用户名: 密码: 验证码:
25a来黑河流域NDVI的时空演变与气候响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域地处我国西北干旱区,由于地形、气候影响等因素,该区自然景观多样,是气候变化敏感区,但生态环境脆弱。揭示黑河流域植被变化的历史,对维护区域生态平衡,建设西北生态屏障,以及西部大开发有重要意义。
     本文基于1982-2006年25年来GIMMS/NDVI数据集以及黑河流域十二个气象站点温度、降水观测资料,通过差值法、均值法、相关分析、多项式曲线拟合等方法对黑河流域25a来植被覆盖变化分别从时间尺度、空间尺度上进行研究,并将NDVI与气象资料做相关分析,揭示植被覆盖变化与气象因子之间的关系,得到了以下主要结论:
     (1)25a黑河流域NDVI的时间变化趋势
     黑河流域植被覆盖在25a间略有上升,但总体趋势比较微弱。通过对25a来年均NDVI一元线性回归(y=0.004x-0.64,R2=0.223)结果显示,25a来黑河流域NDVI上升约6.2%。NDVI最小是年份是1985年,为0.1485。最高值年份是2002年,值为0.1735。由于气候、地形等引起的植被类型不同,黑河流域植被覆盖上游好于中游,下游最差。25a来黑河流域上、中、下游年平均NDVI值分别是0.1843、0.1634、0.0919。黑河上游与中游地区的变化趋势基本一致,增长幅度分别是4.98%和6.7%,均高于流域整体增幅。黑河下游NDVI增长最为明显,25a来累计增长9.24%。对黑河流域25a间年均NDVI多元曲线拟合发现,25a来黑河流域NDVI的变化大致可以分为两个阶段:1982-1992年,为显著上升时期;1993-2006年,NDVI保持相对高值,稳定时期。黑河流域年内NDVI的变化有很强的季节性规律,即春季萌发,夏季旺盛,秋季下降。黑河下游四季NDVI均低于中上游地区,只有夏季NDVI可达到0.1以上。对比三个时期月均NDVI变化发现,增长幅度最为明显的是5月份,其次是6月和10月。黑河上游地区春季NDVI的增长明显高于其他季节,其增长幅度分别到达15%,主要得益于全球变暖带来的春季升温,促使植被生长季提前。
     (2)黑河流域NDVI的空间演变
     通过分析NDVI序列与年份相关系数得出,黑河流域增长趋势明显(R>0.39,P<0.05)的像元为231个。而可通过P<0.01与P<0.001显著检验的像元主要集中于野牛沟、托勒、张掖、金塔附近。流域植被覆盖下降的区域主要集中于黑河上游祁连山中西部。将黑河流域NDVI依据亮度值分级,并对比其两期序列的变化情况,发现25a来高植被覆盖像元略有增加,但黑河下游地区其总数仍然很低。无植被像元有相应减少,其他则无明显变化。
     (3)黑河流域NDVI与气象因子的响应关系
     12个气象站点年均NDVI与温度的响应系数均高于降水,说明在年际尺度上NDVI的变化更加依赖于温度的变化。黑河中游年均NDVI对温度的响应明显高于上、下游。对温度响应最为剧烈的野牛沟与张掖,相关系数分别达到0.692和0.572(P<0.01)。对降水响应最高的点是民乐与山丹,相关系数仅为0.300与0.278,尚未通过P<0.05的显著性检验。黑河中上游地区月NDVI变化与温度、降水变化关系密切,大部分相关系数可以通过P<0.001的显著性检验。黑河下游月NDVI变化与气象因子变化相关系数较低。黑河流域不同区域季节NDVI对气象因子的响应依地域的不同具有差异性。其中,受春季温度影响最大的是黑河中游绿洲地区;对夏季降水响应剧烈的地区是山丹、民乐两远离黑河干流的气象站。秋季植被凋零,进入生长周期的衰退期,与温度、降水的关系均不敏感。黑河中上游地区夏季NDVI受春季温度、降水的滞后影响较大。
Heihe River Basin, located in the arid region of Northwest China, is well recognized for its diversity of natural landscapes and its fragility of ecological environment and is very sensitive to climatic fluctuations due to the effect of multiple landforms and local climate. Thus, it is of significant importance to reveal the history of vegetation variations in Heihe River Basin for the maintenance of ecological equilibrium, the establishment of ecological barrier as well as the development of western regions in China.
     Based on the GIMMS/NDVI dataset from1982to2006and temperature and precipitation observation data from12meteorological stations within Heihe River Basin, we focus on the variations of vegetation cover in the past25a temporally and spatially by ways of difference method, averaging method, correlation analysis together with polynomial curve fitting. The correlation analysis between NDVI and meteorological factors shows as follows:
     (1)Time variation trends of NDVI in Heihe River Basin
     Although the past25a witnessed an upward trend in vegetation cover, the tendency was quite slight. Employing the simple linear regression (y=0.004x-0.64, R2=0.223) to cope with the dataset, we find that values of NDVI went up by nearly6.2%in the25a and the minimum NDVI occurred in1985with a value of0.1485, while the maximum NDVI happened in2002with a value of0.1735. The annual average values of NDVI in the upper, middle and down streams was0.1843,0.1634and0.0919. The variation tendency of the upper stream kept in step with that of the middle stream, increasing by4.98%and6.7%, respectively, which was higher than the growth of the entire basin. The growth of NDVI in the downstream of Heihe River Basin was highest, and the cumulative increase was9.24%during this period. Using the multivariate curve fitting for the yearly average NDVI, we find this period can be roughly divided into two stages:a) NDVI maintained a significant rise over the period1982-1992; b) NDVI leveled off and kept relatively high. The variations of NDVI in the basin exhibited a seasonal rhythm apparently, e.g. the growth of vegetation starts in spring, reaches a peak in summer and declined gradually in autumn. NDVI of four seasons in the downstream was lower than that of the upper and middle stream. The NDVI in summer simply reaches above0.1. By comparing the variations of monthly NDVI over the three periods, we claim that May see the most dramatic growth, followed by June and October. Moreover, the growth of NDVI in spring in the upper stream was higher than that of other seasons remarkably, indicating that quick warming in spring resulting from global change has advanced the dates of the growing season.
     (2) Spatial evolutions of NDVI in Heihe River Basin
     By analyzing the correlation coefficient between NDVI sequence and years, NDVI went up evidently (R>0.39, P<0.05) in231pixels, among which the pixels around Yeliugou, Tuole, Zhangye and Jinta could pass the significant test of P<0.01and P<0.001. The areas where the vegetation cover declined mainly concentrated in the middle and western part of Qilian Mountains. After classifications of NDVI during the two periods, we find that the number of those pixels representing high vegetation covers increased slightly, but the absolute number in the downstream was still quite low. Additionally, the number of the pixels standing for non-vegetation zones declined accordingly. There were no other significant changes anyway.
     (3) Response relationship between NDVI and meteorological factors in Heihe River Basin
     The response relationships between annual average NDVI and temperature are higher than precipitation in the12meteorological stations, indicating that temperature plays a more important role in the variations of NDVI for the interannual variability. The response relationship between annual average NDVI and temperature in the middle stream is higher significantly than that in the upper and down stream. The most dramatic response to temperature happened in Yeliugou (0.692) and Zhangye (0.572), while the highest response coefficients were simply0.300in Minle and0.278in Shandan, not even passing the significant test (P<0.05). The meteorological factors had no effect on the variation of monthly NDVI in the downstream. The relationships between monthly NDVI and meteorological factors varied accompanied by different regions and different seasons. The results point out that spring temperature has the most significant effect to the oases area in the middle stream and precipitation plays a relatively important role in Minle and Shandan, which are far away from the oases. In autumn, at the end of the growing season, there is no relationship between the variation of NDVI and temperature and precipitation. Likewise, we find that lags between the variations of NDVI in summer and precipitation and temperature in spring are evident.
引文
Bounoua L, Collatz GJ, Los S 0, et al. Sensitivity of Climate to Changes in NDVI[J]. Journal of Climate,2000,13(13):2277-2292.
    Braswell B H, Schimel D S, Linder E et al. The response of global terrestrial ecosystems to interannual temperature variability. Science,1997,278:870-873.
    Compatible with MODIS and SPOT Vegetation NDVI Data[J]. Int J Remote Sensing, 2005,26(20):4485-449.
    Deering, D. W. (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. Dissertation, Texas A & M University, College Station, TX,338 pp.
    F Yu, K Price, J Ellis, J J Feddema and P.Shi. Interannunal variations of the grassland boundaries bordering the eastern edges of the Gobi Desert in central Asia[J]. Internationnal journal of remote sensing,2004,25:327-346.
    Feng Qi, Cheng Guodong, Endo Kunihiko. Towardssustainable development of the environmentally degraded Heihe RiverBasin, China[J]. Hydrological Science Journal-Journal Des Sciences Hydrologiques,2002,46 (5):647-658.
    Habib Aziz Salim, Chen Xiaoling, Gong Jianya. Analysis of Sudan vegetation dynamics using NOAA-AVHRR NDVI data from 1982-1993. Asian Journal of Earth Sciences,2008, 1(1):1-15.
    Houghton JT, Ding Y, Griggs DJ, et al. The scientific Basis[C]//IPCC Climate Change 2001. Cambridge, United Kingdom:Cambridge University Press,2001:769.
    Houghton RA. Temporal patterns of land2use change and carbon storage in China and tropical Asia[J]. Science in China. Series C,2002,45(Supp):10-17.
    Huete A R. A soil adjusted vegetation index (SAVI) [J]. Remote Sens Environ.1988, (25):295-30.
    IGBP. International Geosphere-Biosphere Programme:A Study of Global Change[R]. IGBP Report No.12. IGBP Secretariat, The Roy-al Swedish Academy of Science, Box 50005, S-104, Stockholm, Sweden,1990.
    IGBP. The International Geosphere-Biosphere Programme:A Study of Global Change-A Plan for Act ion[R]. IGBP Report No.4. Stockholm:IGBP,1988.
    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2007.241-253.
    Intergovernmental Panel on Climate Change(IPCC). Climate Change 2001:The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2001.105-130.
    Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663-666
    Jue Wang, K P Price, PM RICH. Spstial patterns of NDVI in response to precipitation and temperature in the Central Great Plains[J]. International journal of remoto sensing,2001,22 (18):3827-3844.
    Kaufman YJ, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Trans Geosci Remote Sensing,1992, (30):261-270.
    Li Z T, Kafatos M. Internanual variability of vegetation in the United States and its relation to EI Nino/Southern Oscillation. Remote Sensing of Environment, 2001,82(9):239-247.
    Limin Yang, Bruce k, Wylie, Larry L. Tieszen and Bradley C.Reed. An Analysis of Relationships among Climate Forcing and time-intefrated NDVI of Grasslands over the U. S. Northern and Central Greant Plains[J]. Remote sensing of environment, 1998,65:25-37.
    Liu H Q, Huete. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise [J]. IEEE Trans Geosci Remote Sensing, (33):457-465.
    Ling Lu, Xin Li,Guodong Cheng. Landscape evolution in the middle Heihe River Basin of north-west China during the last decade[J]. Journal of Arid Environments, 2002,53:295-408.
    Los S O, Collatze G J, Bounoua L et al. Global interannual variations in sea surface temperature and land surface wegetation, air temperature, and precipitation. Journal of Climate,2001,14(7):1535-1549.
    Meng Jijun, Wu Xiuqin, Li Zhenguo. Landuse/landcover changes in Zhangye oasis of Hexi Corridor[J]. Journal of Geo-graphical Sciences,2003,13(1):71-75.
    Mennis J. Exporing relationships between ENSO and vegetation vigour in the southeast USA using AVHRR data. Internationnal Journal of Remote Sensing,2001, 22(16):3077-3092.
    Nemani R, Keeling C, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science,2003, 300(5625):1560-1563.
    Pinzon J. Using HHT to successfully uncouple seasonal and inter annual components in remotely sensed data[J]. SCI2002. ConfereneeProeeedingsJuly14—18. Orlando, Florida
    Pizon J, Brown M E, TuckerCJ. Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In:Huang N, ed. Hilbert—Huang Transform:Introduction and applications[M]. Chapter 10, Part Ⅱ. Applications, Hackensack:World Scientific,2004.
    Qi J. A modified soil adjusted vegetation index[J]. Remote Sens Environ,1994 (48):119-126.
    Richardson AJ and Wiegand CL.1977. Distinguishing Vegetation From Soil Background Information. Photogramnetric Engineering and Remote Sensing 43(12):1541-1552.
    Schmidt H, Gitelson A. Temporal and spatial vegetation cover changes in Israeli transition zone:AVHRR-based assessment of rainfall impact[J]. International journal of remote sensing,2000,21:997-1010.
    Skinner W R, Majorowicz J A. Regional climatic warming and associated twentieth century land cover changes in north western North America [J]. Climate Res,1999, 12(1):39-52.
    Thcker CJ, Pinzon J E, Brown M E, et al. An Extended AVHRR 8km NDVI Data Set
    Watson R T et al. Climate Change 1995-Impacts, Adaptations and Mitigation of Climate Change:Scientific-Technicalnalyses. Cambridge:Cambridge University Press, 1996:95-130.
    Wu jin-dong, Wang Dong, BAUER M E. LAI assessing broadband vegetation indices and quick bird data in estimating leaf area index of corn and photo cannopices[J]. Field Crops Research,2007,102(1):33-42
    Zhao Chuanyan, Nan Zhongren, Cheng Guodong, Zhang Junhua, Feng Zhaodong. GIS-assisted modeling of the spatial distribution of Qinghai spruce(Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters[J]. Ecological Modelling,2006,191:487-500.
    Zhao Chuanyan, Nan Zhongren, Cheng Guodong.Methods for modeling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian Mountains, Chna[J]. Ecological Modelling,2005, 189:209-220
    Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of GeoPhysical Researth,106,20069-20083.
    Zhou L, Kaufmann R K, Tian Y, et al. Relation between inter annual variations in satellite measures of northern forset greenness and climate between 1982 and 1999[J]. J Geophys Rse,108(1):1029-2002.
    蔡迪花,王润元,郭铌等.民勤春小麦NDVI与产量的关系及其对气候变暖的响应.中国沙漠,2010,30(2):376-383.
    陈隆亨,肖洪浪.河西山地土壤及其利用[M].北京,海洋出版社,2003.132.
    陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    陈育峰.自然植被对气候变化响应的研究综述[J].地理科学进展,1997,16(2):70-77.
    陈止华,麻清源,王建等.利用CASA模型估算黑河流域净第一性生产力[J].自然资源学报,2008,23(2):263-273.
    崔林丽,史军,杨引明等.中国东部植被NDVI对气温和降水的旬响应特征.地理学报,2009,64(7):850-860.
    丁宏伟,曹炳媛,高玉卓,等.黑河过正义峡河川径流量减少的原因及对策分析[J].中国沙漠,2001,21(1):62-66.
    丁一汇,张锦,宋亚芳.天气和气候极端事件的变化及其与全球变暖的联系[J].气象,2002,28(3):3-7.
    方精云,朴世龙,贺金生等.近年来中国植被活动在增强[J].中国科学(C辑),2003,33(6):554-565.
    方精云,朴世龙,贺金生,等.近20年来中国植被活动在增强[J].中国科学(C辑),2003,33(6):554-567.
    符淙斌,董文杰,温刚,等.全球变化的区域响应和适应[J].气象学报,2003,61(2):245-250.
    高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1991:1-228.
    龚道溢,史培军,何学兆.北半球春季植被NDVI对温度变化响应的区域差异[J].地理学报,2002,57(5):505514.
    勾晓华,陈发虎,李金豹,等.祁连山东部地区高分辨率气候记录研究[J].兰州大学学报: 自然科学版,2002,37(4):105-110.
    郭铌,李栋梁,蔡晓军,等.1995年中国西北东部特大干旱的气候诊断与卫星监测[J]干旱区地理,1997,9(3):69-74.
    郭铌.植被指数及其研究进展[J].干旱气象,2003,21(3):71-75
    胡新博,王承军,顾祥,侯继东,杨生生.新疆荒漠,半荒漠草地的遥感应用研究[J].草食家畜,1996,23(3):33-37.
    李凤秀,张柏,宋开山,王宗明,刘焕军,杨飞.玉米叶而积指数与高光谱植被指数关系研究[J].遥感技术与应用,2007,22(5):586-592.
    李家洋,陈泮勤,马柱国.区域研究:全球变化研究的重要途径[J].地球科学进展,2006,21(5):441-450.
    李林,王振宇,汪青春.黑河上游地区气候变化对径流量的影响研究[J].地理科学,2006,26(1):40-46.
    李秀花,师庆东,郭娟等.中国西北干旱区1981-2001年NDVI对气候变化的响应分析.干旱区资源与环境,2009,23(2):13-16
    李振朝,韦志刚,吕世华,河西地区绿洲NDVI的演变特征及与气候因子的关系分析.干旱区地理,2008,31(1),82-88.
    联合国社会发展研究所.全球化背景下的社会问题[M].北京:北京大学出版社,1997.108
    雒新萍.近25a来秦巴山区植被NDVI时空变化及其对区域气候的响应[D].西北大学,2008.
    刘三超,张万昌,蒋建军,赵登忠.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学,2003,23(5):585-591.
    马安青,高峰,贾永刚,单红仙,王一谋。基于遥感的贺兰山两侧沙漠边缘带植被覆盖演变及对气候响应[J].干旱区地理,2006,29(4):170-177.
    马明国,董立新,王雪梅.过去21a中国西北植被覆盖动态监测与模拟研究,冰川冻土,2003,25(2):232-236.
    毛德华,王宗明,罗玲,等.1982-2008年东北冻土区植被生长季NDVI对气候变化和C02体积分数增加的响应[J].环境科学学报,2010,30(11):2332-2343.
    毛飞,卢志光,张佳华,侯英雨.近20年藏北地区AVHRR NDVI与气候因子的关系[J].生态学报,2007,27(8):3198-3205.
    蒙吉军,吴秀芹,李正国.黑河流域LUCC(1988-2000)的生态环境效应研究.水土保持研究,2005,12(4):17-21.
    朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
    朴世龙,方精云.最近年来中国植被覆盖的动态变化.第四纪研究,2001,21(4):294-302
    朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
    潘竞虎,董晓峰.基于GIS的黑河流域生态环境敏感性评价与分区.自然资源学报,2006,21(2):267-272.
    乔欣,马旭.冠层光谱植被指数评价大豆叶绿素和氮含量的优化研究[A];农业工程科技创新与建设现代农业--2005年中国农业工程学会学术年会论文集第五分册[C];2005年
    秦大河,丁一汇,王绍武,等.中国西部生态环境变化与对策建议[J].地球科学进展,2002,17(3):314-319.
    舒俭民 王家骥郑丙辉等.黑河流域生态环境恶化状况与治理建议[J].环境科学研究,1998,11(4):55-58.
    宋怡,马明国.基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系. 遥感学报,2008,12(3):499-505.
    孙红雨,王常耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间系列数据集[J].遥感学报,1998,2(3):204-210.
    孙建国,艾廷华,王沛,赵传燕.基于NDVI-气候变量特征空间的植被退化评价[J].武汉大学学报(信息科学版),2008,33(6):573-576.
    孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报,2000,55(1):36-45.
    田辉,文军,马耀明等.利用ASTER资料估算黑河中游沙漠和绿洲地区夏季地表温度[J].中国沙漠,2008,28(3:)544-553.
    王根绪,程国栋,沈永平.近50年来河西走廊区域生态环境变化特征与综合防治对策[J].自然资源学报,2002,17(1):78-86.
    王根绪,程国栋.近50年来黑河流域水文及生态环境变化[J].中国漠,1998,18(3):233-238.
    王根绪,程国栋等.干旱区受水资源胁迫的下游绿洲动态变化趋势分析[J].应用生态学报,2002,13(5):564-568.
    王璞玉,李忠勤,高闻宇等.气候变化背景下近50年来黑河流域冰川资源变化特征分析[J].
    资源科学,2003,33(3):399-407.
    吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):25-35
    肖洪浪,程国栋.黑河流域水问题与水管理的初步研究[J].中国沙漠,2006,26(1):1-5.
    肖洪浪,樊恒文,何宝山.干旱地区流域土地分类典型研究--以黑河流域为例[J].甘肃农业科技,1999,(专号):21-25.
    信忠保,许炯心.黄十高原地区植被覆盖时空演变对气候的响应[J].自然科学进展,2007,17(6):770-778.
    徐兴奎,陈红.中国西部地区地表植被覆盖和积雪覆盖变化对沙尘天气的影响.科学通报,2006,51(6):707-714.
    徐兴奎,陈红,LEVY Jason K,气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析,科学通报,2008,53(4):456-462
    杨威,周尚哲,CHIYUKI N,等.祁连山中段新冰期以来的冰川序列及环境变化[J].兰州大学学报:自然科学版,2006,42(6):12-15.
    于沪宁,江爱良.厄尔尼诺与全球趋暖灾害骤增对农业持续发展的影响[J].地理科学进展,2000,19(3):227-236.
    张顺英,曾群柱.卫星雪盖资料在祁连山黑河流域融雪径流模式中的应用[J].冰川冻土,1986,8(2):119-131.
    张新跃,周俗,唐川江,张绪校,侯众,严东海.四川省莎草、杂类草草地生产力遥感监测[J].草业科学,2009,26(6):57-61
    张学霞,葛全胜,郑景云.2005.近50年北京植被对全球变暖的响应及其时效:基于遥感数据和物候资料的分析[J].生态学杂志,24(2):123-130.
    赵冰茹刘闯刘爱军王正兴.利用MODIS-NDVI进行草地估产研究--以内蒙古锡林郭勒草地为例[J].草业科学,2004,21(8):12-13.
    钟秀丽,林而达.气候变化对我国自然生态系统影响的研究综述[J].生态学杂志,2000,19(5):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700