用户名: 密码: 验证码:
直升机总体优化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究数据库技术和多目标、多学科优化技术在直升机总体设计中的应用。
     随着航空技术的迅猛发展和系统的日趋复杂,现代飞行器的设计理念和设计模式都发生了重大变化,从追求飞行性能发展到追求系统综合使用效能,从串行迭代的设计模式发展到集成并行设计模式。同时,飞行器的初期设计阶段即概念设计和初步设计阶段变得越来越重要。直升机总体设计面临的是一个庞大又复杂的系统,总体设计对研制工作具有全局性的影响,是直升机研制工作最重要的一个阶段。本文针对直升机总体设计的特点和多学科本质,开展了直升机总体数据库和人工神经网络技术在直升机概念设计阶段的应用研究,并建立了多学科设计优化框架,集成了与直升机总体设计相关的多个学科分析模型,进行了多学科设计优化技术在直升机初步设计阶段的应用研究。本文主要研究内容如下:
     构建了直升机总体参数数据库和部件重量数据库,完成了数据的筛选、录入和修正,并基于数据库提出了回归统计分析法和人工神经网络响应面法的直升机概念设计方法,通过对重量、旋翼、尾桨、机身以及功率等参数的分析,给出了一套用于确定直升机总体参数的简化计算方法及神经网络模型。
     建立了适合直升机总体参数优化设计的飞行性能计算模型,分析了包括悬停性能、爬升性能和前飞性能在内的基本飞行性能;并在遗传算法中引入了序和密度的概念,以及实数编码、锦标赛选择、精英保留策略、自适应算子等求解策略,经过改进的多目标遗传算法在求解Pareto解集时表现出更好的贴近性、均匀性和完整性;采用改进的遗传算法对直升机飞行性能进行多目标优化,提高了优化效率和决策的准确性。
     建立了适合桨叶外形优化设计的自由尾迹模型,该模型采用Weissinger-L升力面模型和PIPC求解方法,使得计算精度能满足总体设计阶段桨叶气动外形对性能影响的要求,又具有较少的计算耗时;以减少悬停和前飞状态下旋翼的需用功率为优化目标,采用改进的多目标遗传算法,同时在算法中加入并行运算技术和人工神经网络代理模型,进一步缩短了优化时间,提高了优化效率和优化质量。
     在建立和验证直升机重量估算、飞行性能、桨叶气动外形、操纵稳定性和机动性学科分析模型的基础上,分析了各学科之间的数据传递和耦合关系,确定设计变量、设计约束和优化目标,建立了直升机总体多学科设计优化模型。
     针对直升机总体多学科设计优化的特点和常规协同优化方法的收敛性差、计算时间长等缺陷,提出了基于代理模型的直升机总体参数多目标协同优化方法,并以UH-60A直升机为算例,与多学科可行法进行对比,验证了该优化方法的可行性和有效性。最后以AH-64武装直升机为背景样机,按照任务设计要求进行概念设计,给出武装直升机总体初步设计参数,并以此为基础,进行以“作战效能指标”为综合优化目标的总体多学科设计优化。优化结果验证了多目标协同优化方法应用于实际工程设计的可行性和有效性。本文建立的直升机总体多学科设计优化框架和优化策略可以应用于直升机总体参数综合优化设计,并有效提高了设计效率和设计质量。
The application of Database and Multi-Objective/Multidisciplinary Design Optimization tohelicopter conceptual/preliminary design is researched in this thesis.
     As the rapid development of aviation technology and the growing complexity of aerial systems,the concept and patterns of modern aircraft design have a great change that from focusing on flightperformances to focusing on the aircraft system effectiveness, from serial/iterative design pattern toparallel/integrative design pattern. Meanwhile, the early stage of aircraft design such as conceptualdesign and preliminary design is getting more and more important. Helicopter is a large complexsystem and conceptual design is the most important stage in helicopter research as it has an overallinfluence. According to the features and Multidisciplinary connection of helicopter preliminary design,the application of Helicopter Preliminary Parameter Database and Artificial Neural Networks tohelicopter conceptual design stage is researched, and the Multidisciplinary Design OptimizationFramework integrating with several subsystem analytical models is established to explore the efficacyof Multidisciplinary Design Optimization to helicopter preliminary design stage. The main contents ofthe thesis are as followings.
     The Helicopter Preliminary Parameter Database and Group Weight Database are built to collectmost helicopters in the world. After the selection, input and fixing data, a helicopter concept designmethod based on Regression Analysis and Artificial Neural Networks is established to analysis theparameters of group weights, main rotor, tail rotor, fuselage and power plant. A set of simplifiedalgorithms and neural networks are obtained to estimate helicopter overall parameters.
     The model of flight performance suitable for helicopter preliminary parameter optimization is setup to analysis the helicopter basic flight performance including hover, climb and level flight. Animproved rank-density-based multi-objective genetic algorithm with solution strategies such asreal-coded, tournament selection, elitism preservation and adaptive operators is developed to find anear-optimal, near-complete, uniformly distributed Pareto front. Based on this genetic algorithm,helicopter model of flight performance is optimized with a set of optimal solutions to helpdecision-making efficiently and accurately.
     A free wake model with Wessinger-L lifting surface and PIPC solution is set up with anappropriate precision in blade aerodynamic shape optimization and the less time consuming at thepreliminary design stage. As the optimization goal of minimizing the rotor required power in bothhover and level flight status, parallel computing technology and surrogate model of neural networks are applied to the improved multi-objective genetic algorithm to reduce time consuming and improvethe efficiency and quality.
     Based on the establishment and validation of helicopter group weight, flight performance, rotoraerodynamic shape, stability and control and maneuverability, the data flow and connections areanalyzed and the helicopter conceptual/preliminary multidisciplinary design optimization model is setup.
     As the characteristics of helicopter conceptual/preliminary multidisciplinary design optimizationmodel and the bad convergence and large computation of regular collaborative optimization method,the Multi-Objective Collaborative Optimization method with surrogate model is presented in thisthesis. UH-60A helicopter is taken as the example to show the feasibility and effectiveness comparingwith multidisciplinary feasible method. Finally, referring to AH-64attack helicopter, conceptualdesign of a new attack helicopter is undertaken according to the design requirements. Based on thisconceptual design, helicopter preliminary multidisciplinary design optimization with CombatEfficiency Index as the composite indicator is carried out. The results show that the helicopterconceptual/preliminary multidisciplinary design optimization framework can be effectively applied tooptimize helicopter design parameters, able to improve efficiency and quality.
引文
[1] Kriby M R, Mavris D N. A Method for Technology Selection Based on Benefit, AvailableSchedule and Budget Resources. SAE2000-01-5563, presented at the2000World AviationCongress, SanDiego, CA, October10-12,2000.
    [2] Kirby M R. A Methodology for Technology Identification, Evaluation, and Selection inConceptual and Preliminary Aircraft Design. Ph.D. Thesis, Georgia Institute of Technology,March2001.
    [3] Soban D S, Mavris D N. Methodology for Assessing Survivability Tradeoffs in the PreliminaryDesign Progress. AIAA2000-01-5589.
    [4] Andrew P B. The Role of Mission Requirements, Vehicle Attributes, Technologies andUncertainty in Rotorcraft System Design. Ph.D. Dissertation, Georgia Institute of Technology,March,2002.
    [5] AIAA White Paper. Current State of the Art: Multidisciplinary Design Optimization. AIAATechnical Committee for MDO, Washington, D.C.1991,9.
    [6]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究.博士论文,南京:南京航空航天大学,1999.
    [7] Joseph P G, Jean-Francois M B. A Summary of Industry MDO Applications and Needs. AIAAPaper98-4737.
    [8] Sobieszczanski-Sobieski J, Haftka R T. Multidisciplinary Aerospace Design Optimization:Survey of Recent Developments. AIAA Paper96-0711,1996,1.
    [9]张呈林,郭才根.直升机总体设计.北京:国防工业出版社,2006.
    [10]王慕强,郭才根.直升机优化设计.南京:南京航空航天大学出版社,1987.
    [11]隋洪涛,陈红全,黄明恪. Pareto基因算法多目标翼型优化设计.航空学报,2002,3Vol23No.2:177-179.
    [12]方卫国,师瑞峰.飞机方案多目标优化的Pareto遗传算法.北京航空航天大学学报.2003,8Vol29No.8:668-672.
    [13] Haiming L, Gary G Y. Rank-Density-Based Multiobjective Genetic Algorithm and BenchmarkTest Function Study. IEEE Transactions on Evolutionary Computation, Vol7, No.42003,4:325-343.
    [14]金东海,桂幸民.应用多目标遗传算法的叶栅气动优化设计.航空动力学报,2007,2Vol22, No.2:285~290.
    [15] Walsh J L, Bingham G J Riley M F. Optimization methods applied to the aerodynamic designof helicopter rotor blades [R]. NASA-TM-89155.1987.
    [16] Kumar S, Bassett D. Rotor performance optimization for future light helicopters [C]//TheAmerican Helicopter Society43rd Annual Forum. Saint Louis, Missouri: AHS, AnnualForum,1987,1:345-355.
    [17] Joanne L W, Katherine C Y, Jocelyn I P, etc. Integrated Aerodynamic/Dynamic/StructuralOptimization of Helicopter Rotor Blades Using Multilevel Decomposition. NASA TechnicalPaper3465.1995,2
    [18] Frank T, Darrell K Y. Boeing rotorcraft experience with rotor design and optimization.AIAA-98-4733.
    [19] McCulers L A. Aircraft Configurations Optimization Including Optimized Flight Profiles.Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization,Part1,1984,1.
    [20] Kroo I, R.P. Weston, T.A. Zang. Multidisciplinary Optimization Methods for PreliminaryDesign. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference and Exhibit,38th, and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee,FL, Apr.7-10,1997.
    [21] Kroo I. MDO Applications in Preliminary Design: Status and Directions. AIAA Paper97-1408,1997.
    [22] McCullers L.A. Aircraft Configurations Optimization Including Optimized Flight Profiles.Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization.Part1,1984,1.
    [23] ACSYNT. Overview and Installation Manual. ACSYNT Institute, Virginia Polytechnic Instituteand State University,1992,3.
    [24] Ridlon S. A Software Framework for Enabling Multidisciplinary Analysis and Optimization.AIAA96-4133,6thAIAA/NASA/ISSMO Symposium on Multidisciplinary analysis andOptimization.1996,9.
    [25] Townsend J C, Weston R P, Edison T. A Programming Environment for Distributed ComplexComputing. An Overview of the Framework for Interdisciplinary Design Optimization (FIDO)Project. TOPS Exhibit, NASA Langley1993.
    [26] Eason E, Write J. Implementation of Non-Hierarchic Decomposition for MultidisciplinarySystem Optimization. AIAA92-4822, AIAA/NASA/AirForce Multidisciplinary OptimizationConference,1992,9.
    [27] Kroo I, Manning V. Collaborative Optimization: Status and Directions. AIAA-2000-4721,8thAIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization.
    [28] Salas A O, Townsend J C. Framework Requirement for MDO Application Development.AIAA-29824740.6thAIAA/NASA.ISSMO Symposium on Multidisciplinary Analysis andOptimization, Sept,224,1998, Missouri.
    [29] Kodiyamlam S. Sobieszczanski Sobieski J. Multidisciplinary Design Optimization–SomeFormal Methods, Framework Requirements and Application to Vehicle Design. Int. J. VehicleDesign,2001, special issue:3~22.
    [30] Howard M A, Wayne R M. An Initiative in Multidisciplinary Optimization of Rotorcraft. Proc.2ndNASA/Airforce Symposium on Recent Advances in Multidisciplinary Analysis andOptimization (held in Hampton, VA), pp.109-144.
    [31] Howard M A, Wayne R M. Integrated Multidisciplinary Design Optimization of Rotorcraft.J.AIRCRAFT,1990, VOL.28, No.1.
    [32] Roberto C. Optimum Recent Applications of Design Optimization to Rotorcraft–A Survey.The55thAnnual Forum of the American Helicopter Society, Montreal, Canada,1999.
    [33] Schrage D P. Mavris D N, Wasikowski M. GTPDP: A Rotary Wing Aircraft Preliminary Designand Performance Estimation Program Including Optimization and Cost. AHS Forum,1986.
    [34] HESCOMP User’s Manual,1979,10.
    [35] VASCOMP User’s Manual,1990,10.
    [36] Schrage D P. Technology for Rotorcraft Affordability Through Integrated Product/ProcessDevelopment (IPPD).1999Alexander A. Nikolsky Lecture, Proceedings of the55thNationalForum of the American Helicopter Society, Montreal, Quebec, Canada, May25-271999.
    [37] Khalid A S. Development and Implementation of Rotorcraft Preliminary Design Methodologyusing Multidisciplinary Design Optimization. Ph.D. Thesis, Georgia Institute of Technology,2006,3.
    [38]黄俊,武哲,孙惠中.飞机总体优化设计的新进展.航空学报.2000,11Vol.26, No.6:481-487.
    [39]胡峪.飞机多学科设计优化及其应用研究.博士论文,西安:西北工业大学,2001,6.
    [40]陈小前.飞行器总体优化设计理论与应用研究.长沙:国防科学技术大学研究生院,2001,10.
    [41]林国梁,郭才跟.计算机辅助设计在直升机总体方案设计上的应用.南京航空学院学报,1985,3.
    [42]彭名华.直升机总体多学科设计优化研究.博士论文,南京:南京航空航天大学,2009,4.
    [43]张呈林,彭明华.直升机总体设计技术的新进展.航空制造技术.2010(13):56-60
    [44]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [45]吴养会,王乃信,王正中.一种新的改进遗传算法及其性能分析.西北农林科技大学学报(自然科学版).2004,9Vol32,No9:124-126
    [46]周北岳,邓斌,郭观七.基于小生境技术的改进遗传算法研究.机械强度.2002,24(1):013-016
    [47]牛向阳,倪前月,高成修.基于遗传算法和模拟退火算法的混合算法.昆明理工大学学报(理工版).2008,4Vol.33, No.2:25-28
    [48]方卫国,师瑞峰.飞机方案多目标优化的Pareto遗传算法.北京航空航天大学学报.2003,8Vol29, No8:668-672
    [49]隋洪涛,陈红全,黄明恪. Pareto基因算法多目标翼型优化设计.航空学报.2002,3. Vol23,No2:177-179
    [50] Crossley W A. Optimization for aerospace conceptual design through the use of geneticalgorithms[A]. Proceedings of the First NASA/DoD Workshop on Evolvable Hardware[C].Pasadena,1999:200-207.
    [51] Giovanni Lombardi, Giovanni Mengali, Francois Beux. A hybrid genetic based optimizationprocedure for aircraft conceptual analysis [J]. Optimization Engineering,2006(7),151-171
    [52]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1996:36~41.
    [53]徐惠民,余雄庆,薛飞.基于神经网络的飞机主要参数估算方法[J].南京航空航天大学学报,2003,2.48-52
    [54]聂蓉梅,夏人伟,陈万春.飞行器总体设计中主要参数的神经网络估算[J].北京航空航天大学学报,1999,25(6):655~659
    [55] LU Xin-lai, LIU Hu, WANG Gang-lin. Helicopter Sizing Based on Genetic AlgorithmOptimized Neural Network. CHINESE JOURNAL OF AERONAUTICS.2006,4Vol19No3:212-218.
    [56]李发生,周洲,恭喜盈.并行子空间优化在无人机总体设计中的应用.计算机仿真,2007,10Vol24, No.10:53~55.
    [57]张科施,李为吉.改进的并行子空间优化算法及其在飞机概念设计中的应用.西北工业大学学报,2008,2Vol26No.1:110~115.
    [58] Braun R D, Gage P, Kroo I. Implementation and Performance Issues in CollaborativeOptimization. AIAA/NASA/ISSMO, Symposium on Multidisciplinary Analysis andOptimization,6th, Bellevue, WA, Sept.4-6,1996AIAA Paper96-4017.
    [59] Braun R. Collaborative Optimization: An Architecture for Large-Scale Distributed Design. PhDthesis, Stanford University,1996,5, Department of Aeronautics and Astronautics.
    [60] Cormier T, Scott A, Ledsinger L, etc. Comparison of Collaborative Optimization toConventional Design Techniques for a Conceptual RLV. AIAA-2000-4885.
    [61] Alexandrov N, Lewis R M. Analytical Computational Aspects of Collaborative Optimizationfor Multidisciplinary Design. AIAA Journal,2002,40(20):301-309.
    [62] Alexandrov N, Kodiyalam S. Initial Result of an MDO Method Evaluation Study.AIAA-98-4884,1998.
    [63] Tappeta R V, Renaud J E. Multiobjective Collaborative Optimization. Journal of MechanicalDesign,1997,9(119):403~411.
    [64]穆雪峰.多学科设计优化代理模型技术的研究应用.硕士论文,南京航空航天大学.
    [65] Vladimir B, Giunta A A, Golovidov O. Reasonable Design Space Approach to ResponseSurface Applications. Journal of Aircraft, Vol.36, No.1, Jan-Feb1999:308-315.
    [66] Giunta A A, Dudley J M, Narducci R, etc. Noisy Aerodynamic Response and SmoothApproximations in HSCT Design.5thAIAA/USAF/NASA/ISSMO Symposium onMultidisciplinary Analysis and Optimization, Panama City, FL,1994, AIAA, Vol.2:1117-1128.
    [67] Giunta A A. Use of Data Sampling, Surrogate Models, and Numerical Optimization inEngineering Design. AIAA-2002-0538in Proceeding of the40thAIAA Aerospace SciencesMeeting and Exhibit, Reno, NV,2002,1.
    [68] Balabanov V, Kaufman M, Knill D L. Dependence of Optimal Structural Weight onAerodynamic Shape for a High Speed Civil Transport.6thAIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, Vol.1,September4-6,1996:599-612.
    [69] Koch P N, Mavris D, Mistree F. Multi-Level, Partitioned Response Surfaces for ModelingComplex Systems.7thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysisand Optimization, St. Louis, MO, AIAA, Vol.3, September2-4,1998:194-1968.
    [70] Koch P N, Simpson T W, Allen J K, etc. Statistical Approximations for MultidisciplinaryOptimization: The Problem of Size. Special Multidisciplinary Design Optimization Issue ofJournal of Aircraft, Vol.36, No.1,1999:275-286.
    [71] Alexandrov N, Dennis J E. Trust Region Framework for Managing the Use of ApproximationModels in Optimization. NASA TM112870,1997.
    [72] J H Jacobs, L F P Etman, F van Keulen, etc. Framework for Sequential ApproximationOptimization. Structural and Multidisciplinary Optimization,27(5):384-400,2004.
    [73]倪先平主编,直升机手册.北京:航空工业出版社,2003年.
    [74]中国航空信息中心《世界飞机手册》编写组编著.世界飞机手册.北京:航空工业出版社,2001.
    [75]朱剑英.智能系统非经典数学方法.武汉:华中科技大学出版社,2001.
    [76] Gen ay R, Qi M. Pricing and hedging derivative securities with neural networks bayesianregularization, early Stopping, and bagging [J]. IEEE Transactions on Neural Networks. Vol.12,No.4, July2001:726-734.
    [77]张胜,刘红星,高敦堂等.神经网络范化特性改善方法[J].计算机应用与软件,2005,22(12):12~14
    [78] Konak A, Coit D, Smith A. Multi-objective optimization using genetic algorithms: A tutorial [J].Reliability Engineering and System Safety,2006,91(9):992–1007.
    [79]7210任务办公室编,直升机气动力手册第二册.北京:国防工业出版社,1978,5.
    [80] Johnson Wayne. Helicopter Theory. USA: Dover Publications, Inc.31East2ndStreet, Minneola,N.Y.11501,1994.
    [81] Konak A, Coit D, Smith A. Multi-objective optimization using genetic algorithms: A tutorial [J].Reliability Engineering and System Safety,2006,91(9):992–1007.
    [82] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empiricalresults [J]. Evolutionary Computation2000;8(2):173-195.
    [83] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionaryalgorithm [J]. Swiss Federal Institute Technology: Zurich, Switzerland;2001.
    [84] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation.2002;6(2):182-97.
    [85] Lu H, Yen GG. Rank-density-based multiobjective genetic algorithm and benchmark testfunction study [J]. IEEE Transactions on Evolutionary Computation.2003;7(4):325-43.
    [86] Yen GG, Lu H. Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank anddensity estimation [J]. IEEE Transactions on Evolutionary Computation.2003;7(3):253-74.
    [87]刘淳安、王宇平,基于新模型的多目标遗传算法[J],西安电子科技大学学报(自然科学版),2005,4:260-263
    [88] Masahiro T, Hikaru W, Yasuyuki F, etc. GA-Based Decision Support System for MulticriteriaOptimization. IEEE0-7803-2559-1/951995:1556~1561.
    [89] LaMarsh Ⅱ W J, Walsh J L Rogers J L. Aerodynamic performance optimization of a rotorblade using a neural network as the analysis [R]. AIAA-92-4837,1992.
    [90]李春华.旋翼流场气动干扰计算与分析.硕士论文.南京航空航天大学.
    [91] Bagai A. Contributions to the mathematical modeling of rotor flow-fields using apseudo-implicit free-wake analysis [D]. Maryland:University of Maryland,1995.
    [92] Vatistas G H. New Model for Intense Self-Similar Vortices. Journal of Propulsion and Power,Vol14, No.4,2002:462~469.
    [93]赵景根,高正,徐国华.直升机旋翼/机身气动干扰的计算方法[J].南京航空航天大学学报,2000,32(4):369-374.
    [94] Anton J L. An Analytical Method for Predicting Rotor Wake Geometry. AIAA Paper69-196.
    [95] Scbeiman J. A tabulation of helicopter rotor-blade differential pressures, stresses, and motionsas measured in flight [R]. NASA TM X-952,1964.
    [96] Postsdam M, Yeo H, Johnson W. Rotor airloads prediction using loose aerodynamic/structuralcoupling [R]. Baltimore, MD: The American Helicopter Society60th Annual Forum,2004.
    [97]穆雪峰,姚卫星,余雄庆.多学科设计优化中常用代理模型的研究.计算力学学报,2005,10. Vol22No.5:608~612.
    [98]石磊,王学仁,孙文爽.试验设计基础.重庆:重庆大学出版社,1997.
    [99] Makay M D, Beckman R, Conover W J. A Comparison of Three Methods for Selecting Valuesof Input Variable in Analysis Output From A Computer Code. Technometrics,21,1979:234~239.
    [100] Johnson W. Performance and loads data form a wind tunnel test of a full-scale rotor with fourblade tip planforms. NASA Technical Memorandum81229USAAVRADCOM TR80-A-9,1980.
    [101] Totah J. A critical assessment of UH-60main rotor blade airfoil data. AIAA-93-3413,1993.
    [102] Bousman W G. Aerodynamic characteristics of SC1095and SC1094R8airfoils.NASA/TP-2003-212265,2003.
    [103] Tishchenko M N, Nedrasov A V, Radin A S. Helicopters: Selection of Design Parameters.Mashinostroyeniye Press, Moscow,1978.
    [104] Davis, Jon, Wisniewski J S. User’s Manual for HESCOMP–The Helicopter Sizing andPerformance Computer Program. Developed by Boeing Vertol Co. for NASA, D210-10699-2,1973,9, revised1974,11.
    [105] Scully M P, Shinn R A. Rotor Preliminary Design Trade-Offs for the Advanced ScoutHelicopter. Presented at the AHS National Specialists’ Meeting “Rotor System Design”,Philadelphia, Pa,1980,10.
    [106] Shinn R A. Group Weight Estimation for the Advanced Scout Helicopter Design Study. SAWEPaper No.1445, Presented at the40thAnnual Conference on Mass Properties Engineering,Dayton, Oh,1981,5.
    [107] Stepniewski W Z, Shinn R A. Soviet Vs. U.S. Helicopter Weight Prediction Methods.39thAnnual Forum of the American Helicopter Society, St. Louis, MO, May9-11,1983.
    [108]高正,陈仁良.直升机飞行动力学.北京:科学出版社,2003.
    [109]普劳蒂R W著,高正等译.直升机性能及稳定性和操纵性.北京:航空工业出版社,1990.
    [110]陈仁良.直升机飞行动力学数学建模及机动性研究.博士论文,南京:南京航空航天大学,1998.
    [111] Howlett J J. UH-60A Black Hawk Engineering Simulation Program, Volume I. NASACR-166309,1981,12.
    [112] Bell Helicopter Company. An Energy Method for Prediction of Helicopter Maneuverability.ADA021266,1971,12.
    [113] Alexandrov N M, Lewis R M. Comparative Properties of Collaborative Optimization and OtherApproaches to MDO, ASMO UK/ISSMO Conference on Engineering Design Optimization,MCB Press,1999.
    [114] Braun R D, Moore A A, Kroo I M. Collaborative Approach to Launch Vehicle Design. Journalof Spacecraft and Rockets,1997(34):478~486.
    [115] Braun R D, Kroo I M. Development and Application of the Collaborative OptimizationArchitecture in a Multidisciplinary Design Environment. Proceeding s of the ICASE/NASALangley Workshop on Multidisciplinary Design Optimization, Hampton, Virginia, March13-16,1995, published in1997:98~116.
    [116]余雄庆,薛飞,穆雪峰.用遗传算法提高协同优化方法的可靠性.中国机械工程,2003,14(21):1808~1811.
    [117]薛飞.飞行器设计的协同优化方法及其计算环境研究.硕士论文,南京航空航天大学,2004.
    [118] Lin J G. Analysis and Enhancement of Collaborative Optimization for Multidisciplinary Design.AIAA Journal,2004,42(2):348~360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700