用户名: 密码: 验证码:
基于摄影测量的云顶高度和云移动速度耦合解算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由卫星资料反演的云顶高度和云移动速度是天气学、气候学的重要科学资料,然而,目前云顶高度和云移动速度解算的精度尚存在较多问题,限制了云顶高度和云移动速度参数的实际应用,如何提高云顶高度和云移动速度已成为卫星气象学的一项待解难题。准确的云顶高度和云移动速度,将会大大提高天气分析和数值预报的质量,具有重要的科学意义。
     气象卫星立体像对云顶高度和云移动速度解算方法是一种全新的、高精度的云几何参数解算方法。目前,普遍采用重投影技术先解算云移动速度,并把最大风速或平均风速作为修正项解算云顶高度,其解算精度受重投影的精度限制,并且风速和云顶高度分开解算。本文依据摄影测量理论共线方程,引进了云移动速度参量,建立了云顶高度及云移动速度耦合模型,并给出了云顶高度和云移动速度严密解算算法;针对中分辨率影像云阴影和分辨率不高的特点,提出了基于单通道阈值云(雪)检测和图像增强的相关系数法双向匹配方法。并利用多时次的多角度卫星影像三个角度(AN、AF和AA)的红光影像,建立立体像对,利用云顶高度及云移动速度耦合模型对云区、雪区和云雪混合区的云顶高度和云移动速度进行了解算,得到如下结论:
     (1)单通道阈值云(雪)检测法可以有效去除云移动以及云阴影影响,可以提高匹配速度和匹配成功率;利用图像增强方法,增加中分辨率卫星影像云(雪)区信息量,提高同名云(雪)点匹配覆盖率,使得AN、AF和AA影像之间的匹配成功率能达到100%,最大误差不超过2个像元。
     (2)NASA认为MISR未考虑风速的云顶高度产品稳定性较好,精度较高,与本文解算结果基本一致,其差值在300米以内;MISR一代考虑风速的云顶高度产品由于采用最大风速作为修正项,解算的云高普遍偏高,而二代考虑风速的云顶高度产品由于采用了平均风速作为修正项,有了明显的改善,与本文解算结果相近。
     (3)利用云顶高度及云移动速度耦合模型进行了地面控制点的解算,认为云顶高度及云移动距离理论误差应该在300米左右;通过间接法平差,其估算的云顶高度和云移距离理论中误差也在300米以下;通过与MISR未考虑风速的云顶高度产品对比,其差值在300米以内;MISR二代云顶高度产品与本文解算的云顶高度差值也在300米以内,再次证明本文解算的云顶高度误差为300米;通过11万个云点数据的测试,云顶高度及云移动速度耦合模型稳定性较好,能够有效的区分云雪;通过云雪混合区解算,模型能够有效的区分出云雪;尤其是在纯雪区的解算中,能够有效地识别雪,其解算的误差也在300米。因此,可以认为模型既能解算有较大移动云三维坐标,也可以解算静止的云三维坐标。
     (4)通过对地面点风速的解算,其误差在1米/秒左右;解算的连续云点的风向一致,速度相近,也符合地面观测的风向。
     (5)利用云顶高度解算总云量,可得到分辨率为275米的总云量产品,并且能够较好的表现出有云区和无云区的细节,对云雪区分较为准确,能够弥补云量产品由于云雪误判而产生的云量估计偏高的不足。
     本文的创新点包括:
     (1)本文依据摄影测量理论共线方程,建立了云顶高度及云移动速度耦合模型,并研发了云顶高度和云移动速度严密解算算法,实现了云顶高度及云移动速度联立解算,该方法不依赖云的物理特征,为利用中分辨率影像定量解算云顶高度及云移动速度提供全新的方法。
     (2)本文详细分析相关系数法、最小二乘法和松弛法在多角度影像同名云点匹配存在的问题,针对中分辨率影像云阴影和分辨率不高的特点,提出了基于单通道阈值云(雪)检测和图像增强的相关系数法双向匹配方法。
Cloud-top-height and cloud-vector retrieved by satellite data are two kinds of important data in synoptic meteorology and climatology. However, there are still a lot of problems existed in the calculation of Cloud-top-height and cloud-vector, which limits the application of Cloud-top-height and cloud-vector. Now, how to improve cloud-top-height and cloud-vector has become a crucial question to be solved. More accuracy cloud-top-height and cloud-vector could highly improve the quality of weather analysis and mathematical forecast, which means a lot to scientific research.
     The calculation method of cloud-top-height and cloud-vector by using stereogram based on meteorological satellite is a new and highly precise calculation method based on geometrical parameters. Currently, cloud-top-height is solved by using re-projection firstly, then by using maximum wind speed or average wind speed as correction term. The accuracy of this method is limited by the accuracy of re-projection, and wind speed and cloud-top-height is solved, separately.
     Based on collinearity equation, this paper introduced the parameter of cloud movement speed, and established the coupling model of cloud-top-height and cloud-vector and the exactly calculation method of cloud-top-height and cloud-vector. Then, this paper offered a bidirectional matching method based on correlation coefficient method, which is based on image intensification and Cloud(Snow) detection according to single channel threshold, owing to the low resolution and the cloud shadows of Medium-Resolution image. We also calculated the cloud-top-height and cloud-vector in cloudy areas, snow areas and cloudy-snow areas by using stereogram constructed by multi-time and multi-angel (AN,AF and AA) satellite images and coupling model of cloud-top-height and cloud-vector. The conclusions are as follows.
     (1)Cloud(Snow) detection based on single channel threshold can effectively remove the effect of cloud movement and cloud shadows, and can improve matching speed and matching success rate; the information content of medium resolution satellite image in cloud(snow) areas are added and the rate of coverage in matching homonymy cloud (snow) points is improved by using image enhancement method. Therefore, the matching success rate between AN, AF and AA image can achieve100%, and the maximum error is less than2pixels.
     (2)NASA insists that MISR Cloud-top-height products without wind speed is more stable and more precise; the result of the first generation of MISR product is generally higher, because this product takes maximum wind speed as correction term. However, the result of the new generation of MISR product is getting better because it takes average wind speed as correction term.
     (3) Used coupling model of cloud-top-height and cloud-vector to calculate the ground control points. The theoretical error of cloud-top-height and cloud-vector is approximately300m, respectively; The mean square error(MSE) in terms of theory of cloud-top-height and cloud-moved-distance is below300meters through adjustment methond of indirect observations; The D-value is almost300m after comparing MISR product without wind with our result; The D-value between second generation of MISR product and our result, is also below300m, which once again proves that the error of cloud-top-height we calculated is300m; Mass data detection proves that coupling model of cloud-top-height and cloud-vector is stable and can be used to distinguish cloud and snow.
     (4)The error is approximately1m/s after calculating the wind speed of ground points; the wind direction of continuous cloud points are almost the same, and their wind speed are really close, which consists with the ground observation.
     (5)Accomplished total cloud cover product with the resolution of275m, by using cloud-top-height to calculate total cloud cover. This kind of product can not only better perform the details of Cloudy areas and non-cloudy areas, but also distinguish Snow areas with Cloud areas, which can makes up for the high cloud cover caused by the erroneous judgement of snow or cloud.
     The creative points of this study include:
     (1)Established the coupling model of cloud-top-height and cloud-vector based on collinearity equation and put forward precise calculation method for calculating cloud-top-height and cloud-vector. This method offers a new way to quantitative calculate cloud parameters in Medium-Resolution image, because this method is based on geometric principle rather than physical characteristics of cloud.
     (2) Analyzed existed problems in matching homonymy points in multi-angle image when we are respectively using correlation coefficient method, least square method or relaxation method. Owing to the low resolution and the cloud shadows of Medium-Resolution image, we therefore provided a bidirectional matching method based on correlation coefficient method, which is based on image intensification and Cloud(Snow) detection according to single channel threshold.
引文
[1]林琳,黄思训,杜华栋.MODIS数据的云顶高度反演.地球信息科学,2006,8(2):106-109.
    [2]黄磊.基于图像匹配和模式识别技术的卫星资料应用.北京大学硕士学位论文,2007.
    [3]陆风.基于几何分析的静止卫星云顶高度定量反演研究.北京大学博士学位论文,2008.
    [4]Hasler A F. Stereographic observations from satellites:an important new tool for the atmospheric science. Bulletin American Meteorological Society,1981,62(2):194-212.
    [5]Fujita T T. Principle of stereoscopic height computations and their applications to stratospheric cirrus over sever thunderstorms. Journal of the Meteorological Society of Japan,1982,60:355-368.
    [6]原育凯,张永和,尹增山.云顶高度的天基光学遥感及反演方法综述.红外,2010,31(11):1-5.
    [7]G C. Bridge, Meteosat system guide-Volume 5:Meteorological Products, Meteosat Data Management Department,1980,90.
    [8]R. A. Bowen, L. Fusco, J. Morgan and K. O. Roska, Operational production of cloud motion vectors (satellite winds) from Meteosat image data:Use of data from meteorological satellites, ESA No.143, European Space Agency,1979:65-75
    [9]GSzejwach, Determination of semi-transparent cirrus cloud temperature from infrared radiances:Application to METEOSAT, J. Appl. Meteor,1982,21:384-393
    [10]Eyre J R, W P Menzel.Retrieval Of cloud parameters from satellite sounder data:A simulation study.J.Appl.Meteor,1989,28:267-275.
    [11]Platnick S, M DKing, S AAekerman, W P Menzel, B A Baum, J C Riedi, R A Frey. The MODIS cloud Produets:Algorithms and examples from Terra.IEEE Trans. Geosci. Remote Sens,2003,41:459-473.
    [12]W. P. Menzel, W. L. Smith and T. R. Stewart, Improved cloud motion wind vector and altitude assignment using VAS, J. Clim. Appl. Meteor,1983,22:377-384
    [13]Robert E Holz, Steve Ackerman, Paolo Aantonelli, et al.An Improvement to the Hight-Spectral Resolution CO2-Slicing Cloud_Top Altitude Retrieval.American Meteorological Scciety,2006,23(5):653-670.
    [14]李艳兵,黄思训,翟景秋.云的立体观测研究进展.热带气象学报,2008,24(6):743- 747.
    [15]Seiz G. Ground and satellite-based multi-view photogrammetric determination of 3D cloud geometry. Swiss Federal Institute of Technology Zurich,2003.
    [16]谭涌波,陶善昌,吕伟涛.双站数字摄像测量云高.应用气象学报,2005,16(5):629-637.
    [17]Roach W.T. On the nature of the summit areas of severe storms in Oklahoma. Quarterly Journal of the Royal Meteorological Society,1967,93:318-327.
    [18]Onderjka R.J, Conver J.H. Note on the stereo interpretation of NIMBUS Ⅱ APT photography. Monthly Weather Review,1996,94(10):661-614
    [19]Kikuchi K, Kasai t. Stereoscopic analysis of photographs taken by NIMBUS Ⅱ APT system. Journal of the Meteorological Society of Japan,1968,46:60-67.
    [20]Shenk W.E, Holub R. An example of detailer cloud contouring from Apollo-6 photography. Bulletin American Meteorological Society,1971,52(4):238.
    [21]Whitehead V.S, Browne I.D, Garcia J.G. Cloud height contouring from Apollo-6 photography. Bulletin American Meteorological Society,1969,50:522-528.
    [22]Shenk W.E, Neff R.A. Stereographic cloud analysis from Apollo-6 photographs over a cold front. Bulletin American Meteorological Society,1975,56(1):4-15.
    [23]Black P.G. Some aspects of tropical storm structure revealed by hand held camera photographs from space. Washington D C:Skylab Explores the Earth, NASA, 1977:417-461.
    [24]胡崇金.用遥感资料求云层高度及地形起伏.遥感信息,1988,3:7-10.
    [25]Minzner R.A, Shenk W.E, Steranka J, et al. Cloud heights detemined stereographically from imagery recorded simultaneously by two synchronous meteorological satellites, SMS-1 and SMS-2.EOS,1976,57:593.
    [26]Minzner R.A, Shenk W.E, Steranka J, et al. Stereographic cloud heights from imagery of SMS/GOES satellites. Geophisical Research letter,1978,5(1):21-24.
    [27]Bryson W. Cloud height determination from geosynchronous satellite images. Wisconsin:University of Wisconsin,1978:99.
    [28]Hasler A.F, Strong J, Woodward R.H, et al. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure. Journal of Applied Meteorology,1991,30(3):257-281.
    [29]Wylie D.P, Santek D, Starr D.O. Cloud-Top heights from GOES-8 and GOES-9 stereoscopic imagery. Journal of Applied Meteorology,1998,37(4):405-413.
    [30]Takashima T, Takayama Y, Matsuura K, et al. Cloud height determination by satellite stereography. Papers in Meteorology and Geophysics,1982,33(2):65-78.
    [31]Campbell G.G, Holmlund K. Geometric cloud heights from Meteosat and AVHRR. Lome:EUM,2000:109-115.
    [32]Wang Hongqing, Lv ShengHui, Zhang Yan, et al, Determination of Cloud-Top Height from Stereoscopic Observation, Progress in Natural Science,2002,12(9):689-694
    [33]王洪庆,吕胜辉,张焱等.双星立体观测的云顶高度反演.中国气象学会2003年年会“地球气候和环境系统的探测与研究分会论文集",2003:107-110.
    [34]黄磊,吕胜辉,张焱等.双星立体观测云顶高度几何反演方法.北京大学学报,2008,44(1):129-134.
    [35]吕胜辉.双星立体观测的云顶高度反演.北京:北京大学硕士学位论文,2002.
    [36]Seiz Q Poli D, Gruen A. Stereo cloud-top heights from MISR and AATSR for validation of Eumetsat cloud-top height products. Prague:Eumetsat Users, Conference, 2004.
    [37]Diner D.J, Asner GP, Davies R, et al. New directions in Earth observing:Scientific applications of multiangle remote sensing. Bulletin American Meteorological Society, 1999,80(11):2209-2228.
    [38]EU. CLOUDMAP-Cirrus and Contrail cloud-top maps from satellites for Weather Forecasting and Climate Change Analysis:Final Report. EU Contract no ENV4CT97-0399,2001.
    [39]Catherine Moroney, Roger Davies, Jan-Peter Muller. Operational retrieval of Cloud-Top Heights Using MISR Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.2002,40(7):1532-1540.
    [40]Sehlmetz J,Holmlund K,Hoffman J,et al,Operational Cloud-Motion Winds from Meteosat Infrared Images,J APPI Meteor,1993,32(7):1206-1225.
    [41]Izawa. T and T. Fujita, Relationship between winds and cloud velocities determined from pictures obtained by the ESSA 3, ESSA 5 and AST-I satellites, Space Research IX, Amsterdam, North-Holland Publ.Co.,1969,571-579.
    [42]Hubert L. F., Whitney L. F., Wind Estimation from Geostationary-Satellite Picture, Mon Wea Rev,1971,99:665-672.
    [43]R. M. Endlich, D. E. Wolf, D. J. Hall and A. E. Brain, Use of a pattern recognition technique for determining cloud motions from sequences of satellite photographs, J. Appl. Meteor,1971,10:105-117.
    [44]D. E. Wolf, D. J. Hall and R. M. Endlich, Experiments in automatic cloud tracking using SMS-GOES Data, J. Appl. Meteor,1977,16:1219-1230.
    [45]John A. Leese, Charles S. Novak and Bruce B. Clark, An automated technique for obtaining cloud motion from Geosynchronous Satellite DATA using cross correlation, J. Appl. Meteor,1971,10:118-132.
    [46]Eric A. Smith, The McIDAS System, IEEE Trans. Geosci. Electron, GE-13,1975, 123-136.
    [47]R. M. Endlich and D. E. Wolf, Automatic cloud tracking applied to GOES and METEOSAT observations, J. Appl. Meteor,1981,20:309-319.
    [48]Purdom J F W,Detailed cloud motions from satellite imagery taken at thirty seeond,one and three minute intervals,Proe.to the 3rd iniernational wind workshoP in Aseona,SwitZerland,10-12 June 1996:137-146.
    [49]Johannes Schmetz, Kenneth Holmlund, Operational Cloud-Motion Winds from Meteosat Infrared Images, J. Appl. Meteor,1993,32:1206-1225.
    [50]Tetsuro Fukui, Cloud Track Wind Measurement in Japan, In:ECMWF/EUMETSAT Workshop, The Use of Satellite Data in Operational Numerical Weather Prediction.1993, 12:275-315.
    [51]徐祥德,许健民等.大气遥感再分析场构造技术与原理.气象出版社,2003:47-49.
    [52]许健民,张其松等.云迹风计算中的两个几何问题.应用气象学报,1997,8(1):11-18.
    [53]许健民,张其松,方翔.用红外和水汽两个通道的卫星测值指定云迹风的高度.气象学报,1997,55(4):408-417.
    [54]白洁,王洪庆,陶祖钰.GMS卫星红外云图云迹风的反演.北京大学学报(自然科学版),1997,3(1):85-92.
    [55]陈华,许健民,张其松,方翔.用高度调整法进行云迹风高度的质量控制.气象科学,1999,19(1):20-25.
    [56]周兵,徐海明,吴国雄,何金海.云迹风资料同化对暴雨预报影响的数值模拟.气象学报,2002,60(3):309-317.
    [57]王振会,汤达章,傅德胜.图像相关分析法判别因子的比较与实验.气象科 学,1992,12(1):72-79.
    [58]李德仁,周月琴,金为铣.摄影测量与遥感概论.北京:测绘科学出版社,2004.
    [59]陈鹰.遥感影像的数字摄影测量.上海:同济大学出版社,2003.
    [60]王之卓.摄影测量原理.武汉:武汉大学出版社,2007.
    [61]王之卓.摄影测量原理续篇.武汉:武汉大学出版社,2007.
    [62]王任享.三线阵CCD影像卫星摄影测量原理.北京:测绘科学出版社,2004.
    [63]钱曾波,刘静宇,肖国超.航天摄影测量.北京:解放军出版社,1992.
    [64]何辉明,胡伍生,王克宇.摄影测量光束法加密精度的分析.测绘通报,2004,2:13-15.
    [65]周治雄,王亚毛.全数字摄影测量系统航测精度的分析.资源环境与工程,2007,21(2):164-166.
    [66]沈庆雄.工程摄影测量中交向摄影的精度分析.测绘科学,2009,34(3):78-80.
    [67]饶艳伟,唐新明,王华斌等.SPOT HRG影像无控制正射纠正实验与精度分析.测绘科学,2008,33(3):82-84.
    [68]张剑清,胡安文.多基线摄影测量前方交会方法及精度分析.武汉大学学报信息科学版,2007,32(10):847-851.
    [69]王建荣,王任享,胡莘等.三线阵CCD影像直接前方交会精度估算.测绘科学,2009,34(4):9-17.
    [70]胡莘,曹喜滨.三线阵立体测绘卫星的测绘精度分析.哈尔滨工业大学学报,2008,40(5):695-670.
    [71]王任享,王新义,王建荣等.嫦娥一号立体影像的摄影测量内部精度估算.测绘科学,2008,33(2):5-14.
    [72]EOS Homepage [On line]. http://eospso.gsfc.nasa.gov/.2009.7.
    [73]David J. Diner. MISR Experiment Overview.http://www.misr.jpl.nasa.gov/,2010.11.
    [74]Kevin Mueller,Michael J. Garay,Larry Di Girolamo,et. MISR Cloud Motion Vector Product Algorithm Theoretical Basis. http://www.misr.jpl.nasa.gov/.2010.7
    [75]Catherine Moroney, Kevin Mueller.MISR Data Product Specification for the MISR Level 2 Cloud Product, http://www.misr.jpl.nasa.gov/.2012.4.
    [76]Zong, J., Davies, R., Muller, J.-P., Diner, D.J., Photogrammetric retrieval of cloud advection and top height from the Multi-angle Imaging Spectroradiometer (MISR), Photogrammetric Engineering and Remote Sensing, Volume 68, Number 8,821-829, 2002.
    [77]David J. Diner,Roger Davies et al. MISR Level 2 Cloud Detection and Classification Algorithm Theoretical Basis.http://www.misr.jpl.nasa.gov/.2011.12.
    [78]AKOS HORVATH, ROGER DAVIES Feasibility and Error Analysis of Cloud Motion Wind Extraction from Near-Simultaneous Multiangle MISR Measurements,J.Atmos.Oceanic Technol,18,591-608,2001.
    [79]Kevin Mueller, Catherine Moroney, Veljko Jovanovic.MISR Level 2 Cloud Products Quality Statement, http://eosweb.larc.nasa.gov/PRODOCS/misr/Quality_Summaries/L2TC_Cloud_Products_20120221.html,2012.2.
    [80]Davies, R., Horvath, A., Moroney, C., Zhang, B.L., Zhu, Y.Q., Cloud motion vectors from MISR using sub-pixel enhancements, Volume 107, Special Issue, doi:10.1016/j.rse.2006.09.023,2007.
    [81]Lonitz, K., and A. Horvath, Comparison of MISR and Meteosat-9 cloud-motion vectors. Journal of Geophysical Research, Volume 116, D24202, doi:10.1029/2011JD016047, 2011
    [82]Garay, M.J, de Szoeke, S.P., Moroney, C.M., Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. Journal of Geophysical Research, Volume 113, D18204, doi:10.1029/2008 JD009975,2008.
    [83]Marchand, R.T., Ackerman, T.P., Moroney, C., An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers. Journal of Geophysical Research, Volume 112, D06204, doi:10.1029/2006JD007091,2007.
    [84]Moroney, C., Davies, R., Muller, J.-P., Operational Retrieval of cloud-top heights using MISR data. IEEE Transactions on Geoscience and Remote Sensing, Volume 40, Number 7,1532-1540,2002.
    [85]Naud, C.M., Muller, J.-P., Clothiaux, E.E., Baum, B.A., Menzel, W.P., Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Annales Geophysicae, Volume 23,2415-2424,2005.
    [86]Naud, C.M., Baum, B.A., Pavolonis, M., Heidinger, A., Frey, R., Zhang, H., Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sensing of Environment, Volume 107,200-210,2007.
    [87]Catherine Moroney, Roger Davies, Jan-Peter Muller. Operational retrieval of Cloud-Top Heights Using MISR Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.2002,40(7):1532-1540.
    [88]METI,NASA.ASTER GDEM Readme File-Aster GDEM Version 1.http://www.ersdac.or.jp/GDEM/E/image/asterGDEMReadme_Ev1.0.pdf,2010.5.
    [89]Aster GDEM Validation Team, METI/ERSAC,NASA/LPDAAC,USGS.Aster GDEM Validation summary report, http://www.ersdac.or.jp/GDEM/E/image/asterGDEM_Validation summary report_Verl. pdf,2010.4.
    [90]Amnon Krupnik. Accuracy Assessment of Automatically Derived Digital Elevation Models From Spot Images.Photogrammetric Engineering and Remote Sensing,2000,(8):1017-1023.
    [91]张祖勋,张剑清.数字摄影测量学.武汉:武汉大学出版社,1997.
    [92]李德仁,周月琴,金为铣.摄影测量与遥感概论.北京:测绘科学出版社,2004.
    [93]陈希孺,王松桂.近代回归分析.合肥:安徽教育出版社,1987.
    [94]舒宁,林宗坚,陶闯.利用SPOT影像提取高程信息的研究.武汉测绘科技大学学报,1992,17(2):50-59.
    [95]黄玉琪.基于SPOT卫星1A级/1AP级影象的全数字处理技术的研究.中国人民解放军测绘学院硕士学位论文,1997.
    [96]李德仁,程家喻.SPOT影像的光束法平差.测绘学报,1985,17(3):62-170.
    [97]游扬声,王新洲.广义岭估计的直接解法.武汉大学学报信息科学版,2002,27(2):175-178.
    [98]郭海涛.基于卫星遥感影像的单片测图与修测技术的研究.中国人民解放军测绘学院硕士学位论文.2002.
    [99]郑肇葆.摄影测量中病态问题求解一数学规划在摄影测量中应用之二.测绘学报,1987,16(3):198-202.
    [100]张森林.三行线阵列扫描数据的平差方案及精度分析.武汉测绘科技大学学报,1988,13(4):60-69.
    [101]王仁享.线性阵列影像摄影测量处理(一)(空中三角测量).王仁享研究员学术论文选集,西安测绘研究所,1997,84-95.
    [102]王仁享.线性阵列影像摄影测量处理(二)(解析立体测图).王仁享研究员学术论文选 集,西安测绘研究所,1997,95-99.
    [103]王仁享.利用三线阵CCD影像恢复外方位元素.王仁享研究员学术论文选集,西安测绘研究所,1997,84-95.
    [104]崔希璋,於宗俦,陶本藻等.广义测量平差.武汉:武汉大学出版社,2009.
    [105]王树根.摄影测量原理与应用.武汉:武汉大学出版社,2009.5.
    [106]吉大纯,李学军,候金宝.影像匹配中的若干基本问题研究.计算机技术与发展,2010,20(5):246-249.
    [107]Forsyth D A, Ponce J. Computer Vision:A Modern Approach.北京:电子工业出版社,2004.
    [108]赵斐,胡莘,关泽群等.三线阵CCD影像的像点自动匹配技术研究.测绘科学,2008,33(4):12-14.
    [109]王之卓.摄影测量原理续编.武汉:武汉大学出版社,2007.5.
    [110]巩丹超.高分辨率卫星遥感立体影像处理模型与算法.解放军信息工程大学博士学位论文,2003.
    [111]盛道清.图像增强算法的研究.武汉科技大学硕士学位论文,2007.
    [112]Goodman A H, Henderson-Sellers A.Cloud detection and analysis:A review of recent progress.Atmospheric Research,1988,21:203-228.
    [113]Simpsona J J,Gobata J I.Improved cloud detection in GOES scenes over the oceans.Remote Sensing of Environment,1995,52(2):79-94.
    [114]师春香,吴蓉璋,项续康.多阈值和神经网络卫星云图自动分割实验.应用气象学报,2001,12(1):70-78.
    [115]王耀生,王燕,冯晓娟等.卫星云图的计算机分析识别.气象,1994,20(6):24-32.
    [116]马芳,张强,郭铌等.多通道卫星云图云检测方法的研究.大气科学,2007,31(1):119-128.
    [117]刘希,许健民,杜秉玉.双通道动态阈值法对GMS-5图像进行自动云检测.应用气象学报,2005,16(4):434-444.
    [118]朱小祥,孟旭,方宗义等.利用卫星资料计算云南地区云量及云特征分析.气象,1995,21(1):32-36.
    [119]丁慧珍,周绍光,马文.一种改进的灰度匹配新算法.资源环境与工程,2006,20(1):52-55.
    [120]张艳.线阵列推扫式影像的数值摄影测量出来.解放军信息工程大学硕士学位论 文,2003.
    [121]周中谟,易杰军.GPS卫星测量原理与应用.测绘出版社,1992.12.
    [122]张文煜,袁九毅.大气探测原理与方法,北京:气象出版社,2007.5.
    [123]Jones P. A.and Henderson-Sellers A.Historical records of cloudiness and sunshine in Australia. Journal of Climate.1992,5(3):260-267.
    [124]Warren, S.G., and R.M. Eastman, C.J. Hahn. A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations,1971-1996. Journal of Climate,2007,20(4):717-738.
    [125]Kuhnel, I. Spatial and temporal variations in Australo-Indonesian region cloudiness.International Journal of Climatology.1989,9(4):395-405.
    [126]Sun, B and P. Ya Groisman. Cloudiness variations over the former Soviet Union. Int. Journal of Climate,2000,20:1097-1111.
    [127]Dorota Matuszko:Cloudiness changes in Cracow in the 20th Century. International Journal of Climatology,2003,23(8):975-984.
    [128]Endo Nobuhiko, Tetsuzo Yasunari. Changes in Low Cloudiness over China between 1971 and 1996. Journal of Climate,2006,19:1204-1213.
    [129]王旻燕,王伯民ISCCP产品和我国地面观测总云量差异.应用气象学报,2009,20(4):411-418.
    [130]曹芸,何永健,邱新法等.基于地面观测资料的Modis云量产品订正.遥感学报,2012,16(2):327-344.
    [131]刘丹.云顶高度计算中气象卫星最优影像匹配技术的研究.南京信息工程大学硕士学位论文,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700