用户名: 密码: 验证码:
无线传感器网络中干扰攻击关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络(Wireless Senor Networks,WSN)具有易于部署和扩展,节点价格低廉,容错能力强等特点,能够不受时间、空间及环境等因素的限制,将监测得到的数据提供给需要的用户,成为人们获取信息的一种重要途径和手段。WSN可以广泛应用于军事、环保、医疗、日常生活及抗灾救险等多个领域,具有十分可观的应用场景,受到了学术界和工业界的高度重视。与此同时,无线媒介的开放性、广播性、动态脆弱性等特征,使得无线传感器网络面临着严重的可靠性及安全问题。特别地,干扰一直是摆在无线通信领域研究者们面前的一大难题。除了网络节点通信过程中产生的无意干扰之外,攻击者利用无线电射频设备或者被其捕获的节点发起的干扰攻击更是对无线网络通信造成严重威胁。
     我们阐述了研究无线传感器网络中干扰攻击相关问题的重要意义和面临的挑战,从攻和防两个方面综述了当前干扰攻击的研究现状和主要成果。攻主要是指干扰攻击建模与评测,当前的攻击模型只考虑了时间域上的攻击方式,缺乏空间维度上的思考。防则包含攻击的检测与抵御机制,干扰攻击的检测方法研究已相对成熟,而主动防御特别是干扰源定位研究则相对缺乏。另一方面,缺少攻防之间策略改变的内在分析。因此,针对当前已有研究成果存在的不足,分别从干扰攻击模型、干扰源定位以及干扰攻防博弈三个方面,展开了研究。
     已有的干扰模型都是在时间的维度考虑如何设计一个有效的干扰攻击方式或手段,包括已提出的持续性干扰、欺骗性干扰、随机性干扰以及按需干扰等。但在面向应用的传感器网络中,位置信息至关重要。我们提出如下问题:“在有k个干扰源的情形中,攻击者如何放置这些干扰源,以使网络中节点与节点之间的连通度最小?”。我们将上述问题归纳为k-干扰源部署问题(k-Jammer DeploymentProblem,k-JDP)。据我们可知,这是在传感器网络领域,第一次提出该问题。首先,从网络节点之间连通度的角度出发,将k-JDP形式化,并证明了该问题即使在理想情况下(攻击者掌握了传感器网络全局拓扑信息),依然是NP完全的。第二,为了试图求出k-JDP的最优解,给出了该问题的整数线性规划模型,并证明了其表示的正确性;第三,为了计算的高效性,提出了一种基于独立集相关理论的启发式算法,并通过模拟实验证明了其有效性。
     针对已有干扰源定位算法定位准确度不足,计算开销过大等问题,提出一种测距无关的干扰源定位算法CJ(Catch the Jammer)。CJ算法不依赖于节点的测距信息,如接收到的信号强度值(Received Signal Strength,RSS)以及到达时间差(Time Difference of Arrival,TDOA)等,只需要节点的位置信息,通过定义好的干扰区域边缘内的节点之间的相互协作,借助于计算几何中凸壳及最小圆覆盖理论共同实现攻击者的定位。我们证明了算法的正确性,分析了算法的复杂度,通过模拟实验验证了算法的有效性。
     基于RSS定位算法实现的简单性和低成本,使其在传感器网络中得到了广泛应用。但传统的基于RSS的定位算法不能用于干扰攻击环境下。这是因为,在传播损耗模型中,节点之间的距离由RSS值、传输功率和路径损耗参数等值决定,且呈指数关系;不同于一般的传感器节点定位,干扰环境下干扰源不会同参照节点协同合作,因此RSS定位算法所依赖的信号传播模型无法直接应用到干扰源定位中。针对上述问题,提出一种测距参数可消减的干扰源定位算法。首先利用线性回归理论,将经典信号传播模型中的距离(Distance)与RSS的关系线性化,通过公式推导得出关于干扰源位置的矩阵方程,在此矩阵方程中,干扰源的位置估计不再需要传输功率以及路径损失指数等参数。我们进一步证明了在有4个不同的线性无关的RSS值的条件下,线性化参数亦不影响干扰源定位的准确性。最后通过模拟实验证明了所提算法的有效性。
     在传感器网络中,已有的与干扰攻击问题相关的研究成果主要集中在攻和防两个相对独立的研究点上。在攻击环境下,干扰者的“攻”与网络或网络节点的“防”之间究竟是如何交互进行的,即双方“攻”和“防”策略选择的改变是基于一个什么样的理论前提?网络在干扰攻击环境下,是否存在稳定状态?以上问题的提出,对于了解网络攻防的内在机理,分析攻击者的攻击策略以及网络本身的防守策略都具有重要的意义。基于以上分析,我们将一个攻击者和n个网络节点之间的攻防问题形式化为具有(n+1)个参与人参与的有限非合作博弈。网络节点的目的则是在综合考虑节点间干扰和面临攻击的前提下,最优化自己的支付;而攻击者则尽可能的破坏网络性能并同时最小化能耗。根据相关的博弈理论,得出形式化后的(n+1)有限非合作博弈存在混合策略纳什均衡(mixed strategy Nashequilibrium,MSNE)。为了找出MSNE,引入虚拟行动学习模型,并通过模拟实验验证了其有效性。
Holding the features of easy-to-deploy, low-cost, high-resilience andgood-scalability, Wireless sensor networks (WSNs) can been widely used in manyapplication areas, such as military affairs, environmental protection, health cares, humanlife, disaster salvage. Therefore, WSNs have attracted people's attention from bothindustry and academia. In WSNs, the data transmitted by the sensing nodes are providedfor the demanding user, regardless of time, space and environmental changes. And thishas become one of most important ways to render the information for the human people.At the same time, however, owning to the characteristics of openness, broadcasting anddynamic vulnerability, WSNs have to be forced to face the problem of reliability andsecurity. Specifically, the interference has been always a big problem in the field ofwireless communication. Besides the unintended interference induced by thecommunication among the normal sensor nodes, the intended interference, known as thejamming attack which is launched by the attacker through emitting the radio orcomprising the normal sensing nodes, is a great threat to the security of the wirelesscommunication.
     In our thesis, we show the importance of studying the issues of jamming attack andthe challenges we have to face. And we survey the state-of-the-art about the jammingattacks. The issues of jamming attack can be classified into two categories: attacks andcountermeasures. On behalf of attacking, it mainly concerns about the modeling ofjamming attack and its metrics of efficiences. In the existing work, the jamming modelswere proposed from the time domain, and there is no consideration from the spacialperspective. On behalf of countermeasures, the detection and defense mechanisumshave been proposed. In the existing work, the detection methods have been studied well.However, few works have been done on the issue of active defense, especially thejammer localization. In order to resolve the shortcomings of the existing work, we studythe issues of jammer localization, jamming attack models and game-theory-based attack&countermeasures, respectively.
     Classical jamming attack models in WSNs in the time domain have been proposed,such as constant jammer, deceptive jammer, random jammer, and reactive jammer. Inthe application-oriented sensor networks, the location information of sensor nodes arequite important. We consider a new problem: given k jammers, how does the attackerminimize the pair-wise connectivity among the nodes in a Wireless Sensor Network(WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best ofour knowledge, this is the first attempt at considering the position-critical jammingattack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situationwhere the attacker has full knowledge of the topology information of sensor network.Second, we propose a mathematical formulation based on Integer Programming (IP)model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP,and compare it with the IP model. Numerical results show that our heuristic algorithm iscomputationally efficient.
     In the existing work on jammer localization, the accuracy was not guaranteed, andthe computation overhead was too high. Aiming to solve such kind of shortcomings, wepropose Catch the Jammer (CJ), an efficient jammer localization scheme where sensornodes collaborate with each other to compute the coordinates of the jamming attacker.As opposed to existing localization techniques which locate jamming attacker based onthe characteristics of the received signal, CJ only requires victim nodes' locationinformation. Nodes located at the border of the jammed area will be able to exchangetheir location information and determine the jammer's coordinates thanks to the use ofdifferent computational geometry algorithms. Nodes first compute a convex hull for theset of victim nodes based on their coordinates. They further extract the correspondingsmallest circle that covers all nodes in the convex hull in order to achieve a goodaccuracy on the coordinates of the adversary. The correctness of our proposedlocalization scheme is verified. The simulation results show that CJ outperforms mostof the existing localization algorithms depending on the variation of the jammer'stransmission range, the sensitivity to node density, and/or the position of the jammer.
     Thanks to the simplicity and low-cost, the Received-Signal-Strength (RSS)-basedlocalization algorithms have been widely adopted in wireless sensor networks. However,existing RSS-based localization scheme can not be directly used in the jamming attackcircumstances. The reason is that, in the radio propagation model, the distance betweensensor nodes is determined by the value of RSS, the transmitting power and the pathloss exponent parameters, etc. Opposed to normal sensor localization, the attacker or thejammer will not collaborate with other legitimate sensor nodes such that the parametersof propagation model can not be rendered. In order to solve the problem aforementioned,we propose a range-based jammer localization scheme, in which the parameters of radiopropagation model can be cancelled. We first linearly approximate the exponentialrelationship between RSS and distance, and this makes the jammer localization beindependent on the parameters of radio propagation model. Experimental resultsindicate the feasibility and efficiency of our proposed scheme if four or more RSSmeasurements can be provided by different sensing nodes.
     The existing research results on issues of jamming attacks in wireless sensornetworks are mainly concerned with two difference independent parts: attack andcountermeasures. In the jamming circumstances, how do the attacker and the network (sensor nodes) interact with each other? What's the theoritical base of the changing ofstrategies for both the attacker and the network? Is there a stable state in such a jammingattack situation? It is of great importance to resolve the questions aforementioned,because it will help us to understand the essence of network attack and correspondingcountermeasures. Based on the analysis, we formalize one attacker and the network of nsensor nodes as a (n+1) player finite non-cooperative game. The goal of sensor nodes isto maximize the utility function that captures both their mutual interference and thesecurity of the chosen path for data forwarding. At the same time, the adversary or theattacker tries to reduce the overall networks' capacity by choosing whether to jammingor eavesdropping, or use both of these two strategies. Based on knowledge of gametheory, we conclude that there is mixed strategy Nash equilibrium (MSNE) for thisgame. In order to find such MSNE, the fictitious play learning model is introduced, andthrough the simulation, we verified its efficiency.
引文
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensornetworks [J], IEEE Communications Magazine, vol.40, no.8, pp.102~114,2002.
    [2]任丰原,黄海宁,林闯,无线传感器网络[J],软件学报, vol.14, no.7, pp.1282~1291,2003.
    [3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensornetworks: a survey [J], Computer Networks, vol.38, no.12, pp.393~422,2003.
    [4] J. Walrand and P. Varaiya, High-Performance Communication Networks2ndEdition [M]. Morgan Kaufmann,2000.
    [5] ALERT, http://www.altersystem.org [EB/OL], Online,2012.
    [6] P. Bonnet, J. Gehrke, and P. Seshadri, Querying the physical world [J], IEEEPersonal Communication, vol.7, vol.5, pp.10~15,2000.
    [7] N. Noury, T. Herve, V. Rialle, G. Virone, and E. Mercier, Monitoring behavior inhome using a smart fall sensor [C], in Proc. IEEE-EMBS Special TopicConference on Microtechnologies in Medicine and Biology, Lyon, IEEEComputer Society,2000, pp.607~610.
    [8] Sensor Webs, http://sensorwebs.jpl.nasa.gov [EB/OL], Online,2012.
    [9] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,Physical layer driven protocol and algorithm design for energy-efficient wirelesssensor networks [C], in Proc. ACM MobiCom’10, Rome, ACM Press,2001, pp.272~286.
    [10] Yunhao Liu, Mo Li, Iso-Map: Energy-Efficient Contour Mapping in WirelessSensor Networks [C], in Proc. IEEE ICDCS, June2007.
    [11] Mo Li, Yunhao Liu, Underground Structure Monitoring with Wireless SensorNetworks [C], in Proc. ACM/IEEE IPSN, April2007.
    [12] BWRC Group, http://bwrc.eecs.berkeley.edu [EB/OL], Online,2012.
    [13] WEBS Project, http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/Default.htm
    [EB/OL], Online,2012.
    [14] NMS Project, http://nms.csail.mit.edu [EB/OL], Online,2012.
    [15] μAMPS Project, http://www-mtl.mit.edu/researchgroups/icsystems/uamps/
    [EB/OL], Online,2012.
    [16] WSNL Lab, http://wsnl.stanford.edu [EB/OL], Online,2012.
    [17] SING Lab, http://sing.stanford.edu [EB/OL], Online,2012.
    [18] Firefly Project, http://www.ece.cmu.edu/firefly [EB/OL], Online,2012.
    [19] http://fiji.eecs.harvard.edu [EB/OL], Online,2012.
    [20] OSL Project, http://osl.cs.uiuc.edu [EB/OL], Online,2012.
    [21] CENS Lab, http://research.cens.ucla.edu [EB/OL], Online,2012.
    [22] ANRG Group, http://anrg.usc.edu [EB/OL], Online,2012.
    [23] ENALAB Lab, http://www.eng.yale.edu/enalab/[EB/OL], Online,2012.
    [24] MESS Group, http://www-users.cs.umn.edu/~tianhe/MESS/[EB/OL], Online,2012.
    [25] BWN Lab, http://www.ece.gatech.edu/research/labs/bwn/WMSN [EB/OL],Online,2012.
    [26] IEDAS Lab, http://engineering.purdue.edu/IEDAS/[EB/OL], Online,2012.
    [27] ExScal Project, http://cast.cse.ohio-state.edu/exscal/[EB/OL], Online,2012.
    [28] WINGS Lab, http://www.wings.cs.sunysb.edu/[EB/OL], Online,2012.
    [29] InSec Group, http://www.dcg.ethz.ch/[EB/OL], Online,2012.
    [30] EPFL Lab, http://lca.epfl.ch/[EB/OL], Online,2012.
    [31] IBM Group, http://www.zuich.ibm.com/sys/commnication/sensors.html [EB/OL],Online,2012.
    [32] Intel Group, http://www.intel.com/research/exploratory/wireless_sensors.htm
    [EB/OL], Online,2012.
    [33] Microsoft Group, http://research.microsoft.com/en-us/groups/nec [EB/OL],Online,2012.
    [34]孙利民,李建中,陈渝,朱红松,无线传感器网络[M],清华大学出版社,2005.
    [35]崔莉,鞠海玲,苗勇,无线传感器网络研究进展[J],计算机研究与发展, vol.42, no.1, pp.163-174,2005.
    [36]李建中,李金宝,石胜飞,传感器网络及其数据管理的概念、问题与进展[J],软件学报, vol.14, no.10, pp.1717-1727,2003.
    [37] Y. Cai, W. Lou, M. Li, X. Y. Li, Target-oriented schedulig in directional sensornetworks [C], in Proc. IEEE INFOCOM,2007.
    [38]刘永强,严伟,代亚非,一种无线网络路径容量分析模型[J],软件学报, vol.17, no.4, pp.854-859,2005.
    [39] X. Wu, G. Chen, S. Das, On the energy hole problem of nonuniform nodedistribution in wireless sensor networks [C], in Proc. IEEE MASS,2006.
    [40]陈颖文,无线传感器网络低能耗数据查询关键技术研究[M],国防科技大学,2007.
    [41]赵鑫,面向应用的无线传感器网络广播认证协议研究[M],国防科技大学,2010.
    [42]董德尊,无线传感器网络拓扑识别与构建技术研究[M],国防科技大学,2010.
    [43] Z. Zheng, Z. Wu, H. Lin, K. Zheng, Wdm: An energy-efficient multi-hop routingalgorithm for wireless sensor networks [C], in Proc. International Conference onComputational Science,2005.
    [44]沈波,张世永,钟亦平,无线传感器网络分簇路由协议[J],软件学报, vol.1,no.7, pp.1588-1600,2006.
    [45]林亚平,王雷,陈宇,传感器网络中一种分布式数据汇聚层次路由算法[J],电子学报, vol.32, no.11, pp.1801-1805,2004.
    [46]马华东,陶丹,多媒体传感器网络及其研究进展[J],软件学报, vol.17, no.9,pp.2013-2028,2006.
    [47]任彦,张思东,张宏科,无线传感器网络中覆盖控制理论与算法[J],软件学报, vol.17, no.3, pp.422-433,2006.
    [48] MICA系列节点, http://www.xbow.com/[EB/OL], Online,2012.
    [49] J. Polastre, R. Szewczyk, D.Culler, Telos: Enabling untra–low power wirelessresearch [C], in Proc. ACM IPSN,2005.
    [50] Mote系列节点, http://www.intel.com/research/exploratory/motes.htm [EB/OL],Online,2012.
    [51] TinyOS操作系统, http://www.tinyos.net/[EB/OL], Online,2012.
    [52] SOS应用, http://nesl.ee.ucla.edu/projects/sos/[EB/OL], Online,2012.
    [53] Senspire系统, http://eagle.zju.edu.cn/home/eos/senspire [EB/OL] Online,2012.
    [54] EZ系列节点, http://www.easinet.cn/cn/products.htm [EB/OL] Online,2012.
    [55] Smart Dust项目, http://robotics.eecs.berkeley.edu/~pister/SmartDust/[EB/OL]Online,2012.
    [56] J. R. Polastre and D. Culler, Design and implementation of wireless sensornetworks for habit monitoring [M], University of California at Berkeley,2003.
    [57] Alert系统, http://www.alertsystems.org/[EB/OL], Online,2012.
    [58] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan,and D. Estrin, A wireless sensor network for structural monitoring [C], in Proc.ACM Sensys,2004.
    [59] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, Pipenet: A wirelesssensor network for pipeline monitoring [C], in Proc. ACM/IEEE IPSN,2007.
    [60] R. Musaloiu-E, A. Terzis, K. Szlavecz, A. Szalay, J. Cogan and J. Gray, Lifeunder your feet: A wireless soil ecology sensor network [C], in Proc. IEEEWorkshop on Embedded Networked Sensors,2006.
    [61] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong, Passive diagnosis for wirelesssensor networks [C], in Proc. ACM SenSys,2008.
    [62] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Y. Li, and G. Dai. Canopy closureestimates with greenorbs: Sustainable sensing in the forest [C], in Proc. ACMSenSys,2009.
    [63] J. Deng, R. Han, and S. Mishra, Security Support for In-Network Processing inWireless Sensro Networks [C], in Proc. ACM Workshop on Security of Ad Hocand Sensor Networks,2003.
    [64] R. Blom, An Optimal Class of Symmetric Key Generation Systems [C], in Proc.Eurocrypt, Lecture Notes in Computer Science, Springer-Verlag,1985, pp.334-338.
    [65] D. Liu, and P. Ning, Efficient Distribution of Key Chain Commitments forBroad-cast Authentication in Distributed Sensor Networks [C], in Proc.Symposium on Network and Distributed System Security,2003, pp.263-276.
    [66] C. Blundo, Perfectly Secure Key Distribution for Dynamic Conferences [C], inProc. CRYPTO, Lecture Notes in Computer Science, Springer-Verlag,1992, pp.471-486.
    [67] Y. Zhou and Y. Fang, BABRA: Batch-Based Broadcast Authentication inWireless Sensor Networks [C], in Proc.49th annual IEEE GlobalTelecommunication Conference,2006.
    [68] L. Eschenauer and V. Gligor, A Key Management Scheme for Distributed SensorNetworks [C], in Proc.9th ACM Conference on Computer and CommunicationSecurity,2002, pp.41-47.
    [69] A. Perrig, R. Szewczyk, and V. Wen, SPINS: Security Protocols for SensorNetworks [J], Wireless Networks, vol.8, pp.521-534,2002.
    [70] H. Chan, A. Perrig, and D. Song, Random Key Predistribution Schemes forSensor Networks [C], in Proc. IEEE Symposium on Security and Privacy,2003,pp.197-213
    [71] S. M. Chang, S. Shieth, W. W. Lin, An efficient broadcast authentication schemesin wireless sensor networks [C], in Proc. AsiaCCS,2006.
    [72] J. Lee and D. R. Stinson, A survey: security in wireless sensor networks [C], inProc. CCS,2010.
    [73] F. Hess, Efficient Identity-based Signature Schemes based on Pairings [C], inProc.9th Annual International Workshop on Selected Areas in Cryptography,2002.
    [74] Y. Zhou and Y. Fang, A scalable key agreement scheme for large scale networks
    [C], in Proc. IEEE International Conference on Networking, Sensing and Control,2006.
    [75] K. Ren, On Broadcast Authentication in Wireless Sensor Networks [C], in Proc.International conference on wireless algorithms, systems and applications,2006.
    [76] D Liu and P. Ning, Location-based pairwise key establishments for relativelystatic sensor networks [C], in Proc. SASN’03,2003.
    [77] C. Karlof, N. Sastry and D. Wagner, TinySec: A link layer security architecturefor wireless sensor networks [C], in Proc. ACM conference on embeddednetworked sensor systems,2004,162-175.
    [78] Y. Zhou, Y. Zhang and Y. Fang, Key establishment in sensor networks based ontriangle grid deployment model [C], in Proc. IEEE Military Communications,2005.
    [79] H. Chan, On the Distribution and Revocation of Cryptographic Keys in SensorNetworks [J], IEEE Transactions on Dependable and Secure Computing, vol.2,no.3, pp.233-247,2005.
    [80] D. Liu, P. Ning, and W. Du, Group-based key pre-distribution in wireless sensornetworks [C], in Proc.4th ACM Workshop on Wireless Security,2005.
    [81] S. Capkun and J. P. Hubaux, Secure positioning of wireless devices withapplications to sensor networks [C], in Proc.24th annaula IEEE computer andcommunications (Infocom’05),2005.
    [82] K. Ren, W. Lou and Y. Zhang, Multi-user broadcast authentication in wirelesssensor netwoks [C], in Proc. fouth annual IEEE Conference on Sensor, Mesh andAd Hoc communications and networks (Secon’07),2007.
    [83] J. Deng, R. Han, S. Mishra, A performance evaluation of intrusion-tolerantrouting in wireless sensor networks [C], in Proc.2nd IEEE internationalworkshop on information processing in sensor networks,2003.
    [84] D. Wagner, Resilient Aggregation in Sensor Networks [C], in Proc. SASN’04,2004.
    [85] Y. Zhang, et al., Secure Localization and Authentication in Ultra-WidebandSensor Networks [J], IEEE Journal on Selected Area Communications, vol.24,no.4,pp.829-835,2006.
    [86] M. Manzo, T. Roosta, and S. Sastry, Time Synchronization Attacks in SensroNetworks [C], in Proc.3rd ACM Workshop on Security of Ad Hoc and SensorNetworks,2005.
    [87] P. E. Lanigan, R. Gandhi, and P. Narasimhan, Sluice: Secure Dissmenation ofCode Updates in Sensor Networks [C], in Proc. International Conference onDistributed Computing Systems,2006, pp.53-63.
    [88] B. Parno, A. Perrig, and V. Gligor, Distribued Detection of Node ReplicationAttacks in Sensor Networks [C], in Proc. IEEE Symp. Security and Privacy,2005.
    [89] J. Newsome, et al., The Sybil Attack in Sensor Networks: Analysis and Defenses
    [C], in Proc.3rd IEEE Symp. Information Processing in Sensor Networks (IPSN),2004..
    [90] G. Wang, On supporting distributed collaboration in sensor networks [C], in Proc.Milcom’03,2003.
    [91] Y. Hu, A. Perrig, and D. B. Johnson, Packet Leashes: A Defense againstWormhole Attacks in Wireless Networks [C], in Proc.22nd Annual JointConference on Computer and Communications (Infocom’03),2003.
    [92] I. Aad, J. P. Hubaux, and E. Knightly, Denial of Service Resilience in Ad HocNetworks [C], in Proc.10th Annual ACM Internatonal Conference on MobileComputing and Networking (Mobiocm’04),2004.
    [93] United States Department of Defense, Joint Vision2020,http://www.dtic,mil/doctrine/jel/jfq_pubs/1225.pdf [EB/OL], Online,2000.
    [94] D. S. ALberts, J. J. Garstka, F. P. Stein, Network Centric Warfare: Developingand Leveraging Information Superiority [EB/OL],1999,http://www.dodccrp.org/files/alberts_ncw.pdf.
    [95] S. Kumar and D. Shepherd, SensIT: Sensor Information Technology for theWarfighter [C], in Proc.4th International Conference on Information Fusion,2001.
    [96]广域侦察项目, https://www.fbo.gov/?tab=documents&tabmode=form&subtab=core&.tabid=b4bebef33b4ac559de101e1831f19292[EB/OL], Online,2012
    [97] The Cooperative Engagement Capability, http://techdigest.Jhuapl.edu/td1604/aplteam.pdf [EB/OL], Online,2012.
    [98] W. Y. Xu, W. Trappe, and Y. Zhang, The feasibility of lauching and detectingjamming attacks in wireless networks [C], in Proc. ACM MobiHoc’05,2005, pp.46-57.
    [99] System Security Group, http://www.syssec.ethz.ch/[EB/OL], Online,201.
    [100] Data Analysis and Information Security (DAIS), http://www.stevens.edu/daisy/
    [EB/OL], Online,2012.
    [101] ARENA, http://arena.cse.sc.edu/doku.php/[EB/OL], Online,2012.
    [102] M. Acharya and D. Thuente, in Proc. OPNETWORK2005Conference [C],2005,http://www4.ncsu.edu/~mpachary/docs/acharya_OPNETWORK05.pdf.
    [103] K. Pelechrinis, M. Iliofotou, and P. Krishnamurthy, Denial of service attacks inwireless networks: the case of jammers [J], IEEE Communications Surveys andTutorias, vol.3, no.4, pp.1-13,2010.
    [104] G. Noubir, On connectivity in ad hoc netwoks under jamming using directionalantennas and mobility [C], Lecture Notes in Computer Science,2004, pp.521-532.DOI:10.1007/978-3-540-24643-5_17.
    [105] Y. W. Law, P. Hartel, J. D. Hartog, and P. Havinga, Link-layer jamming attackson S-MAC [C], in Proc.2nd European Workshop on WSN,2005, pp.217-225.
    [106] Y. W. Law, P. Hartel, J. D. Hartog, and P. Havinga, Energy-efficient link-layerjamming attacks against wireless sensor neworks MAC protocols [C], in Proc.3rd ACM workshop on Security of ad hoc and sensor networks,2005, pp.76-88.
    [107] A. D. Wood, J. A. Stankovic, and S. H. Son, JAM: a jammed-area mappingservice for sensor networks [C], in Proc. the24th IEEE International Real-TimeSystem Symposium,2003, pp.286-297.
    [108] T. X. Brown, J. E. James, and A. Sethi, Jamming and sensing of encryptedwireless ad hoc networks [C], in Proc. the7th ACM International Symposium onMobile Ad Hoc Networking and Computing,2006, pp.120-130.
    [109] B. O’Hara and A. I. Petrick, The IEEE802.11Handbook: A designer’scompanion [M], Standards information Network, IEEE press,1999.
    [110] M. Acharya, T. Sharma, D. Thuente, D. Sizemore, Intelligent jamming attacks in802.11b wireless networks [C], in Proc. OPNETWORK Conference,http://www4.ncsu.edu/~mpachary/docs/acharya_OPNETWORK04.pdf.
    [111] R. Gummadi, D. Wetheral, B. Greenstein, and S. Seshan, Understanding andmitigating the impact of RF interference on802.11networks [C], in Proc. ACMSIGCOMM,2007.
    [112] M. Raya, I. Aad, J. P. Hubaux, and A. EI. Fawal, DOMINO: Detecting MAClayer greedy behavior in IEEE802.11hotspots [J], IEEE Transactions on MobileComputing, vol.5, no.12, pp.1691-1705,2006.
    [113] P. Kyasanur, N. Vaidya, Selfish MAC layer misbehavior in wireless networks [J],IEEE Transactions on Mobile Computing, vol.4, no.5, pp.502-516,2005.
    [114] P. Kyasanur and N. Vaidya, Detecting and handing of MAC layer misbehavior inwireless networks [C], in Proc. International Conference on Dependable Systemsand Networks,2003, pp.173-182.
    [115] K. Pelechrinis, G. Yan, S. Eidenbenz, and S. V. Krishnamurthy, Detecting selfishexploitation of carrier sensing in802.11networks [C], in Proc. Infocom’09,2009,pp.657-665.
    [116] M. Li, I. Koutsopoulos, R. Poovendran, Optimal jamming attack strategies andnetwork defense policies in wireless sensor networks [J], IEEE Transactions onMobile Computing, vol.9, no.8, pp.1119-1133,2010.
    [117] W. Y. Xu, K. Ma, W. Trappe, and Y. Zhang, Jamming sensor networks: attackand defense strategies [J], IEEE Network, vol.20, no.3, pp.41-47,2006.
    [118] S. Radosavac, J. S. Barras, I. Koutsopoulos, A framework for MAC protocolmisbehavior detection in wireless networks [C], in Proc. the4th ACM workshopon Wireless Security (WiSe’05),2005, pp.33-42.
    [119] Intrusion Detection System in Ad Hoc and Wireless Sensor netowrks,http://en.wikipedia.org/wiki/intrusion_detection_system [EB/OL], Online,2012.
    [120] P. Yi, Y. C. Jiang, S. Y. Zhang, Y. P. Zhong, A survey of security for mobile adhoc networks [J], ACTA ELECTRONICA SINICA, vol.33, no.5, pp.893-899,2005.
    [121] O. Kachirski and R. Guha, Intrusion detection using mobile agents in wireless adhoc networks [C], in Proc. the IEEE Workshop on Knowledge Media Networking(KMN’02),2002, pp.153-160.
    [122] Y. G. Zhang and W. Lee, Intrusion detection in wireless ad hoc networks [C], inProc. the6th annual international conference on mobile computing andnetworking (Mobicom’10),2010, pp.275-283.
    [123] P. R. Ana, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H. Wong,Decentralized intrusion detection in wireless sensor networks [C], in Proc. the1stACM international workshop on Quality of Service&Security in wireless andmobile networks (Q2SWinet’05),2005, pp.16-23.
    [124] Y. Huang and W. Lee, A cooperative intrusion detection system for ad hocnetworks [C], in Proc. the1st ACM workshop on Security of ad hoc and sensornetworks (SASN’03),2003, pp.135-147.
    [125] A. Mishra, K. Nadkarni, and A. Patcha, Intrusion detection I wireless ad hocnetworks [J], IEEE Wireless Communication, vol.11, no.1, pp.48-60,2004.
    [126] V. Chatzigiannakis, G. Androulidakis, K. Pelechrinis, S. Papavassliou, and V.Maglaris, Data fusion algorithms for network anomaly detection: classificationand evaluation [C], in Proc. the Third International Conference on Networkingand Services (ICNS’07),2007, pp.50-57.
    [127] M. D. Aime, G. Calandriello, and A. Lioy, A wireless distributed intrusiondetection system and a new attack model [C], in Proc. the11th IEEE Symposiumon Computers and Communications,2006, pp.35-40.
    [128] I. Shin, Y. Shen, Y. Xuan, M. Thai, and T. Znati, Reactive jamming attacks inmulti-radio wireless sensor networks: an efficient mitigating measure byindentifying trigger nodes [C], in Proc. the2nd ACM international workshop onFoundations of wireless ad hoc and sensor networking and computing(FOWANC’09),2009, pp.87-96.
    [129] Y. Xuan, Y. Shen, I. Shin, and M. Thai, On trigger detection against reactivejamming attacks: a clique-independent set based approach [C], in Proc. theIPCCC’09,2009, pp.223-230.
    [130] M. Strasser, B. Danev, and S. Capkun, Detection of reactive jamming in sensornetworks [J], ACM Transactions on Sensor Networks, vol.7, no.2, pp.2-30,2010.
    [131] W. Y. Xu, W. Trappe, and Y. Zhang, Anti-jamming timing channels for wirelessnetworks [C], in Proc. ACM WiSec’08,2008, pp.203-213.
    [132] W. Y. Xu, W. Trappe, and Y. Zhang, Channel surfing: defending wireless sensornetworks from interference [C], in Proc. IPSN’07,2007, pp.499-508.
    [133] W. Y. Xu, W. Trappe, and Y. Zhang, Channel surfing: defending wireless sensornetworks from jamming and interference [C], in Proc. SenSys’06,2006, pp.403-404.
    [134] W. Y. Xu, T. Wood, W. Trappe, and Y. Zhang, Channel surfing and spatialretreats defenses against wireless denial of service [C], in Proc. ACM Workshopon Wireless Security,2004, pp.80-89.
    [135] V. navda, A. Bohra, S. Ganguly, and D. Rubenstein, Using channel hopping toincrease802.11resilence to jamming attacks [C], in Proc. Infocom’07,2007, pp.2526-2530.
    [136] K. Pelechrinis, C. Koufogiaannakis, S. V. Krishnamurthy, Gamming the jammer:Is frequency hopping effective [C], in Proc.7th International Symposium onModeling and Optimization in Mobile, Ad Hoc, and Wireless Networks,2009, pp.1-10.
    [137] M. Cagalj, S. Capkun, and J. P. Hubaux, Wormhole-based antijammingtechniques in sensor networks [J], IEEE Transactions on Mobile Computing, vol.6, no.1, pp.100-114.
    [138] L. Girod and D. Estrin, Robust range estimation usin acoustic and multimodalsensing [C], in Proc. of the IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS),2001, pp.159-167.
    [139] T. He, C. Huang, B. M. Bium, Range-free localization schemes for large scalesensor networks [C], in Proc. the ACM Mobicom’03,2003, p.354-365.
    [140] J. Blumenthal, R. Grossmann, F. Golatowski, Weighted centroid localization inzigbee-based sensor networks [C], in Proc. the IEEE International Symposium onIntelligent Signal Processing,2007, pp.1-6.
    [141] H. Liu, W. Xu, Y. Chen, and Z. Liu, Localizing the jammes in wireless networks
    [C], in Proc. the Percom’09,2009, pp.24-29.
    [142] Z. Liu, H. Liu, W. Xu, and Y. Chen, Wireless jammer localization by exploitingnodes’hearing ranges [C], Lecture Notes in Computer Science, vol.6131,2010,pp348-361.
    [143] K. Pelechrinis, I. Koutsopoulos, I. Broustis, Lightweight jammer localization inwireless networks: system design and implementation [C], in Proc. Globecom’09,2009, pp.204-208.
    [144] Mario Strasser, P. Christina, Srdjan Capkun, and Mario Cagalj, Jamming-resistantkey establishment using uncoordinated frequency hopping [C], in Proc. The IEEESymposium on Security and Privacy,2008, pp.64-78.
    [145] Y. Liu, N. Peng, D. Huaiyu, and A. Liu, Randomized differential DSSS: jammingresistant wireless broadcast communication [C], in Proc.29th conference oninformation communications (Infocom’10),2010, pp.695-703.
    [146] Cormen, H. Thomas, Leiserson, E. Rivest, L. Ronald, and Stein Clifford,Introduction to Algorithms (2nd Edition)[M], MIT Press and McGraw-Hill,2001.
    [147] P. Zhou, Algorithms for some problems in geometric covering [J], Journal ofBeijing Institute of Technology, vol.15, no.5, pp.78-83,1995.
    [148] P. Bahl and V. N. Padmanabhan, RADAR: An in-building RF-based user locationand tracking system [C], in Proc.19th conference on informationcommunications (Infocom’00),2000, pp.775-784.
    [149] F. Gustafsson, and F. Gunnarsson, Positioning using time-difference of arrivalmeasurements [C], in Proc. ICASSP’03,2003, pp.553-556.
    [150]多边测量技术, http://en.wikipedia.org/wiki/Multilateration [EB/OL], Online,2012.
    [151] K. Wovach, D. Puccinelli, et al., Sensorless sensing in Wireless Networks:Implementation and Measurements [C], in Proc. WiNMee’06,2006.
    [152] C. Krishna, P. I. Anand, and N. P. Venkata, Indoor location without the pain [C],in Proc. Mobicom’10,2010, pp.173-184.
    [153] N. Ptwari, A. Hero, M. Pekins, N. S. Correal, and R. Dea, Relative locationestimation in wireless sensor networks [J], IEEE Transactions on Signal Process,2003.
    [154] K-Independent Set Problem,[EB/OL], Online,2012,http://www.cs.cmu.edu/afs/cs/academic/class/15499-s09/www/scribe/lec14/lec14.pdf
    [155]王则柯,李杰,博弈论教程[M],中国人民大学出版社,2010.
    [156]丁占文,蔡超英,杨宏林,蒋书敏,不完全博弈学习过程的虚拟行动规则[J],运筹学学报, vol.14, no.3, pp.91-100,2010.
    [157] S. Khattab, Daniel Mosse, and Rami Melhem, Jamming mitigation in multi-radiowireless networks: reactive or proactive [C], in Proc. Securecomm’08,2008, pp.241-250.
    [158] Y. Zhu and Y. Jian, A game-theoretic approach to anti-jamming in sensornetworks [C], in Proc. of ICPDS’10,2010, pp.617-624.
    [159] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficientcommunication protocol for wireless microsensor networks [C], in Proc. HuwaiiInternational Conference on System Sciences,2000.
    [160] W. Saad, Q. Zhu, T. Basar, Z. Han, and A. Hjorungnes, Hierarchical networkformulation games in the uplink of multi-hop wireless neworks [C], in Proc.Globlecom’09,2009.
    [161] T. Basar and G. J. Olsder, Dynamic noncooperative game theory [M], SIAMSeries in Classics in Applied Mathematics,2009.
    [162] M. Kohvakka, J. Suhonen, M. Kuorilehto, et al., Energy-efficient neighbordiscoveray protocol for mobile wireless sensor networks [J], Ad Hoc Networks,vol.7, no.1, pp.24-41,2009.
    [163]陈开周,徐亚平,几个NP完全问题的整数规划模型[J],西安电子科技大学学报, vol. A12, pp.70-74,1993.
    [164] D. Fudenberg, and D. K. Levine, The theory of learning in games [M], Cambridge,MA, USA, MIT Press,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700