用户名: 密码: 验证码:
常温烟雾机雾滴沉积数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常温烟雾机是设施园艺化学植保的有效作业机械,其所产生的30μ m左右的雾滴能在密闭空间中弥漫,在温室中具有较好的雾滴沉积均匀性。近年来随着设施种植面积的迅速扩张,常温烟雾机的研究与推广应用展现了较为广阔的前景。
     本文基于课题组研发的新型自走式常温烟雾机,应用计算流体动力学数值模拟技术,建立了常温烟雾机在不同作业条件下的连续相气流场速度分布模型和离散相雾滴的沉积分布模型,探讨了基于动网格技术的烟雾机行走过程中气流场分布的变化规律,并设计试验对喷雾模型及优化参数进行了验证。同时,为提高雾滴沉积质量检测精度,改善验证试验效率,开发了基于图像处理技术的雾滴沉积效果检测系统。
     (1)常温烟雾机气流场分布模型建立及试验验证。前期试验表明常温烟雾机喷雾风送系统产生的气流速度场分布规律与喷雾高度及出口风速密切相关。本文建立了基于标准k-ε湍流两方程的气流连续相数值模型,在喷雾高度0.5m-2.5m、初始风送速度5m/s-25m/s下对温室密闭空间内气流速度场迭代计算,并进行了试验验证。模拟与验证结果表明,风送系统有效作业距离与初始风送速度正相关。同时,风机中心线与密闭空间壁面的垂直距离也对烟雾机风送距离有明显的影响。
     (2)常温烟雾机雾滴沉积模型建立与验证分析。在气流速度场模型的基础上,基于EulerLagrange多相流模型建立了常温烟雾机定点作业模式下气雾滴沉积率分布模型。同时设计试验验证了雾滴沉积率分布模型。验证结果表明,基于CFD的雾滴沉积分布模型拟合误差在15%-35%之间,经与同类研究比较,模拟结果可信。研究还基于自行设计的雾滴检测系统分析了雾滴沉积密度、粒径分布与喷雾高度、风送速度的关系,对常温烟雾机喷雾参数的选择提出了优化方案。
     (3)基于动网格技术的气流场分布规律探讨与分析。由于常温烟雾机定点喷雾风送距离有限,雾滴在烟雾机周围的沉积效果较好,但不足以使得雾滴在温室整体空间中均匀弥漫沉积。本文基于动网格技术分析了烟雾机在行走过程中风送气流速度场分布情况的变化,并研究了其对雾滴飞行轨迹的影响。模拟结果表明,自走式喷雾作业模式使气流场在密闭空间内产生不同方向的回旋涡流,对雾滴在温室空间内的弥漫有明显促进作用。
     (4)基于图像处理技术的雾滴沉积效果检测系统设计。通过高分辨率便携式照片扫描仪获取水敏纸雾滴采集样本数字图像。通过对各颜色空间分量图像的比较,发现YIQ颜色空间的1分量灰度图像能突出雾滴斑点且抑制水敏纸背景纹理。通过比较基于灰度直方图阈值分割法及Ostu阈值分割法,发现Ostu阈值分割法能更好地将雾滴斑点与水敏纸背景分离。在此基础上统计雾滴个数并计算雾滴沉积参数,得出了水敏纸采集区域的雾滴沉积密度及粒径分布曲线。与雾滴沉积标准卡比较确定该系统雾滴密度识别率达95%以上,粒径分布曲线误差小于10%,且系统便于携带,可在各种工作条件下实时获取喷雾质量信息,对雾滴沉积质量检测试验有积极的辅助意义。
The cold sprayer is an efficient equipment for chemical plant protection in greenhouse agriculture. The droplets generated by cold sprayer can distribute uniformly in the sealed space due to the small droplets, such as the volume medium diameter (VMD) around30μm. As the great development of greenhouse horticulture in the recent years, a bright prospect for the research and popularization of cold sprayers could be expected.
     Based on the cold sprayer that was designed by the research group and the author is one of the members, the airflow velocity field was simulated and droplet deposition distribution model was established. The airflow variation as the sprayer moving was also simulated via dynamic meshing technology. Experiments were carefully designed and conducted for the verification of the simulated models. A droplet detecting system was developed for the droplet distribution measurement and served as simulation evaluation.
     The research topics are listed as follows,
     (1) Simulation and verification of airflow field for cold sprayer.
     Pre-experiments indicated that the distribution of velocity of the airflow was highly related to the spraying height and the initial airflow velocity. Based on k-ε turbulence model, a numerical model for airflow field was built for the spraying under working conditions of spraying height from0.5m to2.5m and initial air velocity from5m/s to25m/s. An experiment was designed and conducted to verify the simulated results. Due to the simulation and verification, positive linear correlation was discovered between air blowing distance and initial air velocity of the air assistant system by the cold sprayer. Also, the air blowing distance was significantly affected by the distance between the symmetry axis of cold sprayer and the wall of the greenhouse walls.
     (2) Simulation and model verification for the model of deposition distribution of the cold sprayer.
     Based on the Euler-Lagrange multiphase flow model, a model of droplet deposition distribution was built by adding droplet discrete particles into the airflow model. Also, the verification experiment was designed and conducted for the model analysis and model error measurement. Analysis showed that the relative error of the simulated deposition and experimental results was between15%and35%. Compared with the similar simulation reports, the model was regarded to be reliable. Besides, a droplet deposition detection system was used to analyze the impact of spraying height and airflow velocity on droplets deposited density and diameter distribution. Optimized working parameters were suggested depending on the data analysis of the detected results by the system.
     (3) Exploration and analysis of cold sprayer's airflow field distribution under motivated spraying.
     Due to the simulation and verification experiments of both airflow field and droplet deposition, the air assistant distance limitation was discovered. Therefore, the auto-moving spraying mode was developed to improve the droplets spread more uniformity throughout the greenhouse. In this section, dynamic meshing method was introduced to simulation. The simulated results showed that airflow swirls were generated when the air assistant equipment moved with the sprayer. And the direction of rotation would change with the working position of the sprayer. Under this situation, the droplets were proved misting significantly better.
     (4) Designation of droplet detection system using image processing technology.
     Digital pictures of droplet deposition on water sensitive paper were captured with a high definition scanner. Due to the comparison of the grayer pictures of each dimension under different color spaces (RGB, YIQ, HSI), I dimension under YIQ color model was selected for droplet segmentation. Under this dimension, the droplets could be obviously distinguished from the initial paper background, as well as the vein of the water sensitive paper could be effectively erased. The segmentation was processed under methods of Otsu threshold and gray value histogram. The results indicated that the droplets were extracted better using Otsu threshold method. Amount and diameter of droplet spots were calculated as the detected parameters at last. A standard deposition card with droplets number and diameter distribution was detected with the system. Then the accuracy was judged by comparing the results with the original parameters. As the result informed, the identification ratio of droplet density was higher than95%, and the error for diameter distribution was less than10%. Considering its mobility, this system can greatly help the researchers to do the measurement in both labs and fields.
引文
Albertson M.L., Dai Y.B., Jensen R.A., et al. Diffusion of submerged jets[J]. Trans. ASCE,1950,115: 639-697.
    Albertsson J., Bjorkholm A.M., Mickelaker J.,et al. Physically acting pesticides-application technology in berry production[J]. Aspects of Applied Biology, International Advances in Pesticide Application,2010,99:401-407.
    Austerweil M., Ben-David T., Steiner B., et al. Control of powdery mildew by mechanical aerosol generators [J]. Phytoparasitica,1996,24:151-152.
    Austerweil M., Gamliel A., Steiner B., Riven, et al. Approaches to evaluating the performance of air-assisted pesticide application equipment in greenhouses [J]. Asp. Appl. Biol.,2000,57,391-398.
    Boissard P., Martin V., Moisan S.. A cognitive vision approach to early pest detection in greenhouse crops[J].Computers and Electronics in Agriculture,2008a,62(2):81-93.
    Boissard P., Martin V., Moisan S.. A cognitive approach to early pest detection in greenhouse crops[J]. Computers and Electronics in Agriculture,2008b,62:81-93.
    Borregaard T., Nielsen H., Norgaard L., et al. Crop-weed discrimination by line imagining spectroscopy[J]. Journal of Agricultural Engineering Research,2000,75(4):289-400.
    Burk L. G, Chaplin J. F., Gooding G. V., et al. Quantity production of anther-derived haploids from a multiple disease resistant tobacco hybrid. I. Frequency of plants with resistance or susceptibility to tobacco mosaic virus (TMV), potato virus Y (PVY), and root knot (RK)[J]. Euphytica,1979,28(2): 201-208.
    Cunha M., Carvalho C., Marcal R. S.. Assessing the ability of image processing software to analyse the spray quality on water-sensitive papers used as artificial targets[J]. Biosystems Engineering,2012, (111):11-23.
    Dalrymple. A global review of greenhouse food production [J]. Earth-Science Reviews,1974,10(4):351.
    Davidson M.L., Lawson N.J. Numerical Prediction of Submerged Oscillating Jet Flow[J]. Second International Conference on CFD in the Minerals and Process Industries,1999,223-227
    Endalew A. M., N. Hendrickx, T.Goossens, et al. An Integrated Approach to Investigate the Orchard Spraying Process:Towards a CFD Model Incorporating Tree Architecture[J]. AS ABE,2010, Paper Number:1009015.
    Erwin J.E., Heins R.D., Karlsson M.G. Thermomorphogenesis in Lilium longiflorum[J]. Amer. J. Bot. 1989,76:47-52.
    Falchieri D., Mierzejewski K., Maczuga S.. Effects of droplet density and concentration on the efficacy of Bacillus thuringiensis and carbaryl against gypsy moth larvae [J]. Environ. Sci. Health Part B, 1995,30 (4):535-548.
    Fisher R.W., Menzies D.R.. Effect of spray droplet density and exposure time on the immobilization of newly-hatched oriental fruit moth larvae[J]. Econ. Entomol.1976,69 (4),438-440.
    Fluent Inc. Fluent version 4.3 user's manual. Computational fluid dynamics software[M]. Lebanon, N.H.:Fluent Inc,1995
    Fox R. D., Derksen R. C., Cooper J. A., et al. Visual and image system measurement of spray deposits using water sensitive paper[J]. Application Engineering of Agriculture,2003,19(5):549-552.
    Fox R. D., Derksen R. C., Zhu H., et al. A history of air-blast sprayer development and future prospects [J]. Transaction of ASABE,2008,51(2):405-410.
    Gamliel A., Riven Y., Steiner B., et al. Improved sprayer performance in trailed pepper crops in the greenhouse[J]. Asp. Appl. Biol.,2010,99:171-178.
    Gao Junxiang, Du Haiqing. Design of greenhouse surveillance system based on embedded web server technology[J]. Procedia Engineering,2011,23:374-379.
    Gil E., Escola A., Rosell J.R., et al. Variable rate application of plant protection products in vineyard using ultrasonic sensors[J]. Crop Protection,2007(26):1287-1297.
    Giles D. K., Akesson N.B., Yates W. E.. Pestcide application technology:research and development and the growth of industry [J]. Transactions of the ASABE,2007,51:397-403.
    Gonzalez. C., Woods R. E..数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2003.
    Guyer D.E., Miles G.E., Schreiber M.M., et al. Distance-based control system for machine vision-based selective spraying[J]. Transaction of the ASAE,2003,45(5):1255-1262.
    Harz M., M.Knoche. Droplet sizing using silicone oils[J]. Crop Protection,2001,20:489-498.
    Hewitt A.J., MeganasaT.. Droplet distribution densities of a pyrethroid insecticide within grass and maize canopies for the control of Spodoptera exempta larvae[J]. Crop Prot.,1993,12 (1):59-62.
    Hewitt A.J.. Spray drift:impact of requirements to protect the environment[J]. Crop Protection,2000, 19:623-627.
    Holfman W. C., Hewitt A. J.. Comparison of three imaging systems for water-sensitive papers[J]. Application Engineering of Agriculture,2005,21(6):961-964.
    Jensen M.H., Collins W.L..Hydroponic Vegetable Production[J].Horticultural Reviews,1985, 7:483-558.
    Kandakure M.T., Patkar V.C., Patwardhan A.W.. Characteristics of turbulent confined jets[J]. Chemical Engineering and Processing,2008,47:1234-1245.
    Kim K., J.Yoon, H. Kwon, et al.3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers [J]. Biosystems Engineering, 2008,100(2):245-255.
    Koger C.H., Poston D.H., Reddy K.N.. Effect of glyphosate spray coverage on control of pitted morningglory [J]. Weed Technol.2004,18 (1):124-130.
    Landers A.J. New spray technology:reducing pesticide run-off and drift generatio[C]. In Proc.Association of applied IPM ecologists conference,2007, February 5th, Napa, CA.
    Li D.L., Fu Z.T., Duan Y.Q.. Fish-Expert:a Web-based Expert System for Fish Disease Diagnosis[J]. Expert Systems with Applications,2002,23:311-320.
    Mabbett T.. Cold fogging is the answer to pest and disease control in greenhouses[J]. International Pest Control,2001,43:236-237.
    N.R.Parsons, R.N.Edmondson, Y.Song. Image analysis and statistical modeling for measurement and quality assessment of ornamental horticulture crops in glasshouse[J]. Biosystems Engineering,2009, 104:161-168.
    Nederhoff E.M.. Effects of CO2 concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops [D]. The Netherland:Wageningen,1994.
    Olivet J. J., Val L., Usera G. Distribution and effectiveness of pesticide application with a cold fogger on pepper plants cultured in a greenhouse [J]. Crop Protection,2011,30(8):977-985.
    Otsu N. A threshold selection method from gray-level histogram[J]. IEEE Trans. Systems Man Cybernet, 1979,9(1):62-66.
    Romanowski R.R.. Environmental control structures [J].Vegetable farming systems in China,1981:119-127.
    Saleh J. M..流体流动手册(邓敦夏译)[M].北京:中国石化出版社,2004.
    Salyani M., Fox R.D.. Performance of image analysis for assessment of simulated spray droplet distribution[J]. Trans. ASAE,1994,37 (4):1083-1089.
    Shi Ming-Wang. Based on time series and RBF network plant disease forecasting[J]. Procedia Engineering,2011,15:2384-2387.
    Sundaram K.M.S., Groot P.D., Sundaram A.. Permethrin deposits and airborne concentrations downwind from a single swath application using a back pack mist blower[J]. Environ. Sci. Health Part B 1987,22 (2):171-193.
    Theriault R., Salyani M., Panneton B.. Spray distribution and recovery in citrus application with a recycling sprayer[J]. Trans. ASAE 2001,44 (5),1083-1088.
    Tsay J, Ozkan H. E, Brazee R. D, et al. CFD Simulation of Moving Spay Shields[J]. Transactions of ASAE,2002b,45(1):21-26.
    Tsay J, Ozkan H. E, Fox R. D, et al. CFD Simulation of Mechanical Spray Shields[J], Transactions of the ASAE,2002a,45(5):1271-1280.
    Tsay J. R., Liang L. S., Lu. L. H.. Evaluation of an Air-Assisted Boom Spraying System under a No-Canopy Condition Using CFD Simulation [J]. Transactions of ASAE,2004,47(6):1887-1897
    Tsay J., Fox R. D., Ozkan H. E., et al. Evaluation of A Pneumatic-Shield Spraying System by CFD Simulation[J]. Transactions of the ASAE,2002c,45(1):47-54.
    Vector Fog.2013. http://www.vectorfog.com/?lang=zh.
    Washingto J.R.. Relationship between the spray droplet density of two protectant fungicides and the germination of Mycosphaerella fijiensis ascospores on banana leaf surfaces[J]. Pest. Sci.,1997,50: 233-239.
    Weiner K.L, Parkin C.S..The Use of Computational Fluid Dynamic Code for Modeling Spray from a Mistblower[J]. Journal of Agricultural Engineering Research,1993,55(4):313-324.
    Wittwer S.H. Yu Y.T., Sun H., et al. Feeding a Billion:Frontiers of Chinese Agriculture[M]. Michigan State University Press, East Lansing,1987
    Wittwer S.H.Worldwide status and history of CO2 enrichment--an overview[J]. Carbon Dioxide Enrichment of Greenhouse Crops,1986,1:3-15
    Wittwer S.H.. Advances in protected environments for plant growth. Advances in Food Producing Systems for Arid and semi-arid lands. Academic, New York,1981
    Wolf R. E.. Assessing the ability of droplet scan to analyze spray droplets from a ground operated sprayer[J]. Applied Engineering in Agriculture,2003,19 (5):525-30.
    Wygoda H.J., Rietz S.. Plant protection in glasshouses[J]. Bull. OEPP,1996,26:87-93.
    Yandell, B. S. Practical Data Analysis for Designed Experiments[M]. London:Chapman & Hall,1997.
    Yu Y., Zhu H., Frantz J.M., et al. Evaporation and coverage area of pesticide droplets on hairy and waxy leaves[J]. Biosystems Engineering,2009,104:324-334.
    Zhao Chun-Jiang, Li Ming, Yang Xin-Ting, et al. A data-driven model simulating primary infection probabilities of cucumber downy mildew for use in early warning systems in solar greenhouses[J]. Computers and Electronics in Agriculture,2011,76:306-315.
    安国民,徐世艳,赵化春.国外设施农业现状与发展趋势[J].现代化农业,2004,12:34-36.
    陈端生.中国节能型日光温室建筑与环境研究进展[J].农业工程学报,1994,10(1):123-129.
    陈来荣,冀荣华,赵亚青,等.温室无人自动喷雾系统设计[J].湖北农业学,2011,50(3):587-588.
    陈益民.显微图像雾滴粒度测量方法及其应用[D].福州:福建农林大学,2005.
    陈长林.二相流喷雾技术在常温烟雾机上的应用试验研究[D].南京:南京理工大学,2007.
    陈志刚,王玉光,孟婷.喷雾施药植株红外对靶试验[J].排灌机械,2009,27(4):237-246.
    崔志华.风送式喷雾机风筒结构改进及对飘移性能影响的研究[D].北京:中国农业大学,2007
    董红敏,朱志平,陶秀萍,等.冷风机雾滴分布特性试验研究[J].农业工程学报,2004,20(2):118-121.
    段彦丽,陶万强,曲良建,等.HcNPV和Bt复配对美国白蛾的致病性[J].中国生物防治,2008,24(3):223-238.
    冯利平,韩学信.棉花栽培计算机模拟决策系统(COTSYS) [J].棉花学报,1999,11(5):251-254.
    傅泽田,祁力钧,王秀.农药喷施技术的优化[M].北京:中国农业科学技术出版社,2002.
    傅泽田,王俊,祁力钧,等.果园风送式喷雾机气流速度场模拟及试验验证[J].农业工程学报,2009,25(1):69-74.
    郭文韬,曹隆恭.中国近代农业科技史[M].北京:中国农业科技出版社,1989.
    韩占忠.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008
    何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,44(3):473-479.
    何玉山,翁启勇,杨秀娟.国外温室害虫生物防治[J].世界农业,1997,5:28-29.
    冀荣华.变量施药系统中植物识别与定位方法研究[D].中国农业大学博士学位论文,2008.
    冀卫海.温室大棚蔬菜常见病虫害防治[J].现代农村科技,2012:25.
    李捷,冯丽芳.农业害虫物理防治研究进展[J].山西农业科学,2007,35(7):67-70.
    李莉,刘刚.基于蓝牙技术的温室环境监测系统设计[J].农业机械学报,2006,37(10):97-100.
    李慧,祁力钧,王沛.悬挂式常温烟雾机气流场与雾滴沉积三维模拟与试验[J].农业机械学报,2014,45(4):103-109.
    李式军.设施园艺学[M].北京:中国农业出版社,2002.
    刘慧,孟凡珍,贾庆虎等.无公害蔬菜病虫害的物理防治技术[J].山东蔬菜,2003(3):3940.
    刘明池.病虫害综合防治(IPM)技术发展与蔬菜的健康栽培[J].科技导报,2005,23(2):44-47
    吕宝乾,陈家骅,黄居昌等.设施园艺的生物防治[J].中国生物防治,2003,19(3):125-130.
    吕晓兰,傅锡敏,吴萍,等.喷雾技术参数对雾滴沉积分布影响试验[J].农业机械学报,2011,42(6):70-75.
    毛益进,王秀,马伟.农药喷洒雾滴粒径分布数值分析方法[J].农业工程学报,2009,25(增刊2):78-82.
    祁力钧,傅泽田.影响农药施药效果的因素分析[J].中国农业大学学报,1998,3(2):80-84.
    祁力钧,胡锦蓉,史岩,等.喷雾参数与飘移相关性分析[J].农业工程学报,2004,20(5):122-125.
    祁力钧,胡开群,莽璐,等.基于图像处理的雾滴检测技术[J].农业机械学报,2009,40(增刊):48-51.
    祁力钧,梁霞,冀荣华,等.基于超声波传感技术的温室草莓冠层三维重构与测量[J].农业机械学报,2013,44(9):193-197.
    祁力钧,赵亚青,王俊,等.基于CFD的果园风送式喷雾机雾滴分布特性分析[J].农业机械学报,2010,41(2):62-67.
    邱白晶,李成泉,汤伯敏,等.密闭空间药雾质量浓度分布试验[J].农业机械学报,2010a,41(2):58-61.
    邱白晶,沙俊炎,汤伯敏,等.密闭空间雾滴沉积状态参数的显微图像解析[J].农业机械学报,2008,39(2):55-58,111.
    邱白晶,张振磊,汤伯敏,等.烟雾机雾滴沉积分布的空间解析[J].农业机械学报,2010b,41(4):65-68,74.
    任争毅,潘娟娟,顾沛雯.设施园艺病虫害远程诊断与监控系统构建[J].西北农业学报,2010,19(3):62-65.
    沈佐锐,于新文.温室白粉虱自动计数技术研究初报[J].生态学报,2001,21(1):94-99.
    史春建,邱白晶,汤伯敏,等.基于高速图像的雾滴尺寸分布统计与运动分析[J].农业机械学报,2006,37(5):63-66.
    双龙,段立清,宋钢,等.苏云金杆菌及其微胶囊剂对落叶松毛虫的毒力及抗紫外线能力[J].中国森林病虫.2010,(5):11-14.
    孙德发.连栋塑料温室结构设计理论及工程应用研究[D].浙江:浙江大学,2002.
    孙国祥,汪小显,丁为民,等.基于CFD离散相模型雾滴沉积特性的模拟分析[J].农业工程学报,2012,28(6):13-19.
    孙小华.基于喷雾流场防飘移数值模拟研究[D].北京:中国农业大学,2006
    汤伯敏.3YC-50型常温烟雾机施药技术[J].植物保护,2000a,26(5):14-16.
    汤伯敏.日本常温烟雾机在华田间生产试验[J].中国农机化,2000b,(2):33-35.
    屠豫钦.关于农药与环境问题的反思[J].农药科学与管理,2001,22(3):32-36.
    王斌,王殿轩,唐多,等.甲酸乙酯的施药高度对仓内空间杀虫效果的影响[J].植物检疫,2011,25(4):22-26.
    王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    王洪涛,祁力钧,王俊.雾滴尺寸测定方法对比研究与进展分析[J].科技论文在线,2008,4:7.
    王俊.果园风送式施药技术喷雾质量模拟及优化研究[D].北京:中国农业大学,2008.
    王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007
    尉文彬.浅谈北方温室花卉常见病虫害种类及防治措施[J].河北林业科技,2008(4):53-54.
    吴德铭,郜冶.实用计算流利力学基础[M].哈尔滨:哈尔滨工程大学出版社,2006
    吴萍,傅锡敏.密闭空间冷烟雾滴沉积分布特性研究[J].农机化研究,2008,5:119-121.
    吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001
    杨林楠,郜鲁涛,林尔升,等.基于Android系统手机的甜玉米病虫害智能诊断系统[J].农业工程学报,2012,28(18):163-167.
    杨学军,严何荣,徐赛章,等.植保机械研究现状及发展趋势[J].农业机械学报,2002,33(6):129-137.
    岳瑾,董杰,郭喜红.北京市生物防治工作的现状与展望[J].中国生物防治,2008,24(增刊):138-143.
    张福墁,陈端生.欣欣向荣的中国设施园艺工程[J].农业工程学报,1996(增刊),12(10):1-6.
    张福墁.设施园艺与我国农村经济结构调整[J].农村实用工程技术,2001:11:2-3.
    张福墁.农业现代化浪潮中的中国设施园艺工程[J].农业工程学报,1998(增刊),14(12):1-5.
    张真和,李建伟.我国棚室覆盖材料的应用与发展(上)[J].长江蔬菜,1997a,7:1-4.
    张真和,李建伟.我国棚室覆盖材料的应用与发展(下)[J].长江蔬菜,1997b,8:1-5.
    张真和,李建伟.我国设施蔬菜产业的发展态势及可持续发展对策探讨[J].沈阳农业大学学报,2000,2:4-8.
    张真和,李建伟.我国设施园艺的发展态势及问题探讨[J].中国蔬菜,1999(3):1-4.
    张真和.高效节能日光温室园艺——蔬菜果树花卉栽培新技术[M].北京:中国农业出版社,1996.
    张铮,王艳平,薛桂香.数字图像处理与机器视觉:Visual C++与Matlab实现[M].北京:人民邮电出版社,2010
    章毓晋.图像分割[M].北京:科学出版社,2000
    赵鸿钧.塑料大棚园艺[M].北京:科学出版社,1984.
    郑加强.计算机辅助激光成像雾滴尺寸测量系统[J].计算机自动测量与控制,2000,8(6):16-20.
    郑建秋,曹坳程,郑翔等.京郊蔬菜病虫发生与防治技术[J].中国蔬菜,2012(9):28-32.
    郑建秋,卢志军,师迎春,等.BT2008-I型自控臭氧消毒常温烟雾施药机[J].中国蔬菜,2009,3:19-22.
    朱洪涛.中国古代的温室栽培技术[J].农业考古,1984,2:235-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700