用户名: 密码: 验证码:
转基因调控柑橘类胡萝卜素积累的细胞学和代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素是植物生存必需的次生代谢类物质,参与众多的生物学过程,如光合作用、抗氧化保护、激素合成以及传粉等。类胡萝卜素也是人类健康所必需的生物活性成份,如提供维生素A前体,抗氧化和衰老,降低心血管疾病风险,以及参与人体免疫、胚胎发育和生殖等。植物是自然界中类胡萝卜素合成的主要生物体,也是人体中类胡萝卜素的最主要来源。因此,研究植物类胡萝卜素代谢调控机制是有效利用类胡萝卜素的重要基础。
     柑橘中含有丰富多样的类胡萝卜素资源,是植物类胡萝卜素代谢研究的极好材料。本研究通过创制多种柑橘材料,包括转基因胚性愈伤和植株,以及夏橙DH系,深入分析了柑橘类胡萝卜素代谢调控特征、类胡萝卜素代谢同其他生物学过程的关系,以及甜橙中两个类胡萝卜素合成关键基因的等位多态性。主要研究结果如下:
     1.转CrtB和DSM2基因调控柑橘胚性愈伤中类胡萝卜素积累的研究
     (1)利用CrtB(来源于细菌的八氢番茄红素合成酶基因)转化马叙葡萄柚(Citrus paradise Macf.)、星露比葡萄柚(Citrus paradise Macf.)、红肉脐橙[Citrus sinensis (L.)Osb.]和日辉杂柑[Citrus reticulata Blanco×(Citrus paradisi Macf.×Citrus Reticulate)]4种基因型的柑橘胚性愈伤组织,创制了一批具有多种类胡萝卜素积累特征的细胞系(ECMs, Engineering Cell Models)。表型观察和HPLC分析表明,ECMs中的类胡萝卜素含量显著高于野生型,而类胡萝卜素的积累模式受基因型影响呈现多样性。在ECMs中检测到30种自由态类胡萝卜素,其中包括野生型含有的所有类胡萝卜素和一些新出现的种类,如番茄红素等。
     (2)与野生型不同,ECMs中的类胡萝卜素积累具有明显的β路径优势,表现为丰富的p-胡萝卜素积累特征。特别是在暗培养条件下,ECMs的p路径优势更为明显。基于所获数据,本研究提出一种模型用于解释ECMs中出现的p路径优势。该模型认为上游类胡萝卜素的合成能力和LCYE(番茄红素ε环化酶)的瓶颈作用是导致p路径优势的主要原因。
     (3)在光照条件下,ECMs中的β-胡萝卜素和八氢番茄红素含量显著减少,而叶黄素含量变化不显著。37℃条件下,ECM中多数类胡萝卜素的积累量同样表现出显著的降低趋势,但玉米黄质含量明显提高。另外,可能由于表观调控的影响,同一份ECM中存在CrtB基因表达和类胡萝卜素积累的不均一性特征。
     (4)选取4种同胚性愈伤相同基因型的成熟果实有色层组织作为类胡萝卜素积累的自然参比。本研究首先分析了ECMs同有色层组织间的类胡萝卜素积累差异。结果表明,有色层中主要积累紫黄质和隐黄质,并多以酯化形式存在;或者以积累番茄红素为主。此外,ECMs和有色层细胞的质体发育形式不同,在ECMs中类胡萝卜素主要以晶体形式存储于淀粉体中;而在有色层细胞中,类胡萝卜素存储于有色体。本研究在ECMs液泡中观察到富含类胡萝卜素的聚集体,这一现象暗示可能存在一种新的类胡萝卜素降解途径。
     (5)转录分析表明,有色层中类胡萝卜素代谢相关基因的转录水平普遍高于愈伤,特别是HYD(β-胡萝卜素羟化酶基因)具有显著的有色层特异性表达特征,而在愈伤中被抑制。进一步通过CrtB和DSM2(来源于水稻的HYD基因)共表达分析证实,HYD是控制两种组织间类胡萝卜素积累差异的主要位点。在共表达体系中,观察到β-胡萝卜素含量同类胡萝卜素晶体大小显著正相关,这一特征表明类胡萝卜素晶体主要由β-胡萝卜素构成。另外,ECMs中存在内源类胡萝卜素代谢相关基因的表达波动,其中在星露比葡萄柚的转CrtB基因愈伤系中最为明显。
     2.类胡萝卜素积累对质体发育和代谢的影响
     (1)在转CrtB基因柑橘愈伤系(ECMs)中,淀粉含量显著低于野生型,而可溶性糖含量高于野生型。这些特征表明,类胡萝卜素积累影响了愈伤组织中的碳水化合物代谢,并且暗示ECMs中存在潜在的有色体发育过程。进一步通过糖饥饿处理证明,ECMs中确实存在有色体发育,只是在正常条件下淀粉的优势积累抑制了ECMs中有色体的形成。
     (2)本研究利用柑橘芯片分析了4组ECMs同野生型间的转录谱差异。结果表明,4组材料间存在类似的差异基因响应模式。其中最主要的特点是,大量逆境和氧化还原响应相关基因在ECMs中上调表达,如POD(过氧化物酶基因)、GST(谷胱甘肽S转移酶基因)、HSP(热激蛋白基因)和苯丙烷代谢相关基因等。另外,本研究检测到花青素代谢相关基因在ECMs中呈现下调表达趋势,这一特征暗示类胡萝卜素积累负调控花青素合成。在ECMs中,检测到一个直接参与淀粉降解的α-淀粉酶基因呈上调表达趋势,它可能是影响柑橘愈伤组织中淀粉含量变化的重要原因。
     (3)ABA含量调查表明其不是导致ECMs中逆境基因响应的主要因子。进一步的活性氧(ROS)分析显示,类胡萝卜素积累改变了愈伤组织中的氧化还原状态。主要表现为,ECMs细胞中02-(超氧阴离子)的含量显著降低,而H202(过氧化氢)含量升高。高浓度蔗糖以及还原剂处理ECM的表型特征暗示,ECMs中可能存在02-参与的类胡萝卜素降解反应。另外,本研究认为,细胞氧化还原状态的改变可能是影响柑橘愈伤组织中淀粉含量变化的另一因素。
     (4)为了证实芯片数据所暗示的类胡萝卜素积累对花青素合成的负调控关系,本研究利用CrtB基因转化具有花青素积累特征的苹果愈伤组织,创制了一份苹果ECM系。该ECM系中的类胡萝卜素含量显著提高,而花青素积累明显受到抑制。用植物类胡萝卜素合成抑制剂(Norflurazon)处理ECM,可以部分恢复ECM中的花青素积累的表型。进一步的转录分析表明,花青素合成基因在ECM中下调表达。
     3.转CrtB基因早实枳和山金柑的再生及其类胡萝卜素积累特征
     (1)利用CrtB基因转化柑橘早花资源,获得1株早实枳[Poncirus trifoliate (L.) Raf]和2株山金柑(Fortunella hindsii Swingle)转基因系。由于类胡萝卜素的积累,转基因早实枳的幼芽表现明显的橙色,但多数橙色芽由于不能转绿而最终停止生长。一株转绿后的再生芽被培养成植株,然而它表现出明显的矮化特征。
     (2)转基因山金柑的绿色组织不表现高类胡萝卜素积累特征,但其花瓣、衰老叶柄、种子以及播种实生苗的根系均表现出橙色表型,显示了明显的类胡萝卜素积累。野生型播种实生苗的根系在光照条件下可以转绿,而转基因实生苗的根系保持橙色表型。另外,转基因山金柑TSJ-1系具有两种色泽的果实,一种表现为同野生型类似的橙红色,另一种表现黄色;TSJ-2成熟果实着色浅于野生型。
     (3)质体观察显示,在野生型山金柑的衰老叶柄以及光生长条件下的珠心苗根系中,主要形成叶绿体结构,而在相应的转基因组织中主要为有色体;在野生型山金柑的花瓣,暗生长条件下的珠心苗根系和胚状体中,可以观察到明显的淀粉体类似结构,而在相应的转基因组织中可以观察到丰富的有色体。上述特征证实类胡萝卜素积累可以促进有色体发育。另外,电镜观察显示,TSJ-1黄色果实和TSJ-2果实的有色体中均含有较丰富的高电子密度质体球,但质体球数目以及有色体分布密度低于野生型果实。
     (4)与野生型相比,两株转基因山金柑的3年龄叶片几乎完全脱落,表现出叶片早衰现象。转基因山金柑中相对较高的ABA水平可能与叶片早衰有关。
     4.红夏橙DH愈伤系创制并用于LCYB1和LCYE基因的等位多态性分析
     本研究通过花药培养获得两份红夏橙[Citrus sinensis (L.) Osbeck]胚性愈伤系。倍性检测以及SSR标记分析表明,两份愈伤为双单倍体系(DHs)。本研究进一步利用红夏橙DHs证实类胡萝卜素代谢关键基因LCYB1和LCYE在甜橙基因组中均为杂合状态,呈现等位多态性特征。
     综上所述,本研究对理解柑橘以及植物类胡萝卜素代谢的生物学本质具有重要价值,并且为柑橘果实色泽改良提供了重要的基础数据,同时也为甜橙基因组测序提供了重要的材料。
Carotenoids are plant indispensable secondary metabolites, involved in a series of biological processes, such as photosynthesis, antioxidation, hormone biosynthesis, and attractants for pollinators. Carotenoids are also essential health-protecting compounds for supplying provitamin A, suppressing the development of several chronic diseases, and being involved in human's immunity, embryonic development, and reproduction. Plant is one of the major organisms containing carotenogenesis, and is also the most important carotenoid source for human life. To exert their effective usage, it is essential to understand the regulation mechanism of plant carotenoid metabolism.
     Citrus exhibits extensive diversity of carotenoid patterns, and is the better material for plant carotenoid metabolism study. In this study, by creating various genetic resources, including transgenic embryogenic calli, transgenic plants, and Valencia sweet orange DH lines, we studied the regulation mechanism of carotenoid metabolism, correlation between carotenoid metabolism and other biological processes, and allelic diversity of two key carotenogenic genes LCYB1and LCYE in sweet orange. The main results were as followed:
     1. Regulating carotenoid accumulation through overexpressing CrtB and DSM2in citrus embryogenic calli
     (1) We engineered embryogenic calli from Marsh grapefruit(Citrus paradise Macf.), Star Ruby grapefruit(Citrus paradise Macf.), Cara Cara navel orange [Citrus sinensis (L.) Osb.], and Sunburst mandarin [Citrus reticulata Blanco×(Citrus paradisi Macf.×Citrus Reticulate)] as Engineered Cell Models (ECMs) by overexpressing CrtB (a bacterial phytoene synthase gene). In the ECMs, the levels of total carotenoids markedly increased, and carotenoid patterns showed diversity depending on the genotypes.30free-type carotenoids were detected in the ECMs, including all of types in wild types and some new ones, such as lycopene.
     (2) Especially in the ECMs from dark-grown culture, there emerged a favored β,β-pathway characterized by a striking accumulation of β-carotene, which was dramatically unique from those in the wild-type calli. Based on the data in this study, a model was established to explain the favoring of β,β-pathway in the ECMs. This model suggests that LCYE (lycopene ε cyclase) plays a bottleneck role in the presence of abundant lycopene substrates leading to an altered carotenoid composition.
     (3) It was noted that the ECMs under irradiation showed a marked decrease in β-carotene and phytoene levels, while lutein kept stable. Most carotenoids were also reduced in37℃grown ECM line, but zeaxanthin level increased significantly. In addition, ECM exhibited unstable CrtB transcription and carotenoid accumulation, which is associated with epigenetic regulation.
     (4) Ripe flavedos (the colored outer layer of citrus fruits) from four consistent genotypes were offered as a comparative system to the ECMs. The comparative analysis showed ripe flavedos contained chiefly esterified violaxanthin and cryptoxanthin, or lycopene. Unlike flavedos, the ECMs did not form chromoplast, instead they sequestered most carotenoids in the amyloplasts in crystal form. Conglomerates containing abundant carotenoids were observed in the vacuoles of ECMs, suggesting an underlying catabolism mechanism that governs carotenoids.
     (5) Transcriptional analysis revealed that most of isoprenoid and carotenoid genes exhibited up-regualted expression in flavedos, especially HYB (gene encoding β-carotene hydroxylase) showed a markedly flavedo-specific expression, but was suppressed in the calli. Furthermore, coexpression of CrtB and DSM2(a HYD gene from rice) in the ECMs confirmed that HYD predominantly mediated the preferred carotenoid patterns between the ECMs and flavedos, and also unraveled that the carotenoid crystals in the ECMs were majorly composed of P-carotene. In addition, transcript perturbation of endogenous carotenogenic genes was observed in ECMs, especially in the transgenic callus lines of Star Ruby grapefruit.
     2. Engineered carotenoid accumulation affects plastid development and metabolsim
     (1) Transgenic callus lines with overexpressive CrtB gene (ECMs) accumulated lower levels of starch and higher levels of soluble sugars relative to wild types, showing the effect of carotenoid accumulation on carbohydrate metabolism, and also suggesting a potential chromoplast development in the ECMs. Though sucrose-free culture, we found ECMs indeed had the chromoplast development program, while it was suppressed by the predominant starch accumulation under normal culture.
     (2) Global transcriptional diversities between ECMs and wild types of four genotypes were investigated through citrus microarray analysis. The results showed similar diversity pattern existed in four groups, which was characterized by a marked up-regulation of abundant stress or redox response genes, such as POD (gene encoding peroxidase), GST (gene encoding glutathione S transferase), HSP (gene encoding heat shock protein) and the genes involved in phenylpropanoid metabolism. In addition, some anthocyanin genes were down-regulated in the ECMs, which suggested that carotenoid accumulation could negatively regulated anthocyanin biosynthesis. We discovered a-amylase gene up-regulated in the ECMs, which was probably related to the alteration of starch content in the ECMs.
     (3) ABA levels in the ECMs showed little correlation with stress and redox response. Furthermore, reactive oxidative species (ROS) were investigated, and the result showed that carotenoid accumulation could alter cellular redox status. ECMs contained lower O2-(superoxide radical) levels compared to wild types, while H2O2(hydrogen peroxide) levels were higher in the ECMs. Phenotypes of the ECM treated by concentrated sucrose and reductives suggested that O2-could be involved in the degradation of carotenoids in the ECMs. In addition, this study showed that redox status potentially affected starch metabolism in citrus callus.
     (4) To confirm that carotenoid accumulation could negatively regulate anthocyanin biosynthesis, an apple ECM was constructed through overexpressing CrtB gene in apple callus with anthocyanin accumulation. This ECM yielded more carotenoids than wild type, but anthocyanin biosynthesis was suppressed. Norflurazon, an inhibitor of plant carotenoid biosynthesis could partially resume anthocyanin accumulation in the apple ECM. Further transcriptional analysis showed that anthocyanin biosynthetic genes were down-regulated in this ECM.
     3. Transformation with CrtB gene in precocious trifoliate orange and Hongkong kumquat, and study of carotenoid accumulative characters in transgenic plants
     (1) Through CrtB transformation of early flowering citrus, we obtained one transgenic precocious trifoliate orange [Poncirus trifoliate (L.) Raf] line and two transgenic Hongkong kumquat (Fortunella hindsii Swingle) lines. Regenerated transgenic shoots of precocious trifoliate orange showed orange, suggesting a high carotenoid accumulation. Whereas, most of orange regenerated shoots fail to become green, and could not develop further. One regenerated transgenic precocious trifoliate orange shoot with orange to green transition was further cultured, it showed dwarf phenotype.
     (2) Green tissues of transgenic Hongkong kumquats had no orange phenotype, while their petals, senescent leafstalks, seeds, and roots exhibited orange, suggesting high accumulation of carotenoids. Roots of wild-type seedlings could become green under light-grown culture, while roots of transgenic seedlings kept orange. In addition, the ripe fruits of transgenic Hongkong kumquat1(TSJ-1) showed diverse color:one represented orange similar to wild type, another one represented yellow; the ripe fruits of TSJ-2exhibited a little lighter color compared with those of wild type.
     (3) Plastid inspection revealed that, in the cells of senescent leafstalks and light-grown roots of wild type, chloroplasts were main plastid type, while chromoplasts were observed in transgenic cells; abundant amyloplasts existed chiefly in the cells of wild-type petals, dark-grown roots and embryoids, but chromoplasts appeared predominantly in transgenic cells. All these microscopic data confirmed that carotenoid accumulation confers chromoplast development in transgenic Hongkong kumquat. In addition, the yellow fruits of TSJ-1and mature fruits of TSJ-2both contained abundant electron-dense plastoglobules, but showed lower amount of chromoplast and plastoglobules than wild-type fruits.
     (4) Compared to wild types, all three-year-old leaves of two transgenic Hongkong kumquats almost abscised, suggesting an early senescence symptom. Leaves of transgenic Hongkong kumquats contained higher ABA contants, which could induce the early senescence in transgenic Hongkong kumquats.
     4. Recovery of Rohde Red sweet orange DH line for studying allelic diversity of two carotenogenic genes LCYB1and LCYE in sweet orange
     Two callus lines of Valencia sweet orange cv. Rohde Red [Citrus sinensis (L.) Osbeck] were recovered through anther culture in this study. Ploidy investigation and SSR analysis revealed two callus lines were doubled haploids (DHs). DHs provided support for the allelic diversity of two carotenogenic genes, LCYE and LCYB, in sweet orange.
     In summary, this study shows a valuble approach to comprehension of the nature of carotenoid metabolism in citrus and other plants, and supplies some important basic data with regard to color improvement of citrus fruit, and also provides an essential material for citrus genome sequence.
引文
1.布坎南,W.格鲁依森姆,R.L.琼斯著,瞿礼嘉,顾红雅,白书农,赵进东,陈章良译.植物生物化学与分子生物学.北京:科学出版社,2004
    2.陈鹏.中国野生山金柑种质资源调查及遗传多样性研究.[硕士学位论文].武汉:华中农业大学图书馆,2011
    3.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32:1140-1146
    4.段艳欣.根癌农杆菌介导的柑橘转化体系优化与转LFY, API基因植株的培育.[博士学位论文].武汉:华中农业大学图书馆,2006
    5.付行政.农杆菌介导的MdSPD1、AhBADH, PtrICE1基因转化柑橘及转基因植株抗性机理研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    6.顾建芹.暗柳橙及其突变体红暗柳橙果实发育过程中可溶性糖和有机酸组分的变化.[硕士学位论文].武汉:华中农业大学图书馆,2007
    7.郝玉金.柑橘和苹果等果树种质资源的离体保存及遗传变异.[博士学位论文].武汉:华中农业大学图书馆,2000
    8.惠伯棣.类胡萝卜素化学与生物化学.北京:轻工业出版社,2005
    9.刘庆.‘暗柳’甜橙红色突变体形状形成的分子机理研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    10.卢晓鹏.砂梨果实石细胞、褐色果皮和柠檬酸形成机制研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    11.罗赛男,邓子牛,钟晓红,张家垠,袁飞荣,杨莉.用单性结实基因defH9-iaaM转化糖橙的研究.湖南农业大学学报(自然科学版),2008,34:177-181
    12.潘增光.苹果原生质体培养再生及融合.[博士学位论文].武汉:华中农业大学图书馆,1998
    13.潘志勇.基于组学的甜橙红肉变异分子机制.[博士学位论文].武汉:华中农业大学图书馆,2011
    14.彭长连,林植芳,林桂珠,陈少微.富含花色素苷的紫色稻叶片的抗光氧化作用.中国科学C辑生命科学,2006,36:209-216
    15.宋建坤.以异源四倍体体细胞杂种为父本与二倍体杂交创造柑橘三倍体的研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    16.谭彬.早实枳模式转化体系建立及基因工程创造柑橘无核新种质.[博士学位论文].武汉:华中农业大学图书馆,2009
    17.陶俊,张上隆,安新民,赵智中.2003.光照对柑橘果皮类胡萝卜素和色泽形成的影响.应用生态学报14:1833-1836
    18.陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特征分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    19.仝铸.柑橘高效遗传转化体系的建立及类胡萝卜素代谢相关基因的遗传转化.[博士学位论文].武汉:华中农业大学图书馆,2008
    20.王长全,刘涛,王宝山.植物甜菜素研究进展.植物学通报,2006,23:302-311.
    21.王贵元,金铃,夏仁学.2003.套袋对纽荷尔脐橙果实品质的影响.亚热带植物科学,32:8-10.
    22.王平,唐小浪,马培恰,陈杰忠,吴文,黄永敬.辐射诱变和芽变柑橘品种(系)的ALFP分析.果树学报,2012,29:130-134
    23.叶俊丽.甜橙红肉突变体果实EST分析及ABA代谢研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    24.伊华林,邓秀新.培养三倍体柑橘植株的研究.果树学报,1998,15:212-216
    25.张金智.抑制性差减杂交研究早实枳成花转变的机理.[博士学位论文].武汉:华中农业大学图书馆,2010
    26.张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,23:871-876
    27.周文静.红肉脐橙[Citrus sinensis (L.) Osbeck]番茄红素p-环化酶基因(Lcyb)功能的初步验证和分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    28. Ahrazem O, Trapero A, Gomez MD, Rubio-Moraga A, Gomez-Gomez L. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family:A deeper study in Crocus sativus and its allies. Genomics,2010,96:239-250.
    29. Al-Babili S, Beyer P. Golden Rice-five years on the road-five years to go? Trends in Plant Science,2005,10:565-573.
    30. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The Path from P-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science,2012,335:1348-1351.
    31. Aleza P, Juarez J, Hernandez M, Pina JA, Ollitrault P, Navarro L. Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biology,2009a,9:17.
    32. Alquezar B, Rodrigo MJ, Zacarias L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry,2008, 69:1997-2007.
    33. Alquezar B, Zacarias L, Rodrigo MJ. Molecular and functional characterization of a novel chromoplast-specific lycopene beta-cyclase from Citrus and its relation to lycopene accumulation. Journal of Experimental Botany,2009,60:1783-1797.
    34. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S. Generation of transgenic maize with enhanced provitamin A content. Journal of Experimental Botany,2008,59:3551-3562.
    35. Amengual J, Lobo GP, Golczak M, Li HNM, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. The FASEB Journal,2011,25:948.
    36. Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology,2006,141:391-396.
    37. Austin J, Frost E, Vidi P, Kessler F, Staehelin L. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell,2006,18:1693.
    38. Bai L, Kim E, DellaPenna D, Brutnell T. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant Journal,2009, 59:588-599.
    39. Bartolozzi F, Bertazza G, Bassi D. Simultaneous determination of soluble sugars ans organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liqiud chromatography. Journal of Chromatography A,1997,758:99-107.
    40. Beisel KG, Jahnke S, Hofmann D, Koppchen S, Schurr U, Matsubara S. Continuous turnover of carotenes and chlorophyll a in mature leaves of arabidopsis revealed by (CO2)-C-14 pulse-chase labeling. Plant Physiology,2010,152:2188-2199.
    41. Biswal B. Carotenoid catabolism during leaf senescence and its control by light. Journal of Photochemistry and Photobiology B:Biology,1995,30:3-13.
    42. Blas AL, Ming R, Liu Z, Veatch OJ, Paull RE, Moore PH, Yu Q. Cloning of the papaya chromoplast-specific lycopene β-Cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiology, 2010,152:2013-2022.
    43. Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M. Regulation of carotenoid biosynthesis in plants:evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant Journal,2004,40:188-199.
    44. Bouvier F, D'Harlingue A, Backhaus RA, Kumagai MH, Camara B. Identification of neoxanthin synthase as a carotenoid cyclase paralog. European Journal of Biochemistry,2000,267:6346-6352.
    45. Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science,2003b,300:2089-2091.
    46. Bouvier F, Suire C, Mutterer J, Camara B. Oxidative remodeling of chromoplast carotenoids:identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell,2003a,15:47-62.
    47. Bramley P. In vitro carotenoid biosynthesis. Advances in Lipid Research,1985,21: 243-279.
    48. Brandi F, Bar E, Mourgues F, Horvath G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinsohn E, Rosati C. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology,2011,11:24.
    49. Brehelin C, Kessler F, van Wijk KJ. Plastoglobules:versatile lipoprotein particles in plastids. Trends Plant Science,2007,12:260-266.
    50. Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology,1977,59:411.
    51. Brotton G. Overview of carotenoid biosynthesis. In Carotenoids (eds G Britton, S. Liaaen Jensen & H.Pfander),1998, pp.13-147. Birkhauser, Basel, Switzerland.
    52. Burkhardt PK, Beyer P, Wunn J, Kloti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant Journal,1997,11:1071-1078.
    53. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell,2012,24:1242-1255.
    54. Caiola MG, Canini A. Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridaceae). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology,2004,138:43-52.
    55. Camara B, Hugueney P, Bouvier F, Kuntz M, Mone ger R. Biochemistry and molecular biology of chromoplast development. International Review of Cytology-A Survey of Cell Biology,1995,163:175-247.
    56. Cameron J, Soost R, Olson E. Chimeral basis for color in pink and red grapefruit. Journal of Heredity,1964,55:23.
    57. Campbell R, Ducreux LJM, Morris WL, Morris JA, Suttle JC, Ramsay G, Bryan GJ, Hedley PE, Taylor MA. The metabolic and developmental roles of carotenoid cleavage dioxygenase 4 from potato. Plant Physiology,2010,154:656-664.
    58. Carretero-Paulet L, Cairo A, Botella-Pavia P, Besumbes O, Campos N, Boronat A, Rodriguez-Concepcion M. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology,2006,62:683-695.
    59. Cazzonelli C, Pogson B. Source to sink:regulation of carotenoid biosynthesis in plants. Trends in Plant Science,2010,15:266-274.
    60. Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson B J. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell, 2009,21:39-53.
    61. Cazzonelli CI. Goldacre Review:Carotenoids in nature:insights from plants and beyond. Functional Plant Biology,2011,38:833-847.
    62. Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro RT, Araujo WL, Steinhauser MC, Michalska J, Rohrmann J, Geigenberger P. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell,2011,23:162-184.
    63. Chaib J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR. The grape microvine-model system for rapid forward and reverse genetics of grapevines. Plant Journal,2010,62:1083-1092.
    64. Chen C, Costa MGC, Yu Q, Moore GA, Gmitter FG. Identification of novel members in sweet orange carotenoid biosynthesis gene families. Tree Genetics & Genomes, 2010b,6:905-914.
    65. Chen CH, Han RM, Liang R, Fu LM, Wang P, Ai XC, Zhang JP, Skibsted LH. Direct Observation of the P-Carotene Reaction with Hydroxyl Radical. The Journal of Physical Chemistry B,2011a,
    66. Chen CX, Bowman KD, Choi YA, Dang PM, Rao MN, Huang S, Soneji JR, McCollum TG, Gmitter FG. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genetics & Genomes,2008,4:1-10.
    67. Chen X, Han H, Jiang P, Nie L, Bao H, Fan P, Lv S, Feng J, Li Y. Transformation of P-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant and Cell Physiology,2011b,52:909-921.
    68. Chen Y, Li F, Wurtzel ET. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiology,2010a, 153,66.
    69. Chen Z. A study on induction of plants from Citrus pollen. Fruit Varietics Journal, 1985,39:44-55
    70. Chen. M-H, Liu. L-F, Chen. Y-R, Wu. H-K, TM S-MY. Expression of a-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant Journal,1994,6:625-636.
    71. Cheng Y, Guo W, Yi H, Pang X, Deng X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Molecular Biology Reporter,2003,21:177.
    72. Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E. Expression of carotenoid biosynthesis genes during carrot root development. Journal of Experimental Botany,2008,59:3563-3573.
    73. Cong L, Wang C, Chen L, Liu H, Yang G, He G. Expression of phytoene synthasel and carotene desaturase crtl genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry,2009,57:8652-8660.
    74. Cordoba E, Salmi M, Leon P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. Journal of Experimental Botany,2009,60:2933-2943
    75. Costa M, Otoni W, Moore G. An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Reports,2002, 21:365-373.
    76. Costa MGC, Mendes AFS, Cidade LC, Soares-Filho WS, Otoni WC, Moore GA. Towards metabolic engineering of carotenoid content in sweet-orange [Citrus sinensis (L.) Osb.]. Biotechnology and Sustainable Agriculture and Beyond,2007, 223-225.
    77. Cunningham FX, Gantt E. Genes and Enzymes of Carotenoid Biosynthesis in Plants. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:557-583.
    78. Cunningham Jr FX, Gantt E. Elucidation of the Pathway to Astaxanthin in the Flowers of Adonis aestivalis. Plant Cell,2011,23:3055-3069.
    79. D'Ambrosio C, Stigliani AL, Giorio G. Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Research,2011,20:47-60.
    80. Davison P, Hunter C, Horton P. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature,2002,418:203-206.
    81. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology,2005,23:890-895.
    82. Deng XX, Deng ZA, Xiao SY, Zhang WC. Pollen derived plantlets from anther culture of Ichang Papeda hybrid No.14 and trifoliate orange. Proceedings of the 7th International Citrus Congress, Acireale, Italy, March,1992, Internaltioanl Society of Citriculture pp,190-192.
    83. Desikan R, Soheila AH, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology,2001,127:159-172.
    84. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One,2007b,2:350.
    85. Diretto G, Al-Babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Beyer P, Giuliano G. Transcriptional-metabolic networks in beta-carotene-enriched potato tubers:the long and winding road to the Golden phenotype. Plant Physiology,2010, 154:899-912.
    86. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biology,2006,6:13.
    87. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biology,2007a,7.
    88. Dixon DP, Skipsey M, Edwards R. Roles for glutathione transferaes in plant secondary metabolism. Phytochemistry,2011,71:338-350.
    89. Drira N, Benbadis A. Analysis, by in vitro anther culture, of the androgenetic potential of two Citrus species(Citrus medica L. and Citrus limon L. Burm). Comptes Rendus De L Academie Des Sciences,1975,281:1321-1324.
    90. Du H, Wang N, Cui F, Li X, Xiao J, Xiong L. Characterization of the -carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology,2010, 154:1304.
    91. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Journal Experimental Botany,2005,56:81-89.
    92. Dunwell JM. Haploids in flowering plants:origins and exploitation. Plant Biotechnology Journal,2010,8:377-424.
    93. Egea I, Barsan C, Bian WP, Purgatto E, Latche A, Chervin C, Bouzayen M, Pech JC. Chromoplast differentiation:current status and perspectives. Plant and Cell Physiology,2010,51:1601-1611.
    94. Enami K, Ozawa T, Motohashi N, Nakamura M, Tanaka K, Hanaoka M. Plastid-to-nucleus retrograde signals are essential for the expression of nuclear starch biosynthesis genes during amyloplast differentiation in tobacco BY-2 cultured cells. Plant Physiology,2011,157:518-530.
    95. Enfissi E, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnology Journal,2005,3:17-27.
    96. Engelmann NJ, Campbell JK, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman Jr JW. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production. Journal of Agricultural and Food Chemistry,2010,58:9979-9987.
    97. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal,2007,49:414-427.
    98. Fanciullino AL, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P. Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. Journal of Agricultural and Food Chemistry,2006,54:4397-4406.
    99. Fanciullino AL, Dhuique-Mayer C, Luro F, Morillon R, Ollitrault P. Carotenoid biosynthetic pathway in the citrus genus:number of copies and phylogenetic diversity of seven genes. Journal of Agricultural and Food Chemistry,2007,55: 7405-7417.
    100.Farre G, Bai C, Twyman RM, Capell T, Christou P, Zhu C. Nutritious crops producing multiple carotenoids-a metabolic balancing act. Trends in Plant Science,2011,16: 532-540.
    101.Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V. Vitamin Deficiencies in Humans:Can Plant Science Help? Plant Cell,2012,24:395-414
    102.Flores-Perez U, Perez-Gil J, Closa M, Wright LP, Botella-Pavia P, Phillips MA, Ferrer A, Gershenzon J, Rodriguez-Concepcion M. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Molecular Plant,2010,3:101-112.
    103.Forster B, Heberle-Bors E, Kasha K, Touraev A. The resurgence of haploids in higher plants. Trends in Plant Science,2007,12:368-375.
    104.Fraser P, Enfissi E, Bramley P. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Archives of Biochemistry and Biophysics,2009,483:196-204.
    105.Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM. Manipulation of phytoene levels in tomato fruit:effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell,2007,19:3194-3211.
    106.Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mololecular Biology,1993,22:589-602.
    107.Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant Journal,1995,8:693-701.
    108.Froelicher Y, Bassene JB, Jedidi-Neji E, Dambier D, Morillon R, Bernardini G, Costantino G, Ollitrault P. Induced parthenogenesis in mandarin for haploid production:induction procedures and genetic analysis of plantlets. Plant Cell Reports, 2007,26:937-944.
    109.Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T. Ectopic expression of MdSPDSl in sweet orange(Citrus sinensis Osbeck) reduces canker susceptibility:involvement of H2O2 production and transcriptional alteration. BMC Plant Biology,2011,11:55.
    110.Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange E. Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Molecular Biology,2012,79: 47-59.
    111.Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. Journal of Experimental Botany,2009, 60:1319-1332.
    112.Fujisawa M, Watanabe M, Choi SK, Teramoto M, Ohyama K, Misawa N. Enrichment of carotenoids in flaxseed by metabolic engineering with introduction of bacterial phytoene synthase gene. Journal of Bioscience and Bioengineering,2008,105: 636-641.
    113.Galis I, Simek P, Narisawa T, Sasaki M, Horiguchi T, Fukuda H, Matsuoka K. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. Plant Journal,2006, 46:573-592.
    114.Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell,2006,18:1947-1960.
    115.Gao H, Xu J, Liu X, Liu B, Deng X. Light effect on carotenoids production and expression of carotenogenesis genes in citrus callus of four genotypes. Acta Physiologiae Plantarum,2011,33:2485-2492.
    116.Geigenberger P, Kolbe A, Tiessen A. Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany,2005,56: 1469-1479.
    117.Germana M. Doubled haploid production in fruit crops. Plant Cell Tissue and Organ Culture,2006,86:131-146.
    118.Germana MA, Crescimanno FG, de Pasquale F, Ying W. Androgenesis in 5 cultivars of Citrus limon L. Burm. f. Acta Horticulture,1991,300:315-324.
    119.Germana MA, Reforgiato R, G. Haploid embryos regeneration from anther culture of 'Mapo' tangelo(Citrus deliciosa × C. paradisi). Advances in Horticultural Science, 1997,11:147-152.
    120.Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology,2008,26:139-145.
    121.Gmitter F. Origin, evolution, and breeding of the grapefruit. Plant Breeding Reviews, 1995,13:345-363.
    122.Goodwin T. Biosynthesis of carotenoids and plant triterpenes. Biochemical Journal, 1971,123:293.
    123.Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proceedings of the National Academy of Sciences,2003,100:8595.
    124.Gross J. Pigment changes in the flavedo of Dancy tangerine (Citrus reticulata) during ripening. Zeitschrift fuer Pflanzenphysiologie,1981,103.
    125.Grosser J, Gmitter F. Protoplast fusion and citrus improvement. Plant Breed Review, 1990,8:339-374.
    126.Guerin M, Huntley M, Olaizola M. Haematococcus astaxanthin:applications for human health and nutrition. Trends in Biotechnology,2003,21:210.
    127.Guo F, Zhou W, Zhang J, Xu Q, Deng X. Effect of the Citrus Lycopene P-Cyclase Transgene on Carotenoid Metabolism in Transgenic Tomato Fruits. PLoS ONE,2012, 7:e32221.
    128.Guo WW, Prasad D, Cheng YJ, Serrano P, Deng XX, Grosser JW. Targeted cybridization in citrus:transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Reports,2004,22:752-758.
    129.Guo WW, Prasad D, Cheng YJ, Serrano P, Deng XX, Grosser JW. Targeted cybridization in citrus:transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Reports,2004,22:752-758.
    130.Ha SH, Kim JB, Park JS, Lee SW, Cho KJ. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours:deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. Journal of Experimental Botany,2007,58:3135-3144.
    131.Halweg C, Thompson WF, Spiker S. The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells:a flow cytometric study. Plant Cell,2005,17:418-29.
    132.Hao YJ, Kitashiba H, Honda C, Nada K, Moriguchi T. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. Journal of Experimental Botany,2005,56:1105-1115.
    133.Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science,2008, 319:330-333.
    134.Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant Journal,2008,55:857-868.
    135.Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nature Biotechnology,2004,22:1415-1422.
    136.Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiology, 2003,133:838-849.
    137.Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,2007,104:6478-6483.
    138.Hoch WA, Zeldin EL, McCown BH. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology,2001,21,1-8.
    139.Hofer M, Grafe C. Induction of doubled haploids in sweet cherry (Prunus avium L.). Euphytica,2003,130:191-197.
    140.Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C, Thornburg RW. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American Journal of Botany,2007,94:12-24.
    141.Hornero-Mendez D, Minguez-Mosquera MI. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. Journal of Agricultural and Food Chemistry,2000,48:1617-1622.
    142.Hortensteiner S. Cholrophyll degradation during senescence. Annual Review of Plant Biology,2006,57:55-77.
    143.Hovenkamp-Hermelink JHM, de Vries JN, Adamse P, Jacobsen E, Witholt B, Feenstra WJ. Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Research,1988,31:241-246.
    144.Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Functional & Integrative Genomics,2009,9:363-376.
    145.Howitt CA, Pogson BJ. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell & Environment,2006,29:435-445.
    146.Huff A. Sugar regulation of plastid interconversions in epicarp of citrus fruit. Plant Physiology,1984,76:307.
    147.Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Engineering,2004,6:268-276.
    148.Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talon M. In vivo sucrose stimulation of colour change in citrus fruit epicarps:interactions between nutritional and hormonal signals. Physiologia Plantarum,2001a,112:244-250.
    149.Ilg A, Yu Q, Schaub P, Beyer P, Al-Babili S. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta,2010,232:691-699.
    150.Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal,2001,27:325-333.
    151.Jacquard C, Nolin F, Hecart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clement C. Microspore embryogenesis and programmed cell death in barley:effects of copper on albinism in recalcitrant cultivars. Plant Cell Reports,2009,28:1329-1339.
    152.Jayaraj J, Devlin R, Punja Z. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Research,2008,17:489-501.
    153.Johnson JD. Do carotenoids serve as transmembrane radical channels? Free Radical Biology and Medicine,2009,47:321-323.
    154.Josse EM, Simkin AJ, Gaffe J, Laboure AM, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiology,2000,123:1427-1436.
    155.Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, De Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell,2011, 23:923-941.
    156.Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology,2004,134:824-837.
    157.Kim J, Rensing K, Douglas C, Cheng K. Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties. Planta,2010, 231:549-558.
    158.Koltunow A, Brennan P, Protopsaltis S, Nito N. Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. First International Citrus Biotechnology Symposium,1998:81-92.
    159.Kumagai MH, Keller Y, Bouvier F, Clary D, Camara B. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant Journal,1998,14: 305-315.
    160.Lee EK, Jin YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S. Cultured cambial meristematic cells as a source of plant natural products. Nature Biotechnology,2010,28:1213-1217.
    161.Lee HS. Characterization of carotenoids in juice of red navel orange (Cara Cara). Journal of Agricultural and Food Chemistry,2001,49:2563-2568.
    162.Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant Journal,2011,70:191-204.
    163.Ljubesic N, Wrischer M, Devide Z. Chromoplasts-the last stages in plastid development. International Journal of Developmental Biology,1991,35:251-258.
    164.Li F, Vallabhaneni R, Wurtzel ET. PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiology,2008,146:1333-1345.
    165.Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O'Neill J. beta-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry,2006b,67:1177-1184.
    166.Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant Journal,2001,26:59-67.
    167.Li L, Van Eck J. Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Research,2007,16:581-585.
    168.Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van Eck J, Deng XX, Failla M. The Or Gene Enhances Carotenoid Accumulation and Stability During Post-Harvest Storage of Potato Tubers. Molecular Plant,2011, doi:10.1093/mp/ssr099
    169.Li W, Wong F, Tsai S, Phang TH, Shao G, Lam H. Tonoplast-located GmCLCl and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant, Cell & Environment,2006a,29:1122-1137.
    170.Lightbourn GJ, Griesbach RJ, Novotny JA, Clevidence BA, Rao DD, Stommel JR. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. Journal of Heredity,2008,99:105-111.
    171.Lim PO, Kim HJ, Gil Nam H. Leaf senescence. Annual Review of Plant Biology, 2007,58:115-136.
    172.Lindgren LO, Stalberg KG, Hoglund AS. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 2003,132:779.
    173.Liu G, Ren G, Guirgis A, Thornburg RW. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell, 2009,21:2672-2687.
    174.Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T. Polyamine biosynthesis of apple callus under salt stress:importance of the arginine decarboxylase pathway in stress response. Journal of Experimental Botany,2006,57: 2589-2599.
    175.Liu H, Li X, Xiao J, Wang S. A convenient method for simultaneous quantification of multiple phytohormones and metabolites:application in study of rice-bacterium interaction. Plant methods,2012,8:2.
    176.Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit(Citrus sinensis L. Osbeck). Journal of Experimental Botany,2007,58:4161-4171.
    177.Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal,2000,22:503-513.
    178.Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany,2008,59:213-223.
    179.Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist,2008,179:1004-1016.
    180.Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell,2006,18:3594-3605.
    181.Maass D, Arango J, Wust F, Beyer P, Welsch R. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One,2009,4:e6373.
    182.Mackenzie S, McIntosh L. Higher plant mitochondria. Plant Cell,1999,11:571-586.
    183.Mann V, Harker M, Pecker I, Hirschberg J. Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotechnology,2000,18:888-892.
    184.Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiology,2011,157:1568-1579.
    185.Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel E. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology,2011,5:77.
    186.Mendes AFS, Chen C, Gmitter Jr FG, Moore GA, Costa MGC. Expression and phylogenetic analysis of two new lycopene J3-cyclases from Citrus paradisi. Physiologia Plantarum,2010,141:1-10.
    187.Merzlyak MN, Solovchenko AE. Photostability of pigments in ripening apple fruit:a possible photoprotective role of carotenoids during plant senescence. Plant Science, 2002,163:881-888.
    188.Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A.a-Glucan, water dikinase (GWD):A plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proceedings of the National Academy of Sciences of the United States of America,2005,102:1785.
    189.Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. Journal of Bacteriology,1990,172:6704.
    190.Misawa N, Yamano S, Linden H, de Felipe MR, Lucas M, Ikenaga H, Sandmann G. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Plant Journal,1993,4:833-840.
    191.Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science,2004,9:490-498.
    192.Moise AR, Von Lintig J, Palczewski K. Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends in Plant Science,2005, 10:178-186.
    193.Monte, E, Tepperman, JM, Al-Sady, B, Kaczorowski, KA, Alonso, JM, Ecker, JR, Li, X, Zhang, Y and Quail, PH. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America, 2004,101:16091-16098.
    194.Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science,2010,328:624-627.
    195.Morris WL, Ducreux LJ, Hedden P, Millam S, Taylor MA. Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network:implications for the control of the tuber life cycle. Journal of Experimental Botany,2006a,57:3007-3018.
    196.Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA. Engineering ketocarotenoid biosynthesis in potato tubers. Metabolic Engineering,2006b,8: 253-263.
    197.Mourao Filho FAA, Espinoza-Nu ez E, Stuchi ES, Ortega EMM. Plant growth, yield, and fruit quality of 'Fallglo' and 'Sunburst' mandarins on four rootstocks. Science Horticulture,2007,114:45-49
    198.Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology,2005,56:165-185.
    199.Nashilevitz S, Melamed-Bessudo C, Izkovich Y, Rogachev I, Osorio S, Itkin M, Adato A, Pankratov I, Hirschberg J, Fernie AR. An orange ripening mutant links plastid NAD(P)H dehydrogenase complex activity to central and specialized metabolism during tomato fruit maturation. Plant Cell,2010,22:1977-1997.
    200.Nebenfuhr A, Frohlick JA, Staehelin LA. Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiology,2000,124: 135-152.
    201.Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany,2002,53: 1237-1247.
    202.Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. Plant Journal, 2011,66:194-211.
    203.Nicolosi E, Deng ZN, Gentile A, La M, S., Continella G, Tribulato E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics,2000,100:1155-1166
    204.Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology,2006,142:1193-1201.
    205.Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana:further evidence for redox control of anthocyanin synthesis. Plant, Cell & Environment,2011,35:388-404.
    206.Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R.2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23:482-487.
    207.Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols,2010,5:986-992
    208.Pan Z, Guan R, Zhu S, Deng X.2009b. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Reports,28:281-289.
    209.Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics,2012,75:2670-2684.
    210.Pan ZY, Liu Q, Yun Z, Guan R, Zeng WF, Xu Q, Deng XX. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange[Citrus sinensis (L.) osbeck]. Proteomics,2009a,9: 5455-5470.
    211.Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell,2002,14:321-332.
    212.Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology,2001,19:263-267.
    213.Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell,1996,8:1627-1639.
    214.Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences of the United States of America,1998,95:13324-13329.
    215.Pogson BJ, Rissler HM. Genetic manipulation of carotenoid biosynthesis and photoprotection. Philosophical Transactions of the Royal Society B:Biological Sciences,2000,355:1395-1403.
    216.Pozueta-Romero J, Rafia F, Houlne G, Cheniclet C, Carde JP, Schantz ML, Schantz R A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiology,1997,115:1185-1194.
    217.Ralley L, Enfissi E, Misawa N, Schuch W, Bramley PM, Fraser PD. Metabolic engineering of ketocarotenoid formation in higher plants. Plant Journal,2004,39: 477-486.
    218.Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology,2012a,158: 1267-1278.
    219.Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences of the United States of America,2012b,109:5535-5540.
    220.Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metabolic Engineering,2003,5:255-263
    221.Rios G, Naranjo MA, Rodrigo MJ, Alos E, Zacarias L, Cercos M, Talon M. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants. BMC Plant Biology, 2010,10:276.
    222.Ritte G, Scharf A, Eckermann N, Haebel S, Steup M. Phosphorylation of transitory starch is increased during degradation. Plant Physiology,2004,135:2068.
    223.Rodrigo MJ, Marcos JF, Alferez F, Mallent MD, Zacarias L. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany, 2003,54:727-738.
    224.Rodriguez A, San Andres V, Cervera M, Redondo A, Alquezar B, Shimada T, Gadea J, Rodrigo MJ, Zacarias L, Palou L. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiology,2011,156:793-802.
    225.Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant Journal,2009,60:424-435.
    226.Rogers HJ. Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell & Environment,2011, DOI: 10.1111/j.1365-3040.2011.02373.x.
    227.Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM. Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology,2000,18:666-669.
    228.Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metababic Engineering,2002,4:263-272.
    229.Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America,2000,97:11102.
    230.Roose ML, Niedz RP, Gmitter JFG, Timothy JC, Abhaya MD, Jan-Fang C, Daniel SR. Analysis of a 1.2x whole genome sequence of Citrus sinensis. In Plant & Animal Genome XV Conference, San Diego, USA,2007.
    231.Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant Journal,2000,24:413-419.
    232.Rouseff R, Raley L, Hofsommer HJ. Application of diode array detection with a C-30 reversed phase column for the separation and identification of saponified orange juice carotenoids. Journal of Agricultural and Food Chemistry,1996,44:2176-2181.
    233.Ruiz-Sola MA, Rodriguez-Concepcion M. Carotenoid Biosynthesis in Arabidopsis:A Colorful Pathway. The Arabidopsis Book,2012.
    234.Saga G, Giorgetti A, Fufezan C, Giacometti GM, Bassi R, Morosinotto T. Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. Journal of Biological Chemistry,2010,285:23763-23770.
    235.Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology,2010,61:463-489.
    236.SchaFer L, Sandmann M, Woitsch S, Sandmann G Coordinate up-regulation of carotenoid biosynthesis as a response to light stress in Synechococcus PCC7942. Plant, Cell & Environment,2006,29:1349-1356.
    237.Schaub P, Al-Babili S, Drake R, Beyer P. Why is golden rice golden (yellow) instead of red? Plant Physiology,2005,138:441-450.
    238.Schauer N, Fernie AR. Plant metabolomics:towards biological function and mechanism. Trends in Plant Science,2006,11:508-516.
    239.Scheibner M, Hulsdau B, Zelena K, Nimtz M, De Boer L, Berger RG, Zorn H. Novel peroxidases of Marasmius scorodonius degrade β-carotene. Applied Microbiology and Biotechnology,2008,77:1241-1250.
    240.Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R. Characterization of chromoplasts and carotenoids of red-and yellow-fleshed papaya (Carica papaya L.). Planta,2011,234:1031-1044.
    241.Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seed-specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects. Plant Journal,1999,20:401-412.
    242.Simkin AJ, Gaffe J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry,2007,68:1545-1556.
    243.Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles P-ionone, pseudoionone, and geranylacetone. Plant Journal,2004,40:882-892.
    244.Singh D, Maximova S, Jensen P, Lehman B, Ngugi H, McNellis T. FIBRILLIN 4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiology,2010a,154:1281-1293.
    245.Singh R, Rastogi S, Dwivedi UN. Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety,2010b,9:398-416.
    246.Sommerburg O, Langhans CD, Arnhold J, Leichsenring M, Salerno C, Crifo C, Hoffmann GF, Debatin KM, Siems WG. [beta]-Carotene cleavage products after oxidation mediated by hypochlorous acid--a model for neutrophil-derived degradation. Free Radical Biology and Medicine,2003,35:1480-1490.
    247.Sparla F, Costa A, Schiavo FL, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted β-amylase of Arabidopsis. Plant Physiology,2006,141:840-850.
    248.Srivastava P, Chaturvedi R. In vitro androgenesis in tree species:An update and prospect for further research. Biotechnology Advances,2008,26:482-491.
    249.Stalberg K, Lindgren O, Ek B, Hoglund AS. Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant Journal,2003,36:771-779.
    250.Subagio A, Wakaki H, Morita N. Stability of lutein and its myristate esters. Bioscience, Biotechnology, and Biochemistry,1999,63:1784-1786.
    251.Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P. Fruit-specific RNAi-mediated suppression of SINCED1 increases both lycopene and P-carotene contents in tomato fruit. Journal of Experimental Botany,2012,63:3097-3108.
    252.Swiatek A, Van Dongen W, Esmans EL, Van Onckelen H. Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiology,2004,135:161-172.
    253.Talon M, Gmitter FG.2008. Citrus genomics. International Journal of Plant Genomics,2008,528361.
    254.Tan B, Li DL, Xu SX, Fan GE, Fan J, Guo WW. Highly efficient transformation of the GFP and MAC 12.2 genes into precocious trifoliate orange [Poncirus trifoliata (L.) Raf], a potential model genotype for functional genomics studies in citrus. Tree Genetics & Genomes,2009,5:529-537.
    255.Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences of the United States of America,1997,94:12235.
    256.Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids. Plant Journal,2008,54:733-749.
    257.Tang CH, Huang DB, Yang JH, Liu SJ, Sakr S, Li HP, Zhou YH, Qin YX. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell & Environment,2010,33:1708-1720
    258.Tao NG, Xu J, Cheng YJ, Deng XX. Lycopene-epsilon-cyclase pre-mRNA is alternatively spliced in Cara Cara navel orange(Citrus sinensis Osbeck). Biotechnology Letters,2005,27:779-782.
    259.Tara D. Silva. Indica rice anther culture:can the impasse be surpassed? Plant Cell Tissue and Organ Culture,2010,100:1-11
    260.Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Molecular Biology,2006,62:453-469.
    261.Terol J, Naranjo MA, Ollitrault P, Talon M. Development of genomic resources for Citrus clementina:Characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics,2008,9.
    262.Thomson WW. Ultrastructural development of chromoplasts in Valencia oranges. Botanical Gazette,1966:133-139.
    263.Thorpe TA. History of plant tissue culture. Molecular Biotechnology,2007,37: 169-180.
    264.Toenniessen GH. Vitamin A deficiency and golden rice:the role of the Rockefeller Foundation. The Rockefeller Foundation, New York,2000,14.
    265.Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E. Toward the Storage Metabolome:Profiling the Barley Vacuole. Plant Physiology,2011,157:1469-1482.
    266.Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America,2010,107:11626.
    267.Tranbarger, T.J., Dussert, S., Joet, T., Argout, X., Summo, M., Champion, A., Cros, D., Omore, A., Nouy, B. and Morcillo, F. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiology 2011,156,564-584.
    268.Tsuchiya Y, McCourt P. Strigolactones:a new hormone with a past. Current Opinion in Plant Biology,2009,12:556-561.
    269.Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K. Inhibition of shoot branching by new terpenoid plant hormones. Nature,2008,455:195-200.
    270.Vallabhaneni R, Bradbury LMT, Wurtzel ET. The carotenoid dioxygenase gene family in maize, sorghum, and rice. Archives of Biochemistry and Biophysics,2010, 504:104-111.
    271.Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET. Metabolite sorting of a germplasm collection reveals the Hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiology,2009,151: 1635.
    272.Vallabhaneni R, Wurtzel ET. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiology,2009,150: 562-572.
    273.Vasquez-Caicedo A, Heller A, Neidhart S, Carle R. Chromoplast Morphology and [beta]-Carotene Accumulation during Postharvest Ripening of Mango Cv.Tommy Atkins'. Journal Agricultural and Food Chemistry,2006,54:5769-5776.
    274.Veilleux R. Development of new cultivars via anther culture. Hortculture,1994,29: 1238-1241.
    275.Verpoorte R, Van der Heijden R, Memelink J. Engineering the plant cell factory for secondary metabolite production. Transgenic Research,2000,9:323-343.
    276.Vogele AC. Effect of environmental factors upon the color of the tomato and the watermelon. Plant Physiology,1937,12:929-955.
    277.von Lintig J. Colors with Functions:Elucidating the Biochemical and Molecular Basis of Carotenoid Metabolism. Annual Review of Nutrition,2010,30:35-56.
    278.Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell,2010,22:3348-3356
    279.Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiology,2007,145:1073-1085.
    280.Woitsch S, Romer S. Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiology,2003.132:1508-1517.
    281.Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munne-Bosch S, Antonio C, Tohge T. JUNGBRUNNEN1, a reactive oxygen species responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell, 2012, DOI:http://dx.doi.org/10.1105/tpc.111.
    282.Wu XM, Liu MY, Ge XX, Xu Q, Guo WW. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta,2010,233:495-505.
    283.Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal, 2007,49:276-288.
    284.Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment,2012, DOI:10.1111/j.1365-3040.2012.02523.x.
    285.Xu CJ, Fraser PD, Wang WJ, Bramley PM. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. Journal of Agricultural and Food Chemistry,2006a,54:5474-5481.
    286.Xu J, Liu B, Liu X, Gao H, Deng X. Carotenoids synthesized in citrus callus of different genotypes. Acta Physiologiae Plantarum,2011,33:745-753.
    287.Xu J, Tao NG, Liu Q, Deng XX. Presence of diverse ratios of lycopene/beta-carotene in five pink or red-fleshed citrus cultivars. Scientia Horticulturae,2006b,108: 181-184.
    288.Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics,2010,11:246.
    289.Xu Q, Yu KQ, Zhu AD, Ye JL, Liu Q, Zhang JC, Deng XX. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange(Citrus sinensis) red-flesh mutant. BMC Genomics, 2009,10.
    290.Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q. Rare genetic variation at Zea mays crtRBl increases [beta]-carotene in maize grain. Nature Genetics,2010,42:322-327.
    291.Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000,287:303-305.
    292.Yu B, Lydiate DJ, Schafer UA, Hannoufa A. Characterization of a β-carotene hydroxylase of Adonis aestivalis and its expression in Arabidopsis thaliana. Planta, 2007,226:181-192.
    293.Yu Q, Ghisla S, Hirschberg J, Mann V, Beyer P. Plant carotene cis-trans isomerase CRTISO:a new member of the FADred-dependent flavoproteins catalyzing non-redox reactions. Journal of Biological Chemistry,2011,286:8666.
    294.Yu Q, Schaub P, Ghisla S, Al-Babili S, Krieger-Liszkay A, Beyer P. The lycopene cyclase CrtY from Pantoea ananatis (ex Erwinia uredovora) catalyzes an FADred-dependent non-redox reaction. Journal of Biological Chemistry,2010,285: 12109.
    295.Yuan Y, Chiu LW, Li L. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta,2009,230:1141-1153
    296.Zeevaart J, Creelman R. Metabolism and physiology of abscisic acid. Annual Review of Plant Physiology and Plant Mmolecular Biology,1988,39:439-473.
    291.Zhang JC, Tao NG, Xu Q, Zhou WJ, Cao HB, Xu JA, Deng XX. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Reports,2009,28:1737-1746.
    298.Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. Journal of Experimental Botany,2011,62:3659-3669.
    299.Zhou JY, Sun CD, Zhang LL, Dai X, Xu CJ, Chen KS. Preferential accumulation of orange-colored carotenoids in Ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon. Scientia Horticulturae,2010,126: 229-235.
    300.Zhou X, Mcquinn R, Fei Z, Wolters A, Marie A, Van Eck J, Brown C, Giovannoni JJ, LI L. Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant, Cell & Environment,2011,34:1020-1030.
    301.Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America,2008,105:18232-18237.
    302.Zhu C, Bai C, Sanahuja G, Yuan DW, Farre G, Naqvi S, Shi LX, Capell T, Christou P. The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics,2010,504:132-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700