用户名: 密码: 验证码:
Sema4C通过介导血管新生和巨噬细胞募集调控肿瘤血管生成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     乳腺癌是女性最常见的恶性肿瘤之一,据资料统计,发病率占全身各种恶性肿瘤的7%-10%,仅次于宫颈癌,但近年来有超过子宫颈癌的倾向,并呈逐年上升趋势。乳腺周围淋巴管网丰富,其主要转移途径为局部扩散、淋巴转移和血运转移。以往认为血运转移多发生在晚期,这一概念已被否定。研究发现有些早期乳腺癌已有血运转移。癌细胞可经淋巴途径进入静脉,也可直接侵入血循环而致远处转移。最常见的远处转移依次为肺、骨、肝。是否转移在很大程度上影响着患者术后的生存质量,因此,探讨乳腺癌通过血运转移的机制,寻找有效的分子治疗靶标,抑制乳腺癌通过血运转移,成为目前国内外分子肿瘤学研究热点。肿瘤的生长高度依赖于它的血管供应。然而,肿瘤生长需要的养分和氧气往往超过现有脉管系统为它供给的能力。因此,肿瘤的持续生长需要新的血管。这种实体肿瘤诱导的血管生成包括两个相辅相成的过程:发芽血管生成和血管新生。发芽血管生成是局部反应,涉及现有的血管。血管新生,是通过动员和募集骨髓来源细胞形成新的血管。实验室前期研究工作(激光捕获显微切割技术和生物芯片分析)获得乳腺癌组织与正常乳腺组织之间淋巴内皮细胞差异表达的基因Sema4C,并在多种癌组织和对应正常组织中检测Sema4C的表达。本研究旨在探讨Sema4C在多种体外肿瘤细胞系和体内乳腺癌组织中的表达情况,及其在肿瘤生长和肿瘤血管生成中的作用。基于Sema4C在乳腺癌组织中表达异于正常乳腺组织,从而影响乳腺癌微环境而促进肿瘤血管新生和肿瘤生长,促进肿瘤血运转移,因此,通过药物或者遗传手段控制Sema4C功能或其调节通路,将是一个振奋人心的抗乳腺癌生长和血运转移的分子治疗靶点。
     方法
     收集27株肿瘤细胞系及2株正常永生化细胞系,应用Trizol法抽提总mRNA,荧光实时定量PCR法检测Sema4C的表达;免疫组化EnvisionTM二步法及半定量分析方法检测乳腺癌150例,乳腺增生组织10例中Sema4C的表达,并进行相关临床病理因素分析;采用慢病毒基因干预技术,转染MDA-MB-231细胞,流式筛选后获得带有红色荧光(RFP)稳定封闭SEMA4C基因的细胞株和对照细胞株,检测这两株细胞在裸鼠体内的生长情况;应用MTT法检测两株细胞的生长情况;应用PI染色流式细胞术检测封闭SEMA4C后细胞周期的变化;收集两株细胞上清,应用Transwell体外运动实验检测肿瘤上清对血管内皮细胞和巨噬细胞的趋化;应用三维培养试验观察肿瘤细胞上清对血管内皮细胞形成管样结构能力的改变;将两株细胞上清经RayBiotech细胞因子抗体芯片筛选调控血管生成的细胞因子。
     结果
     1. Sema4C在29株细胞系中普遍表达,但在肿瘤细胞中的表达普遍高于正常永生化细胞;在上皮性来源的肿瘤细胞株中,侵袭转移能力强的细胞中Sema4C的表达高于侵袭转移能力弱的细胞。
     2.免疫组化结果提示乳腺癌中Sema4C的表达高于正常乳腺和乳腺良性病变;并且与肿瘤血管密度高度相关。
     3.实时定量PCR和Western blot结果显示,慢病毒转染的细胞株封闭SEMA4C基因的效果稳定,动物体内试验发现,封闭掉SEMA4C后的瘤体生长慢,体积小,瘤周和瘤内血管密度低,巨噬细胞减少,远处转移少。
     4.MTT试验结果表明封闭SEMA4C后的MDA-MB-231细胞较对照生长速度明显减慢,光学显微镜下发下细胞形态发生变化,细胞变的肥大、核大、细胞质变少并有空泡形成;PI染色流式细胞术试验结果提示封闭SEMA4C后的细胞出现G2/M期细胞阻滞,Annexin V-FITC/PI-PE细胞凋亡染色结果无统计学差异,但β-半乳糖苷酶染色提示细胞发生衰老。
     5.利用人淋巴细胞分离液分离外周血单核细胞,经GM-CSF和IL-4刺激后转化为巨噬细胞,Transwell体外实验提示封闭SEMA4C后的MDA-MB-231细胞上清趋化血管内皮细胞HUVEC和巨噬细胞能力减弱,三维培养试验证明封闭SEMA4C后的231细胞上清减弱了HUVEC的成管能力。
     6.收集封闭SEMA4C后的MDA-MB-231细胞和对照MDA-MB-231上清经RayBiotech细胞因子抗体芯片分析发现,封闭SEMA4C后的MDA-MB-231细胞上清中的Angiogenin和CSF-1分泌减少,差异具有统计学意义。
     结论
     在细胞水平,Sema4C在肿瘤细胞系中表达普遍高于正常细胞系,特别是在乳腺癌中它的表达水平与肿瘤的转移潜能成正比;在组织水平,Sema4C在乳腺癌中的表达高于正常乳腺组织和乳腺良性病变,并且与肿瘤血管密度高度相关。
     试验证实,Sema4C通过调控乳腺癌肿瘤细胞自身生长和肿瘤微环境中Angiogenin和CSF-1的表达来调控乳腺癌生长、血管生成、巨噬细胞募集和远处转移。
     综上所述,首次发现Sema4C在乳腺癌组织中高表达与肿瘤血管密度高度相关,并且抵抗乳腺癌细胞衰老,促进乳腺癌微环境中Angiogenin和CSF-1分泌来促进肿瘤血管新生和血运转移。因此,Sema4C是一个振奋人心的抗乳腺癌生长和血运转移的分子靶点。
Background and Objective
     Breast cancer is the most common malignant tumor in women. According to data about malignant tumor incidences, breast cancer consists of approximately7-10%of total tumor cases, ranking only beneath that of cervical cancer; however, there is an increasing tendency for breast cancer to surpass cervical cancer in the occurrence rate in recent years. The notion that metastasis of tumor cells via vessels has been revised, which is substituted with the finding that breast cancer cell can spread through vascular pathway at the early stage of the cancer development. At their entrance into vessels, tumor cell can subsequently translocate to lung, bone marrow, liver, etc. Since metastasis is a main determinant factor in the diagnosis of tumor patients, finding the efficient therapeutic target for inhibiting metastasis becomes the most interest task for researchers in this prominent field. Tumor growth is highly dependent on its vascular supply. However, tumor growth often exceeds the ability of the existing vasculature to supply it with nutrients and oxygen. Continued tumor growth therefore requires new blood vessels. This induction of angiogenesis by solid tumors encompasses two complementary processes:sprouting angiogenesis and neovascularization. Sprouting angiogenesis is a local response, involving existing blood vessels. Neovascularization, or vasculogenesis, is the de novo formation of new blood vessels through the mobilization and recruitment of bone marrow-derived cells (BMDCs). Our previous data, acquired from laser scanning microscopy and bio-CHIP analysis, showed that the Sema4C gene expression in breast cancer tissues differs from that in normal breast tissues. In this study, the author aimed to investigate the expression pattern of Sema4C in various tumor cell lines and breast cancer tissues, as well as its role in promoting tumor vasculargenesis. In view of the probable role of Sema4C in affecting the tumor vasculargenesis and tumor development, manipulation of a certain target for modulating the Sema4C function will be of considerable interest in the perspective of finding a therapeutic method.
     Method
     The author tested the Sema4C mRNA expression levels in as much as30tumor cell lines and two other immortalized primary cell lines. The total RNA was extracted using Trizol, and real-time RT-PCR was utilized to measure the mRNA levels of Sema4C. Histopathology based on EnvisionTM two-step method was conducted to detect Sema4C expression in150breast tumor samples and10hypertrophy breast samples in a semi-quantification way. The Sema4C specific shRNA lentiviral particles were used to infect MDA-MB-231cells followed by selection of cells expressing vector RFP, and the shRNA-transduced MDA-MB-231cells were studied for their proliferation using MTT assay in vitro and growth in nude mice in vivo. The alterations in cell cycle reflected by PI staining after depletion of Sema4C was also studied using flow cytometry. A transwell assay was utilized to study the endothelial cell and the macrophage cell migration after stimulated by tumor cell culture supernatant. Supernatants from the two cell lines were selected by the antibody-CHIP for absorption of cytokines (RayBiotech) that can promote vasculargenesis.
     Results
     1) Sema4C is expressed in the27tumor cell lines. In tumor cells the expression of Sema4C is higher than that in the immortalized cells. In cancer cells generated from origin of epithelial cells, Sema4C is associated with a high invasiveness.2) Histopathology results reveals that Sema4C levels are higher in breast cancers than those in normal tissues and benign lesions.3) Quantitative RT-PCR and Western blot analysis reveals that the depletion of Sema4C in transduced cells is stable and efficient. Depletion of Sema4C by specific shRNA leads to suppression in tumor expansion, low density of tumor vessels, less macrophage infiltration and few metastasis.4) MTT assay reveals that depletion of Sema4C results in inhibition of MDA-MB-231growth. The alterations in cell morphology after depletion of Sema4C are characterized by enlarged cell sizes, giant nucleus, reduced cytoplasm and vacuoles in the cytoplasm. PI staining shows that depletion of Sema4C results in blockage in G2/M transition, although double staining of Annexin V and PI did not show significant apoptosis. In addition, β-galactosidase staining reveals that depletion of Sema4C results in cell senescence.5) The macrophage generated by GM-CSF and IL-4stimulation of the isolated peripheral blood mononuclear cells were studied for the transwell assay. Cell culture supernatant from MDA-MB-231cells depleted of Sema4C can not induce as much cell migration in HUVECs and macrophages as those of normal MDA-MB-231cells.6) The secretion of Angiogenin and CSF-1in supernatant of MDA-MB-231cells after depletion of Sema4C attenuates to low levels as compared with control cells. The detection process is based on the RayBiotech cytokine analysis CHIP.
     Conclusion
     Sema4C expression is substantially high in tumor cell lines, especially in breast cancer cells, of which the level is in parallel with the potential of metastasis; in tumor samples, the expression level of Sema4C is also higher than that in normal and benign tissues. Our findings suggest that Sema4C regulates breast cancer cell proliferation through modulating the secretion of Angiogenin and CSF-1, which can in turn influence breast cancer development, vascularization, macrophage recruitment and metastasis.
     In summary, Sema4C is associated with tumor vessel density, which can prevent breast tumor from aging, and which can promote the secretion of Angiogenin and CSF-1in the microenvironment of tumor foci. These effect imposed on tumor development is conducive to tumor vasculargenesis and metastasis through vessels. Sema4C will be a therapeutic target of antitumor drugs in future.
引文
1. Comeau, M. R. et al. A poxvirus-encoded semaphoring induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR [J]. Immunity,1998,8:473-482
    2. Winberg, M. L. et al. Plexin A is a neuronal semaphoring receptor that controls axon guidance [J]. Cell,1998,95:903-916.
    3. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates [J]. Cell,1999,99:71-80.
    4. Kumanogoh, A. et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2 [J]. Nature,2002,419:629-633.
    5. Wang, X. et al. Functional soluble CD100/Sema4D released from activated lymphocytes:possible role in normal and pathologic immune responses [J]. Blood,2001,97:3498-3504.
    6. Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function [J]. Nature,2003,424:391-397.
    7 Feiner, L. et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption [J]. Development,2001, 128:3061-3070.
    8. Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling [J]. Nature Cell Biol.2004,6:1204-1211.
    9. Xiang, R. et al. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res,2002,62:2637-2643.
    10. Castro-Rivera, E., Ran, S., Thorpe, P. & Minna, J. D. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc. Natl Acad. Sci. USA,2004,101:11432-11437.
    11. Ohoka Y, Hirotani M, Sugimoto H, et al. Associates with a Neurite-Outgrowth-Related Protein, SFAP75 [J]. Biochem Biophys Res Commun, 2001,280 (1):237-243.
    12. Ko J, Jondo T, Inagaki S, Inui M. Requirement of the transmembrane semaphorin Sema4C for myogenic differentiation [J].2005,579 (5):2236-2242.
    13.黄绍艳Sema4C在卵巢上皮性癌中的表达及意义(天津医科大学).(2009).
    14.叶双梅信号素分子4C在食管癌、胃癌和直肠癌中的表达及其意义。中华医学杂志,2012,92(28)。
    15.陈颖Semaphorin4C在乳腺癌子宫内膜癌及前列腺癌中的表达及意义。中国肿瘤临床,2010,37(9)。
    16.陈颖siRNA抑制Sema4C基因表达对人乳腺癌细胞恶性行为的影响。中国肿瘤临床,2010,37(16)。
    1. Kolodkin, A.L., Matthes, D.J., and Goodman, C.S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules[J]. Cell,1993, 75,(7):1389-1399.
    2. Luo, Y., Raible, D., and Raper, J.A. Collapsin:a protein in brain that induces the collapse and paralysis of neuronal growth cones [J]. Cell,1993,75,(2):217-227.
    3. Tomizawa Y, Sekido Y, Kondo M, et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci USA,2001,98:13954-13959.
    4. Bielenberg D, Hida Y, Shimizu A, et al. Semaphorin SEMA3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest,2004,114:1260-1271.
    5. Brambilla E, Constantin, Drabkin H, et al. Semaphorin SEMA3F localization in malignant human lung and cell lines:a suggested role in cell adhesion and cell migration. Am J Pathol,2000,156:939-950.
    6 Lantue joul S, Constantin B, Drabkin H, et al. Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol,2003,200:336-347.
    7. Nasarre P, Kusy S, Constantin B, et al. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia,2005,7 (2):180-189.
    8. Sierra, J.R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P.M., et al. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages[J]. J Exp Med,2008,205, (7):1673-1685.
    9. Basile, J.R., Castilho, R.M., Williams, V.P., and Gutkind, J.S. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis[J]. Proc Natl Acad Sci U S A,2006,103, (24):9017-9022
    10. Ch'ng, E., Tomita, Y., Zhang, B., He, J., Hoshida, Y., Qiu, Y, Morii, E., Nakamichi, I., Hamada, K., Ueda, T., et al. Prognostic significance of CD100 expression in soft tissue sarcoma. Cancer[J],2007,110, (1):164-172.
    11.黄绍艳Sema4C在卵巢上皮性癌中的表达及意义(天津医科大学).(2009).
    12.叶双梅信号素分子4C在食管癌、胃癌和直肠癌中的表达及其意义。中华医学杂志,2012,92(28)。
    13.陈颖Semaphorin4C在乳腺癌子宫内膜癌及前列腺癌中的表达及意义。中国肿瘤临床,2010,37(9)。
    14.陈颖siRNA抑制Sema4C基因表达对人乳腺癌细胞恶性行为的影响。中国肿瘤临床,2010,37(16)。
    1. Umar Yazdani, Jonathan R. Terman. The semaphorins. Genome Biology,2006,7: 211-33.
    2. Yoshio Goshima, Takaak Ito, Yukio Sasaki et al. Semaphorins as signals for cell repulsion and invasion. J.Clin.Invest,2002,109:993-998.
    3. Tomizawa Y, Sekido Y, Kondo M, et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci USA,2001,98:13954-13959.
    4. Kessler O, Shraga-Heled N, Lange T, et al. Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res,2004,64:1008-1015.
    5. Bielenberg D, Hida Y, Shimizu A, et al. Semaphorin SEMA3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest,2004,114:1260-1271.
    6. Brambilla E, Constantin, Drabkin H, et al. Semaphorin SEMA3F localization I n malignant human lung and cell lines:a suggested role in cell adhesion and cell migration. Am J Pathol,2000,156:939-950.
    7. Lantue joul S, Constantin B, Drabkin H, et al. Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol,2003,200:336-347.
    8. Nasarre P, Kusy S, Constantin B, et al. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia,2005,7 (2):180-189.
    9. John R. Basile, Rogerio M. Castilho, Vanessa P. Williams and et al. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. PNAS,2006,103(24):9017-9022.
    10.陈颖siRNA抑制Sema4C基因表达对人乳腺癌细胞恶性行为的影响。中国肿瘤临床,2010,37(16)。
    11.叶双梅信号素分子4C在食管癌、胃癌和直肠癌中的表达及其意义。中华医学杂志,2012,92(28)。
    12.陈颖Semaphorin4C在乳腺癌子宫内膜癌及前列腺癌中的表达及意义。中国肿瘤临床,2010,37(9)。
    13.黄绍艳Sema4C在卵巢上皮性癌中的表达及意.(2009).
    14 Kolodkin, A. L., Matthes, D. J. and Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 1993; 75,1389-1399.
    15 Luo, Y., Raible, D. and Raper, J. A. Collapsin:a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993 75,217-227.
    16 Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G. I., Song, H., Chedotal, A.,Winberg, M. L., Goodman, C. S., Poo, M. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99,71-80.
    17 Tamagnone, L. and Comoglio, P. M. To move or not to move? Semaphorin signalling in cell migration. EMBO Rep.2004; 5,356-361.
    18 Zhou, Y., Gunput, R. A. and Pasterkamp, R. J. Semaphorin signaling:progress made and promises ahead. Trends Biochem. Sci.2008;33,161-170.
    19 He, Z. and Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell1997; 90,739-751.
    20 Kolodkin, A. L. and Ginty, D. D. Steering clear of semaphorins:neuropilins sound the retreat. Neuron 1997; 19,1159-1162
    21 Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G. I., Song, H., Chedotal, A.,Winberg, M. L., Goodman, C. S., Poo, M. et al. Plexins are a large family ofreceptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates.Cell 1999;99,71-80.
    22 Zhou, Y, Gunput, R. A. and Pasterkamp, R. J. Semaphorin signaling:progress made and promises ahead. Trends Biochem. Sci.2008; 33,161-170.
    23 Franco, M. and Tamagnone, L. Tyrosine phosphorylation in semaphorin signalling:shifting into overdrive. EMBO Rep.2008; 9,865-871.
    24 Potiron, V. A., Roche, J. and Drabkin, H. A. Semaphorins and their receptors in lung cancer. Cancer Lett.2009; 273,1-14.
    25 Castro-Rivera, E., Ran, S., Thorpe, P. and Minna, J. D. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc.Natl.Acad. Sci. USA2004;101,11432-11437.
    26 Castro-Rivera, E., Ran, S., Brekken, R. A. and Minna, J. D. Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res.2008;68,8295-8303.
    27 Tomizawa, Y, Sekido, Y., Kondo, M., Gao, B., Yokota, J., Roche, J., Drabkin, H.,Lerman, M. I., Gazdar, A. F. and Minna, J. D. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc. Natl. Acad. Sci. USA 2001; 98,13954-13959.
    28 Tse, C., Xiang, R. H., Bracht, T. and Naylor, S. L. Human Semaphorin 3B(SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res.2002; 62,542-546.
    29 Rolny, C., Capparuccia, L., Casazza, A., Mazzone, M., Vallario, A., Cignetti, A.,Medico, E., Carmeliet, P., Comoglio, P. M. and Tamagnone, L. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment. J. Exp. Med.2008; 205,1155-1171.
    30 Brambilla, E., Constantin, B., Drabkin, H. and Roche, J. Semaphorin SEMA3F localization in malignant human lung and cell lines:a suggested role in cell adhesion and cell migration. Am. J. Pathol.2000; 156,939-950.
    31 Futamura, M., Kamino, H., Miyamoto, Y, Kitamura, N., Nakamura, Y, Ohnishi, S.,Masuda, Y. and Arakawa, H. Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Res.2007;67,1451-1460.
    32 Kusy, S., Nasarre, P., Chan, D., Potiron, V., Meyronet, D., Gemmill, R. M., Constantin, B., Drabkin, H. A. and Roche, J. Selective suppression of in vivo tumorigenicity by semaphorin SEMA3F in lung cancer cells. Neoplasia 2005; 7, 457-46.
    33 Xiang, R., Davalos, A. R., Hensel, C. H., Zhou, X. J., Tse, C. and Naylor, S. L. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice.Cancer Res.2002; 62,2637-2643.
    34 Potiron, V. A., Roche, J. and Drabkin, H. A. Semaphorins and their receptors in lung cancer. Cancer Lett.2009; 273,1-14.
    35 Catalano, A., Caprari, P., Rodilossi, S., Betta, P., Castellucci, M., Casazza, A., Tamagnone, L. and Procopio, A. Cross-talk between vascular endothelial growth factor and semaphorin-3A pathway in the regulation of normal and malignant mesothelial cell proliferation. FASEB J.2004; 18,358-360.
    36 Kigel, B., Varshavsky, A., Kessler, O. and Neufeld, G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PloS ONE 2008; 3, e3287.
    37 Muller, M. W., Giese, N. A., Swiercz, J. M., Ceyhan, G O., Esposito, I., Hinz, U.,Buchler, P., Giese, T., Buchler, M. W., Offermanns, S. et al. Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer. Int. J.Cancer 2007;121,2421-2433.
    38 Barberis, D., Artigiani, S., Casazza, A., Corso, S., Giordano, S., Love, C. A., Jones,E. Y., Comoglio, P. M. and Tamagnone, L. Plexin signaling hampers integrinbased adhesion, leading to Rho-kinase independent cell rounding, and inhibiting lamellipodia extension and cell motility. FASEB J.2004; 18,592-594.
    39 Swiercz, J. M., Worzfeld, T. and Offermanns, S. ErbB-2 and met reciprocally regulate cellular signaling via plexin-Bl. J. Biol. Chem.2008;283,1893-1901.
    40 Conrotto, P., Corso, S., Gamberini, S., Comoglio, P. M. and Giordano, S.Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 2004;23,5131-5137.
    41 Giordano, S., Corso, S., Conrotto, P., Artigiani, S., Gilestro, G, Barberis, D., Tamagnone, L. and Comoglio, P. M. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat. Cell Biol.2002; 4,720-724.
    42 Winters ZE, Ongkeko WM, Harris AL and Norbury CJ. (1998). p53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene,1998; 17,673 ± 684.
    43 Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH, Han MH and Shin DY. Constitutive activation of cyclin Bl-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res.2000;60:542-545.
    44 Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.1965; 37,614-636.
    45 Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 2000;100,57-70.
    46 Stanley, E.R., L.T. Guilbert, R.J. Tushinski, and S.H. Bartelmez. CSF-1 A mononuclear phagocyte lineage-specific hemopoietic growth factor. J. Cell. Biochem.1983; 21:151-159.
    47 Kacinski, B.M. CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann.Med.1995; 27:79-85.48.
    48 Smith, H.O., P.S. Anderson, D.Y.K. Kuo, G.L. Goldberg, C.L. DeVictoria, C.A. Boocock, J.G. Jones, C.D. Runowicz, E.R. Stanley, and J.W. Pollard. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res.1995; 1:313-325.
    49 Scholl, S.M., C. Pallud, F. Beuvon, K. Hacene, E.R. Stanley, L.R. Rohrschneider, R. Tang, P. Pouillart, and R. Lidereau. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl. Cancer Inst.1994;86:120-126.
    50 Suzuki, H., Forrest, A.R., van Nimwegen, E., Daub, C.O., Balwierz, P.J., Irvine, K.M., Lassmann, T., Ravasi, T., Hasegawa, Y., de Hoon, M.J., et al; FANTOM Consortium; Riken Omics Science Center.. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 2009;41,553-562.
    51 Condeelis, J., and Pollard, J.W.. Macrophages:obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124,263-266.
    1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37,614-636 (1965).
    2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100,57-70 (2000).
    3. Bishop, J. M. Cancer:the rise of the genetic paradigm.Genes Dev.9,1309-1315 (1995).
    4. Busuttil, R. A., Rubio, M., Dolle, M. E., Campisi, J. & Vijg, J. Mutant frequencies and spectra depend on growth state and passage number in cells cultured from transgenic lacZ-plasmid reporter mice. DNA Repair 5,52-60 (2006).
    5. Sager, R. Senescence as a mode of tumor suppression.Environ. Health Perspect.93, 59-62(1991).
    6. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11,27-31(2001).
    7. Braig, M. & Schmitt, C. A. Oncogene-induced senescence:putting the brakes on tumor development. Cancer Res.66,2881-2884 (2006).
    8. Campisi, J. Cancer and ageing:rival demons? Nature Rev. Cancer 3,339-349 (2003).
    9. Kirkwood, T. B. & Austad, S. N. Why do we age? Nature 408,233-238 (2000).
    10. Dimri, G. P. What has senescence got to do with cancer? Cancer Cell 7,505-512 (2005).
    11. Wright, W. E. & Shay, J. W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev.11,98-103(2001).
    12. Campisi, J. Senescent cells, tumor suppression and organismal aging:good citizens, bad neighbors. Cell 120,513-522 (2005).
    13. Hornsby, P. J. Cellular senescence and tissue aging in vivo. J. Gerontol.57, 251-256(2002).
    14. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127,265-275 (2006).
    15. DiLeonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M.DNA damage triggers a prolonged p53-dependent Gl arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev.8,2540-2551 (1994).
    16. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53,and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501-513 (2004).
    17. Ogryzko, V. V., Hirai, T. H., Russanova, V. R.,Barbie, D. A. & Howard, B. H. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependentMol. Cell. Biol.16,5210-5218 (1996).
    18. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88,593-602 (1997).
    19. Wada, T. et al. MKK7 couples stress signaling to G2/M cell-cycle progression and cellular senescence. Nature Cell Biol.6,215-226 (2004).
    20. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyperreplication. Nature 444,638-642 (2006).
    21. Olsen, C. L., Gardie, B., Yaswen, P. & Stampfer, M. R. Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21,6328-6339 (2002).
    22. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic raf. Genes Dev.12,2997-3007 (1998).
    23. Shay, J. W. & Roninson, I. B. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23,2919-2933 (2004).
    24. Itahana, K., Campisi, J. & Dimri, G. P. Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5,1-10 (2004).
    25. Ellis, R. E., Yuan, J. Y. & Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol.7,663-698 (1991).
    26. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1,19-30 (2002).
    27. Hampel, B., Malisan, F., Niederegger, H., Testi, R. & Jansen-Durr, P. Differential regulation of apoptotic cell death in senescent human cells. Exp. Gerontol. 39,1713-1721 (2004).
    28. Chen, Q. M., Liu, J. & Merrett, J. B. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem. J.347,543-551(2000).
    29. Tepper, C. G, Seldin, M. F. & Mudryj, M. Fas-mediated apoptosis of proliferating, transiently growth-arrested,and senescent normal human fibroblasts. Exp. Cell Res. 260,9-19 (2000).
    30. Rebbaa, A., Zheng, X., Chou, P. M. & Mirkin, B. L. Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene 22,2805-2811(2003).
    31. Seluanov, A. et al. Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53.Mol. Cell. Biol.21, 1552-1564(2001).
    32. Crescenzi, E., Palumbo, G. & Brady, H. J. Bcl-2 activates a programme of premature senescence in human carcinoma cells. Biochem. J.375,263-274 (2003).
    33. Marcotte, R., Lacelle, C. & Wang, E. Senescent fibroblasts resist apoptosis by downregulating caspase-3. Mech. Ageing Dev.125,777-783 (2004).
    34. Murata, Y. et al. Death-associated protein 3 regulates cellular senescence through oxidative stress response. FEBS Lett.580,6093-6099 (2006).
    35. Jackson, J. G. & Pereira-Smith, O. M. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res.66,8356-8360 (2006).
    36. Chang, B. D. et al. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc. Natl Acad. Sci. USA 99,389-394 (2002).
    37. Mason, D. X., Jackson, T. J. & Lin, A. W. Molecular signature of oncogenic ras-induced senescence. Oncogene 23,9238-9246 (2004).
    38. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W. D. Microarray analysis of replicative senescence. Curr. Biol.9,939-945 (1999).
    39. Trougakos, I. P., Saridaki, A., Panayotou, G. & Gonos, E. S. Identification of differentially expressed proteins in senescent human embryonic fibroblasts.Mech. Ageing Dev.127,88-92 (2006).
    40. Yoon, I. K. et al. Exploration of replicative senescenceassociated genes in human dermal fibroblasts by cDNA microarray technology. Exp. Gerontol. 39,1369-1378(2004).
    41. Zhang, H., Pan, K. H. & Cohen, S. N. Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc. Natl Acad. Sci. USA 100,3251-3256 (2003).
    1 Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438:932-936.
    2 Folkman J. Angiogenesis:an organizing principle for drug discovery?. Nat Rev Drug Discov 2007; 6:273-286.
    3 Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angio-genesis. Cancer Res-2005; 65:3967-3979.
    4 Maione TE, Gray GS, Petro J, et al. Inhibition of angiogen-esis by recombinant human platelet factor-4 and related pep-tides. Science 1990; 247:77-79.
    5 Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppres-sor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of throm-bospondin. Proc Natl Acad Sci USA 1990; 87:6624-6628.
    6 Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor:a potent inhibitor of angiogenesis. Science 1999; 285:245-248.
    7 Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 2005; 436:193-200.
    8 Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2010; 2:a001875.
    9 Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol 2005; 6:789-800.
    10 Eichmann A, Makinen T, Alitalo K. Neural guidance mol-ecules regulate vascular remodeling and vessel navigation. Genes Dev 2005; 19:1013-1021.
    11 Derijck AA, Van Erp S, Pasterkamp RJ. Semaphorin signal-ing: molecular switches at the midline. Trends Cell Biol Semaphorin signaling in angiogenesis 30npg Cell Research 2010; 20:568-576.
    12 Gelfand MV, Hong S, Gu C. Guidance from above:common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol 2009; 19:99-110.
    13 Serini G, Napione L, Arese M, Bussolino F. Besides adhe-sion:new perspectives of integrin functions in angiogenesis. Cardiovasc Res 2008; 78:213-222.
    14 NeufeldG, KesslerO. The semaphorins:versatile regulators of tumor progression and tumour angiogenesis. Nat Rev Cancer 2008; 8:632-645.
    15 Gu C, Yoshida Y, Livet J, et al. Semaphorin 3E and plexin-Dl control vascular pattern independently of neuropilins. Science 2005; 307:265-268.
    16 Oinuma I, Ishikawa Y, Katoh H, Negishi M. The Semaphorin 4D receptor plexin-Bl is a GTPase activating protein for R-Ras. Science 2004; 305:862-865.
    17 Uesugi K, Oinuma I, Katoh H, Negishi M. Different require-ment for Rnd GTPases of R-Ras GAP activity of plexin-Cl and plexin-Dl. J Biol Chem 2009; 284:6743-6751.
    18 Saito Y, Oinuma I, Fujimoto S, Negishi M. Plexin-Bl is a GTPase activating protein for M-Ras, remodelling dendrite morphology. EMBO Rep 2009; 10:614-621.
    19 Schwarz Q, Ruhrberg C. Neuropilin, you gotta let me know:should I stay or should I go? Cell Adh Migr 2010; 4:61-66.
    20 Soker S, Takashima S, MiaoHQ, NeufeldG, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92:735-745.
    21 Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuro-pilin-2 is a receptor for the vascular endothelial growth fac-tor (VEGF)forms VEGF-145 and VEGF-165. J Biol Chem 2000; 275:18040-18045.
    22 Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement forneuropilin-1 in embryonic vessel formation. Development 1999; 126:4895-4902.
    23 Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. Peripheral nerve-derived VEGF promotes arterial differentia-tion via neuropilin 1-mediated positive feedback. Develop-ment 2005; 132:941-952.
    24 Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Develop-ment 2002; 129:4797-4806.
    25 Kigel B, Varshavsky A, Kessler O, Neufeld G. Successful inhibition of tumor development by specific class-3 sema -phorins is associated with expression of appropriate sema-phorin receptors by tumor cells. PLoS ONE 2008;3:e3287.
    26 Serini G, Maione F, Bussolino F. Semaphorins and tumor an-giogenesis. Angiogenesis 2009.
    27 He Z, Tessier-Lavigne M. Neuropilin is a receptor for the ax-onal chemorepellent Semaphorin Ⅲ. Cell 1997; 90:739-751.
    28 Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin is a semaphorin Ⅲ receptor. Cell 1997; 90:753-762.
    29 Chen H, Chedotal A, He Z, Goodman CS, Tessier-Lavigne M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema Ⅲ. Neuron 1997; 19:547-559.
    30 Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA 2004; 101:11432-11437.
    31 Falk J, Bechara A, Fiore R, et al. Dual functional activity of semaphorin 3B is required for positioning the anterior com-missure. Neuron 2005; 48:63-75.
    32 Serini G, Valdembri D, Zanivan S, et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin func-tion. Nature 2003; 424:391-397.
    33 Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klags-brun M. Neuropilin-1 mediates collapsin-1/semaphorin Ⅲ inhibition of endothelial cell motility:functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 1999; 146:233-242.
    34 Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C, Kessler O, Neufeld G Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem 2007; 282:26294-26305.
    35 Maione F, Molla F, Meda C, et al. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse mod-els. J Clin Invest 2009; 119:3356-3372.
    36 Gu C, Rodriguez ER, Reimert DV, et al. Neuropilin-1 con-veys semaphorin and VEGF signaling during neural and car-diovascular development. Dev Cell 2003; 5:45-57.
    37 Arese M, Serini G, Bussolino F. Nervous vascular parallels:axon guidance and beyond. Int J Dev Biol 2011; 55:439-445.
    38 Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF 165-receptor binding. J Cell Biochem 2002; 85:357-368.
    39 Whitaker GB, Limberg BJ, Rosenbaum JS. Vascular endothe-lial growth factor receptor-2 and neuropilin-1 form a recep-tor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 2001; 276:25520-25531.
    40 Appleton BA, Wu P, Maloney J, et al. Structural studies of neuropilin/antibody complexes provide insights into sema-phorin and VEGF binding. EMBO J 2007; 26:4902-4912.
    41 Acevedo LM, Barillas S, Weis SM, Gothert JR, Cheresh DA. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 2008; 111:2674-2680.
    42 Toyofuku T, Yoshida J, Sugimoto T, et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion. NatNeurosci 2005; 8:1712-1719.
    43 Sekido Y, Bader S, Latif F, et al. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion re-gion and demonstrate distinct expression patterns. Proc Natl Acad Sci USA 1996; 93:4120-4125.
    44 Tomizawa Y, Sekido Y, Kondo M, et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpres-sion of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci USA 2001; 98:13954-13959.
    45 Tse C, Xiang RH, Bracht T, Naylor SL. Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res 2002; 62:542-546.
    46 VarshavskyA,KesslerO,AbramovitchS,et al. Semaphorin31npg3B is an angiogenesis inhibitor that is inactivated by furin-like pro-protein convertases. Cancer Res 2008; 68:6922-6931.
    47 Bassi DE, Fu J, Lopez de Cicco R, Klein-Szanto AJ. Propro-tein convertases: "master switches" in the regulation of tumor growth and progression. Mol Carcinog 2005; 44:151-161.
    48 van der Zwaag B, Hellemons AJ, Leenders WP, et al. PLEX-IN-D1, a novel plexin family member, is expressed in vascu-lar endothelium and the central nervous system during mouse embryogenesis. Dev Dyn 2002; 225:336-343.
    49 Roodink I, Raats J, van der Zwaag B, et al. Plexin Dl expres-sion is induced on tumor vasculature and tumor cells:a novel target for diagnosis and therapy?. Cancer Res 2005; 65:8317-8323.
    50 Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C. Semaphorin 3E-plexin-Dl signaling regulates VEGF function in develop-mental angiogenesis via a feedback mechanism. Genes Dev 2011; 25:1399-1411.
    51 Torres-Vazquez J, Gitler AD, Fraser SD, et al. Semaphorin-plexin signaling guides patterning of the developing vascula-ture. Dev Cell 2004; 7:117-123.
    52 Sakurai A, Gavard J, Annas-Linhares Y, et al. Semaphorin 3E initiates antiangiogenic signaling through plexin Dl by regu-lating Arf6 and R-Ras. Mol Cell Biol 2010; 30:3086-3098.
    53 Fukushima Y, Okada M, Kataoka H, et al. Sema3E-plexinDl signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest 2011; 121:1974-1985.
    54 Casazza A, Finisguerra V, Capparuccia L, et al. Sema3E-plexin Dl signaling drives human cancer cell invasive-ness and metastatic spreading in mice. J Clin Invest 2010; 120:2684-2698.
    55 Zygmunt T, Gay CM, Blondelle J, et al. Semaphorin-plexinDl signaling limits angiogenic potential via the VEGF decoy receptor sFltl. Dev Cell 2011; 21:301-314.
    56 Sakurai A, Jian X, Lee CJ, et al. Phosphatidylinositol-4-phosphate 5-Kinase and GEP100/Brag2 protein mediate an-tiangiogenic signaling by semaphorin 3E-plexin-Dl through Arf6 protein. J Biol Chem 2011; 286:34335-34345.
    57 van den Bout I, Divecha N. PIP5K-driven PtdInsP2 synthesis: regulation and cellular functions. J Cell Sci 2009; 122:3837-3850.
    58 Bielenberg DR, Hida Y, Shimizu A, et al. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascu-larized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 2004; 114:1260-1271.
    59 Kessler O, Shraga-Heled N, Lange T, et al. Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 2004; 64:1008-1015.
    60 Futamura M, Kamino H, Miyamoto Y, et al. Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Res 2007; 67:1451-1460.
    61 Nasarre P, Kusy S, Constantin B, et al. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia 2005; 7:180-189.
    62 Wu F, Zhou Q, Yang J, et al. Endogenous axon guiding chemorepulsant semaphorin-3F inhibits the growth and metastasis of colorectal carcinoma. Clin Cancer Res 2011; 17:2702-2711.
    63 Shimizu A, Mammoto A, Italiano JE Jr, et al. ABL2/ARGtyrosine kinase mediates SEMA3F-induced RhoA inactiva-tion and cytoskeleton collapse in human glioma cells. J Biol Chem 2008; 283:27230-27238.
    64 Potiron VA, Sharma G, Nasarre P, et al. Semaphorin SE-MA3F affects multiple signaling pathways in lung cancer cells. Cancer Res 2007; 67:8708-8715.
    65 Karayan-Tapon L, Wager M, Guilhot J, et al. Semaphorin, neuropilin and VEGF expression in glial tumours:SEMA3G, a prognostic marker?. Br J Cancer 2008; 99:1153-1160.
    66 Taniguchi M, Masuda T, Fukaya M, et al. Identification and characterization of a novel member of murine semaphorin family. Genes Cells 2005; 10:785-792.
    67 Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS. Class IV semaphorins promote angiogenesis by stimulating Rho-initi-ated pathways through plexin-B. Cancer Res 2004; 64:5212-5224.
    68 Conrotto P, Valdembri D, Corso S, et al. Sema4D induces angiogenesis through Met recruitment by plexin Bl. Blood 2005; 105:4321-4329.
    69 Basile JR, Castilho RM, Williams VP, Gutkind JS. Sema-phorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA 2006; 103:9017-9022.
    70 Ch'ng E, Tomita Y, Zhang B, et al. Prognostic significance of CD100 expression in soft tissue sarcoma. Cancer 2007; 110:164-172.
    71 Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem 2007; 282:6899-6905.
    72 Zhu L, Bergmeier W, Wu J, et al. Regulated surface expres-sion and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA 2007; 104:1621-1626.
    73 Aurandt J, Vikis HG, Gutkind JS, Ahn N, Guan KL. Thesemaphorin receptor plexin-B 1 signals through a direct in-teraction with the Rho-specific nucleotide exchange factor, LARG. Proc Natl Acad Sci USA 2002; 99:12085-12090.
    74 Hirotani M, Ohoka Y, Yamamoto T, et al. Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucle-otide exchange factors. Biochem Biophys Res Commun 2002; 297:32-37.
    75 Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leuke-mia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 2002; 277:43115-43120.
    76 Swiercz JM, Kuner R, Behrens J, Offermanns S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 2002; 35:51-63.
    77 Basile JR, Gavard J, Gutkind JS. Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 2007; 282:34888-34895.
    78 Binmadi NO, Proia P, Zhou H, Yang YH, Basile JR. Rho-mediated activation of PIP5K and lipid second messengers is necessary for promotion of angiogenesis by Semaphorin 4D. Angiogenesis 2011; 14:309-319.
    79 Swiercz JM, Kuner R, Offermanns S. Plexin-B1/RhoGEF-Semaphorin signaling in angiogenesis 32npg mediated RhoA activation involves the receptor tyrosine ki-nase ErbB-2. J Cell Biol 2004; 165:869-880.
    80 Barberis D, Casazza A, Sordella R, et al. p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. J Cell Sci 2005; 118:4689-4700.
    81 Wigle JT, Oliver G. Proxl function is required for the devel-opment of the murine lymphatic system. Cell 1999; 98:769-778.
    82 Wigle JT, Harvey N, Detmar M, et al. An essential role for Proxl in the induction of the lymphatic endothelial cell phe-notype. EMBO J 2002; 21:1505-1513.
    83 Petrova TV, Makinen T, Makela TP, et al. Lymphatic en-dothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002; 21:4593-4599.
    84 Hong YK, Harvey N, Noh YH, et al. Proxl is a master con-trol gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225:351-357.
    85 Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular en-dothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61:1786-1790.
    86 Veikkola T, Jussila L, Makinen T, et al. Signalling via vascu-lar endothelial growth factor receptor-3 is sufficient for lymp-hangiogenesis in transgenic mice. EMBO J 2001; 20:1223-1231.
    87 He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94:819-825.
    88 Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphat-ic vessels from embryonic veins. Nat Immunol 2004; 5:74-80.
    89 Haiko P, Makinen T, Keskitalo S, et al. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol Cell Biol 2008; 28:4843-4850.
    90 Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008; 13:331-342.
    91 Xu Y, Yuan L, Mak J, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 2010; 188:115-130.
    92 Favier B, Alam A, Barron P, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 2006; 108:1243-1250.
    93 Nathanson SD. Insights into the mechanisms of lymph node metastasis. Cancer 2003; 98:413-423.
    94 Schietroma C, Cianfarani F, Lacal PM, et al. Vascular en-dothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 2003; 98:789-797.
    95 Dadras SS, Lange-Asschenfeldt B, Velasco P, et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005; 18:1232-1242.
    96 Roma AA, Magi-Galluzzi C, Kral MA, Jin TT, Klein EA, Zhou M. Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Mod Pathol 2006; 19:392-398.
    97 He XW, Yu X, Liu T, Yu SY, Chen DJ. Vector-based RNA in-terference against vascular endothelial growth factor-C inhib-its tumor lymphangiogenesis and growth of colorectal cancer in vivo in mice. Chin Med J 2008; 121:439-444.
    98 Das S, Ladell DS, Podgrabinska S, et al. Vascular endothelial growth factor-C induces lymphangitic carcinomatosis, an extremely aggressive form of lung metastases. Cancer Res 2010; 70:1814-1824.
    99 Patel V, Marsh CA, Dorsam RT, et al. Decreased lymp-hangiogenesis and lymph node metastasis by mTOR inhibi-tion in head and neck cancer. Cancer Res 2011; 71:7103-7112.
    100 Casazza A, Fu X, Johansson I, et al. Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models. Arterioscler Thromb Vasc Biol 2011; 31:741-749.
    101 Roberts N, Kloos B, Cassella M, et al. Inhibition of VEGFR3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactiva-tion of VEGFR-2. Cancer Res 2006; 66:2650-2657.
    102 Khromova N, Kopnin P, Rybko V, Kopnin BP. Downregula-tion of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via mul-tiple mechanisms. Oncogene 2012 Mar15;31(11):1389-97.
    103 Kodera Y, Katanasaka Y, Kitamura Y, et al. Sunitinib inhibits lymphatic endothelial cell functions and lymph node metasta-sis in a breast cancer model through inhibition of vascular en-dothelial growth factor receptor 3. Breast Cancer Res 2011; 13:R66.
    104 Karpanen T, Wirzenius M, Makinen T, et al. Lymphangio-genic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 2006; 169:708-718.
    105 Yoo YA, Kang MH, Lee HJ, et al. Sonic hedgehog pathway promotes metastasis via activation of Akt, EMT, and MMP-9 in gastric cancer. Cancer Res 2011; 71:7061-7070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700