用户名: 密码: 验证码:
巴丹吉林沙漠腹地土壤温度观测及其变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化中,沙漠以其敏感的下垫面性质首先得到响应,并且在相应的过程中又以其特殊环境的反馈作用影响气候系统,研究沙漠气候系统中的地-气交换对于脆弱的沙漠生态系统有着极其重要的意义。已有研究表明,沙漠近地层能量平衡闭合中土壤热储尤其是土壤温度的作用不容忽视。观测研究巴丹吉林沙漠土壤温度的变化,不仅可为沙漠地区土壤温度变化研究提供新的证据,同时对探讨沙漠地-气系统的能量平衡研究亦可提供数据支持。本文通过对巴丹吉林沙漠腹地(巴丹吉林庙)土壤温度的定位观测研究,并对2011年的土壤温度观测数据和气象观测数据进行分析,探讨该区域土壤温度的变化特征。主要研究结果和初步结论如下:
     (1)巴丹吉林庙土壤月平均温度变化近似趋于正弦曲线,10cm~180cm不同深度的土壤月平均温度均在8月达到最高值,而最低值出现的时间在不同深度的土壤中有一定差异。其中,60cm以上深度的土壤月平均温度的最低值出现在1月;60cm以下深度的土壤月平均温度的最低值出现时间为2月,存在明显的滞后现象。不同深度的土壤月平均温度的显著变化时间,主要集中在3月和9月末、10月初这一季节转换时期。随着深度的增加,土壤温度的年较差逐渐减小;10cm-40cm土壤月均最高温变化剧烈,整个年周期内大致呈正弦曲线变化,夏季期间达到最高值,即正弦曲线的波峰区域,冬季期间降至最低值,即正弦曲线的波谷区域,土壤月均最低温的变化亦有此规律。随着土壤深度的增加,月均最高值与月均最低值的温差愈来愈小;土壤温度日变化曲线变化幅度随着土壤深度的增加逐渐减小,其中40cm以上土壤温度日变化最大,10cm、20cm深度土壤温度日最大值出现在晚间左右,最小值出现在中午左右,20cm深度土壤日均温度最值出现时间滞后于10cm处约2个小时左右。随着深度的增加,土壤温度的日较差逐渐减小。日均最高温与日均最低温的变化规律与月均最高温、月均最低温的变化规律基本一致。
     (2)分析2011年8月15日(降水量11.52mm)和8月17日(降水量16.99mm)降水过程前后的土壤温度变化发现,1Ocm、20cm处日土壤最高温度与最低温度均出现滞后现象。10cm土层对降水响应最为显著,土壤温度随着降水量的增多显著降低,变化曲线由正弦曲线变为不规则。其次为20cm和40cm土层,土壤温度也呈下降趋势,但下降幅度小于10cm深度,40cm以下几乎没有发生变化。使用Morlet复小波变换对2011年7月到9月的日土壤温度进行分析发现,夏季降水前后10cm处土壤温度存在着40到64天、20到35天的两类尺度的周期变化规律。其中在20到35天尺度上存在着高温-低温交替的准4次震荡。40到62天的时间尺度模值最大,时间尺度周期变化最为明显。
     (3)通过偏相关分析发现,气温、降水量、相对湿度、最大风速、平均风速、日照时数和短波辐射都对土壤温度有影响。其中相对湿度与土壤温度存在负相关关系,其他因子与土壤温度存在正相关关系,气温与土壤温度相关性最高,短波辐射、最大风速、日照时数次之。随着土壤深度的增加,气温、短波辐射、日照时数、相对湿度、最大风速、平均风速的与土壤温度的相关性逐渐降低,而降水量与土壤温度的相关性变化不大。
     (4)分别采用最小二乘回归、主成分回归和偏最小二乘回归模型,对巴丹吉林庙土壤温度进行了模拟。结果发现,最小二乘回归与主成分回归建立的模型其模拟值与实测值之间的误差最大,模拟精度较低,偏最小二乘回归模型得到的模拟精度高于最小二乘回归与主成分回归模型。因此,采用最小二乘回归模型进行巴丹吉林沙漠腹地巴丹吉林庙土壤温度的模拟效果比较好。
Because of its sensitive nature of the underlying surface, desert get response to global change firstly especially to climate change, and realize feedback effects in the process of interaction, therefore, research on the land-gas exchange in the desert system has extremely important significance for the fragile desert environment. Existing studies have shown that the surface layer soil heat stored, in particular, the role of soil temperature should not be ignored in the desert energy balance closure. The Badain Jaran Desert has special underlying surface and long time series observation data, the study of the soil temperature can rich Chinese desert soil temperature system research samples, and provide theoretical support for desert-gas system energy balance. This article analyzed the soil temperature observation data and meteorological data of the badain jaran temple in2011year, preliminary results and conclusions are as follows:
     (1) Mean monthly soil temperature under the conditions of different depth of the Badain Jaran Temple approximate sine curve. The rise of temperature in winter and spring alternate seasons has a smaller influence to deep soil temperature than the shallow soil. Mean monthly soil temperature is peaked in August, month average minimum temperature above60cm soil depth is January, below is February, and exists hysteresis phenomenon. Month average temperature significant changes mainly concentrated in the season transition period of the summer half year and winter half year, with the increase of depth, annual range in soil temperature gradually decreased; the whole year cycle is roughly sine curve, soil temperature peaked during the summer, fall to the lowest during winter, with the increase of soil depth, diurnal range become more and more smaller.The soil temperature diurnal variation curve of10-40cm significantly dynamic than the others. In vertical distribution, the lowest soil diurnal temperature is January, the minimum soil temperature exists hysteresis phenomenon. The soil diurnal temperature are peaked in August, above100cm soil depths appear hysteresis phenomenon, while the below depths are not obvious.
     (2) After a summer precipitation,the hysteresis phenomenon was observed in lowest temperature and highest temperature of10cm,20cm depth.10cm soil layer has most significant response to rainfall,with the increase of precipitation, the soil temperature decreased extremely.the soil temperature of20cm and40cm also declined, but the decline was less than10cm depth. Using Morlet complex wavelet transform to analyzed data of soil temperature after the summer precipitation, there are40to64days and20to35days change cycle. Among the20to35days change cycle exist high-low temperature alternating four shocks and have the full performance.40to62days has the biggest time scale of modulus maximum value and its cycle change is the most obvious.
     (3) After the analysis of partial correlation, we found temperature, precipitation, relative humidity, average wind speed, maximum wind speed, sunshine time and short wave radiation have an impact on soil temperature, relative humidity and soil temperature has a negative correlation, the other factors are positively correlated with soil temperature, air temperature is the strongest factor. With the increase of soil depth, air temperature, influence of short wave radiation, sunshine hours, relative humidity, average wind speed, maximum wind speed weakened gradually, with the increase of soil depth, the change of rainfall is not obvious.
     (4) The soil temperature of the Badain Jaran Temple is simulated by least-squares regression, principal component regression and partial least-squares regression model respectively. Results show that the simulation accuracy of the least squares regression and principal component regression model is low, while the partial least-squares regression model is higher than the others. Therefore, it is better by using partial least-squares regression model to simulate soil temperature of the Badain JaranTemple.
引文
[1]Yeh.T. C. and Fu Congbin, Climatic Change-A global and multidisciplinary theme, In Global Change,edited by T.F. Malone, and J.G Roederer,Cambridge University Press,1985,127-146.
    [2]Fu Congbin, Studies on changes of tropical rainforest climate-a suggested candidate of understanding the geo-sphere-biosphere interration, in Global Change, edited my T. F. Malone and J.G. Roedere, Cambridge University Press,1985,496-497.
    [3]海春兴,陈健飞著.土壤地理学[M].北京:科学出版社,2010.
    [4]叶笃正,符淙斌,等.有序人类活动和生存环境[J].地球科展,2001,16(4):453-460.
    [5]符淙斌,温刚.中国北方干旱化的几个问题[J].气候与环境研究,2002,7(1):22-29.
    [6]叶笃正,符淙斌,等.全球变化科学领域的若干进展[J].大气科学,2003,27(4):435-450.
    [7]陈红宝.巴丹吉林沙漠气象观测与气候特征初步研究[硕士论文].兰州:兰州大学,2011.
    [8]韩博等.土壤温度变化在绿洲及沙漠近地层能量平衡中的作用分析[J].太阳能学报,2010,31(12):1628-1632.
    [9]曹兴,魏文寿,等.古尔班通古特沙漠腹地秋季浅层地温特征分析[J].沙漠与绿洲气象,2010,4(2):26-31.
    [10]陈世强,吕世华,等夏季晴空金塔绿洲温度场的初步分析[J].中国沙漠,2006,26(5):767-772.
    [11]王训明,李吉均,等.近50a来中国北方沙区风沙气候演变与沙漠化响应[J].科学通报,2007,52(24):2882-2887.
    [12]谭志海.全球气候变化对中国北方沙漠化的影响[J].陕西师范大学学报:自然科学版,2005,33(专辑):148-150.
    [13]齐善忠,罗芳,等.人为因素在沙漠化过程中作用程度的定量化研究[J].水土保持研究2006,13(4):4-5.
    [14]董光荣,陈惠忠,等150a以来中国北方沙漠、沙地演化和气候变化[J].中国科学:B辑,1995,25(12):1303-1312.[15]钟德才.中国沙海动态演化[M].兰州:甘肃文化出版社,1998.
    [16]Matthew J. Taggart, Joshua L. Heitman et al. Surface shading effects on soil C loss in a temperate muck soil [J]. Geoderma,2011,163:238-246.
    [17]Yi Shi, Xiaoming Du. Effects of soil temperature and agitation on the removal of 1, 2-dichloroethane from contaminate dsoil[J].Science of the Total Environment,2012:185-189.
    [18]A.Rey, E. Pegoraro etal.Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain [J].Soil Biology & Biochemistry, 2011 (43):393-403.
    [19]X.R. Li, R.L. Jia et al. Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China[J].2011(47):59-66.
    [20]Joseph M. Craine, Theodore M. Gelderman. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland [J]. Soil Biology & Biochemistry, 2011(43):455-457.
    [21]HuQ, FengS.A daily soil temperature dataset and soil temperature climatology of the contiguous United States [J] Journal of Applied Meteorology,2003,42:1139-1156.
    [22]ZhangY, Chen W J, Smith S L, et al. Soil temperature in Cannada during the twentieth century.Complex responses to atmospheric climate change [J].J Geophys, Res,2005,110, D03112.
    [23]Meikle R W, Treadway T R.A mathematical method for estimating soil temperature in Canada [J].Soil Science,1981,131(5):320-326.
    [24]T.T. Chow, H. Longet al.Estimation of soil temperature profile in Hong Kong from climatic variables [J]. Energy and Buildings,2011(43):3568-3575.
    [25]Adrie F.G. Jacobs, Bert G. Heusinkveldet al.Long-term record and analysis of soil temperatures and soil heat fluxes in agrassland area, The Netherlands [J]. Agricultural and Forest Meteorology,2011(151):774-780.
    [26]AlvalaR C S,Gielow R,daRochaH R, et al.Intra-diumal and seasonal variability of soil temperature under forest and pasture in Rondonia[J]. Journal of Geophysical Research,2002, 107:1001-1020.
    [27]Takahashi K.Seasonal changes in soil temperature on an upper windy ridge and lower leeward slope in Pinus pumila scrub on Mt Shogigashira, central Japan [J].Polar Biosci,2005, 18:82-89.
    [28]Barringer James R F,Lilburne L R.Developing fundamental data layera to support environmental modeling in New Zealand[J].4th international conference on integrating GIS and environmental modeling, Banff,Alberta,Canada,2000,1-9.
    [29]Wenjing Chen, Xin Jia et al. Soil respiration in a mixed urban forest in China in relation to soil temperature and water content [J]. European Journal of Soil Biology,2013(54):63-68.
    [30]Mark A. Licht, Mahdi Al-Kaisi.Strip-tillage effect on seedbed soil temperature and other soil physical properties [J]. Soil & Tillage Research,2005 (80) 233-249.
    [31]Brian J.Darby, Deborah A. Neher etal. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity ofdesert soil micro-and meso-fauna [J]. Soil Biology & Biochemistry, 2011(43):1474-1481.
    [32]G. Hariharan, K. Kannan et al. Haar wavelet in estimating depth profile of soil temperature [J]. Applied Mathematics and Computation,2009(210):119-125.
    [33]杨梅学,姚檀栋,等.藏北高原士壤温度的日变化[J].环境科学,1999,20:6-8.
    [34]杨梅学,姚檀栋,等.藏北高原土壤温度异常变化及其与雪灾关系初析[J].自然灾害学报,1999,8(2):88-95.
    [35]杨梅学,姚檀栋,等.藏北高原土壤温度分布的纬向效应和高度效应[J].山地学报,1999,17(4):329-332.
    [36]涂钢等.东北半干旱区退化草地士壤温度的日、季变化特征[J].高原气象,2008,27,(4):741-748.
    [37]李兴荣等.深圳夏季多层土壤温度及其垂直结构日变化特征[J].科学技术与工程,2008,8(22):5996-6007.
    [38]张文纲,李述训,等.近45年青藏高原土壤温度的变化特征分析[J].地理学报,2008,63(11)11511-159.
    [39]邹平,杨劲松,等.苏北滨海典型滩涂土壤温度的极值分析[J].中国士壤与肥 料,2008(3):24-27.
    [40]崔素芳,等.基于偏相关分析的烟台市土壤温度影响因素及模拟模型研究[J].山东农业科学,2010,1:18-21.
    [41]王世岩,等.三江平原典型湿地土壤温度变化及其影响因子分析[J].地理研究,2003,22(3):389-396.
    [42]杨学明.土壤水热状况与土壤系统分类[J].土壤,1988,21(2):110-113.
    [43]史学正,邓西海.我国土壤温度状况中国土壤系统分类进展[M].北京:科学出版社,1993,353-360.
    [44]冯学民,蔡德利.土壤温度与气温及纬度和海拔关系的研究[J].土壤学报,2004,41(3):489-491.
    [45]王选耀.烟台地区土壤温度变化特征及模拟模型研究[J].农业系统科学与综合研究,2010,26(4):487-492.
    [46]杜尧东等.广州地区蔬菜田土壤温度变化特征及其预报模型研究[J].生态学杂志,2005,24(9):1021~1024.
    [47]王新平,李新荣,等.沙漠地区人工固沙植被对土壤温度与土壤导温率的影响[J].中国沙漠,2002,22(4):344-349.
    [48]朱金峰,王乃昂,等.基于遥感的巴丹吉林沙漠范围与面积分析[J].地理科学进展,2010,29(9):1087-1094.
    [49]杨萍,邹学勇.巴丹吉林沙漠北部风沙地貌形态类型的分区研究[J].中国沙漠,1999,19(3):210-213.
    [50]Mckee E D.A Study of Global SandSeas [M].Washingnton:U.S.Government Printing Office, 1979,12-67.
    [51]Petroy M P.TheOrdos, Alanshan and Peishan [J].The Deserts of Central Asia, Washington: U.S.Joint Publications, Research Service,1966,(1):241-260.
    [52]朱震达,吴正,等.中国沙漠概论[M].北京:科学出版社,1980,68-76.
    [53]朱震达.中国沙漠沙漠化、荒漠化及其治理的对策[M].北京:中国环境科学出版社,1999,137-142.
    [54]吴正.风沙地貌学[M].北京:科学出版社,1987,98-153.
    [55]杨小平.近3万年来巴丹吉林沙漠的景观发育与雨量变化[J].科学通报,2000,45(4)428-434.
    [56]闫满存,王光谦,等巴丹吉林沙漠高达沙山的形成发育研究[J].地理学报,2001,56(1):83-91.
    [57]吴正.中国沙漠及其治理沙地貌学[M].北京:科学出版社,2009,101-137.
    [58]李俊健.内蒙古阿拉善地块区域成矿系统[J].北京:中国地质大学(北京),2006.
    [59]安作相,马纪.阿拉善地区油气地质条件[J].新疆石油地质2002,23(5):435-439.
    [60]刘陶,杨小平,等巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J].中国沙漠,2010,30(6):1285-1291.
    [61]孙培善,孙德钦.内蒙古高原西部水文地质初步研究治沙研究(第六号)[M].北京科学出版社,1964:245-317.
    [62]马金珠等.同位素指示的巴丹吉林沙漠南缘地下水补给来源[J].地球科学进展,2007,22(9):922-930.
    [63]杨小平.巴丹吉林沙漠及其毗邻地区的景观类型及其形成机制初探[J].中国沙漠,2000,20(2):166-170.
    [64]闫满存,刘光谦,等.巴丹吉林沙漠沙山发育与环境演变研究[J].中国沙 漠,2001,21(4):361-366.
    [65]马宁,王乃昂,等.巴丹吉林沙漠周边地区近50a来气候变化特征[J].中国沙漠,2011,31(6):1541-1547.
    [66]张克存,姚正毅,等.巴丹吉林沙漠及其毗邻地区降水特征及风沙环境分析[J].中国沙漠,2012,32(6)1507-1511.
    [67]马迪,吕世华,等.巴丹吉林沙漠不同下垫面辐射特征和地表能量收支分析[J].高原气象,2012,31(3)615-621.
    [68]朱雅娟,卢琦,等.增雨对巴丹吉林沙漠东南缘白刺水分利用的影响[J].应用生态学报,2013,24(1)41-48.
    [69]刘贤赵,张安定,等.地理学数学方法[M].北京:科学出版社,2009,190-191.
    [70]依艳丽.土壤物理研究法[M].北京:北京大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700