [J]. Arch. Environ. Con. Tox., 2002, 43(3): 257-264.
    184 Kallenborn R, Gatermann R, Nygard T, et al. Synthetic musks in Norwegian marine fish samples collected in the vicinity of densely populated areas [J]. Fresen Environ. Bull., 2001, 10(11): 832-842.
    185 Antoniou M G, Shoemaker J A, Cruz A A, et al. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR [J]. Environ Sci Technol., 2008, 42(23): 8877-8883.
    186 Lau T K, Chu, W Graham N. Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes [J]. Water Res., 2007, 41(4): 765-774.
    187 Song W, Bardowell S, O'Shea K E. Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins) [J]. Environ. Sci. Technol., 2007, 41(15): 5336-5341.
    188 Tsuji K, Watanuki T, Kondo F, et al. Stability of microcystins fromcyanobacteria—II. Effect of UV light on decomposition and isomerization [J]. Toxicon., 1995, 33(12): 1619-1631.
    189 Meijers R T , Oderwald-Muller E J, Nuhn P, et al. Degradation of pesticides by ozonation and advanced oxidation [J]. Ozone Sci. Eng., 1995, 17(6): 673-686.
    190 Kang J W, Hung H M, Lin A, et al. Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of O3, H2O2, frequency, and power density [J]. Environ. Sci. Technol., 1999, 33(18): 3199-3205.
    191 Lazarova V, Savoye P, Janex M L, et al. Advanced wastewater disinfection technologies: state of the art and perspectives [J]. Water Sci. Tech., 1999, 40(4-5): 203-213.
    192 Liu I, Lawton L A, Robertson P. Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of byproducts of the decomposition process [J]. Environ. Sci. Technol., 2003, 37(14): 3214-3219.
    193 Gurol M D, Akata A. Kinetics of ozone photolysis in aqueous solution [J]. Aiche J., 1996, 42(11): 3283-3292.
    194 Garoma T, Gurol M. Modeling aqueous ozone/UV Process using oxalic acid as probe chemical [J]. Environ. Sci. Technol., 2005, 39(20): 7964-7969.
    195 Beltran F J. Ozone reaction kinetics for water and wastewater systems [J]. CRC, 2004: 12-14.
    196 Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide [J]. Environ. Sci. Technol., 1982, 16(10): 676-681.
    197 Baxendale J H, Wilson J A. The photolysis of hydrogen peroxide at high light intensities [J]. Trans. Faraday Soc., 1957, 53: 344-356.
    198 Sauer Jr M C, Brown W G, Hart E J. Oxygen (3P) atom formation by the photolysis of hydrogen peroxide in alkaline aqueous solutions [J]. J. Phys. Chem., 1984, 88(7): 1398-1400.
    199 Buehler R E, Staehelin J, Hoigne J. Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3-as intermediates [J]. J. Phys. Chem., 1984, 88(12): 2560-2564.
    200 Sehested K, Holcman J, Bjergbakke E, et al. Formation of ozone in the reaction of hydroxyl with O3-and the decay of the ozonide ion radical at pH 10-13 [J]. J. Phys. Chem., 1984, 88(2): 269-273.
    201 Sehested K, Holcman J, Bjergbakke E, et al. A pulse radiolytic study of the reaction OH+ O3 in aqueous medium [J]. J. Phys. Chem., 1984, 88(18): 4144-4147.
    202 Bielski B H J, Cabelli D E, Arudi R L, et al. Reactivity of HO/O radicals in aqueous solution [J]. J. Phys. Chem. Ref. Data, 1985, 14: 1041.
    203 Christensen H, Sehested K, Corfitzen H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures [J]. J. Phys. Chem., 1982, 86(9): 1588-1590.
    204 Draganic Z D, Negron-Mendoza A, Sehested K, et al. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range [J]. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem., 1991, 38(3): 317-321.
    205 Eriksen T E, Lind J, Merenyi G. Radical-induced oxidation of pyridazine-3, 6-diol (maleic hydrazide). A model for chemiluminescent cyclic hydrazides [J]. J. Chem. Soc., Faraday Trans., 1. 1983, 79(7): 1493-1501.
    206 Eriksen T E, Lind J, Merenyi G. On the acid-base equilibrium of the carbonate radical [J]. Radiat. Phys. Chem., 1985, 26(2): 197-199.
    207 Holcman J, Sehested K, Bjergbakke E, et al. Formation of ozone in the reaction between the ozonide radical ion, and the carbonate radical ion in aqueous alkaline solutions [J]. J. Phys. Chem., 1982, 86(11): 2069-2072.
    208 von Sonntag C. Advanced oxidation processes: mechanistic aspects [J]. Water Sci. Tech., 2008, 58(5): 1015.
    209 Haag W R, . Yao C. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants [J]. Environ. Sci. Technol., 1992, 26(5): 1005-1013.
    210 Laplanche A, Orta D E V. Modelisation of micropollutant removal in drinking water treatment by ozonation or advanced oxidation processes (O3/H2O2) [J]. Ozone Sci. Eng., 1995, 17(1): 97-117.
    211 Buffle M, von Gunten U. Phenols and amine induced HO: generation during the initial phase of natural water ozonation [J]. Environ. Sci.Technol., 2006, 40(9): 3057-3063.
    212 Wenk J, von Gunten U, Canonica S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical [J]. Environ. Sci. Technol., 2011, 45(4): 1334-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700