用户名: 密码: 验证码:
电动助力与主动转向组合系统的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动转向系统(AFS)是未来汽车自动驾驶、行驶稳定性控制和舒适性操纵(变传动比操纵)的必然发展需求。目前,基于安全性考虑,采用人工操纵与电动叠加式组合控制转向的AFS已经投入实用。在转向助力方面,电动助力(EPS)已经得到迅速发展,成为小型轿车的首选。随着AFS的逐步投入应用和向中低档车的转移,将AFS与EPS组合则会成为未来需求,本文就是在这样的背景下,对AFS进行研究,对AFS+EPS的控制方法进行了研究。
     EPS和AFS是两个独立系统,将两者组合必然会产生相互影响,在研究方法上本文首先对各自独立的EPS与AFS系统进行研究,然后在此基础上再进行叠加组合,并根据组合后的相互影响修改控制模型,改善控制策略和算法。AFS可用于改善操作舒适性和稳定性的变传动比操作、行驶稳定性主动控制、自动驾驶等方面,本文所研究的AFS则主要是根据变传动比操作要求开发控制系统。
     本文的主要研究内容和结果概括如下:
     一、对独立的EPS系统进行了控制研究,设计了最大助力特性曲线,根据在试验台架上测得的0-95km/h车速的折线形助力特性曲线,得出了助力特性曲面图。在建立电动助力转向系统和助力电机数学模型的基础上,采用电流闭环控制策略(包括回正控制策略),进行了EPS典型工况的仿真和实车试验研究,试验表明装载了电动助力转向系统的实车可以有效地减轻驾驶员负担,提高了转向轻便性和回正性,为EPS+AFS组合系统的控制研究提供了基础。
     二、研发了具有自主知识产权的新型汽车主动转向传动装置,通过与宝马主动转向传动装置的对比分析表明:本研发新型装置具有传动精度高(提高4倍)、体积小(减小60%以上)、效率高(提高20%)的综合性能。
     三、研究并提出了基于操纵舒适性和操控稳定性的汽车行驶变传动比控制模型。
     四、对独立的AFS系统进行了控制方法研究,基于AFS系统的操纵性能要求,设计了一种内外环双层结构的控制器,提出了针对助转角电机的位置速度电流三位一体的闭环控制方法。在设计了主动转向系统软硬件的基础上,开发了控制程序,进行了仿真和试验台试验研究,试验表明该主动转向系统满足了低速转向轻便,高速转向精准的要求,提高了整车的可控性,为EPS+AFS组合系统的控制研究提供了基础。
     五、设计开发了电动助力与主动转向组合系统试验台。通过对EPS+AFS简单组合系统的仿真,并与独立系统的特性进行了对比,分析了EPS与AFS之间的相互影响(EPS对AFS几乎无影响),针对组合系统中AFS干预时整个转向系统的转向操纵力矩波动及左右转向时力矩差异变大的问题,对EPS+AFS组合系统的控制策略与算法进行了修改,采用力矩闭环控制策略和电流转速双闭环回正控制策略,使用专家PID算法和滑模变结构相结合的控制算法,进行了仿真与在环台架试验。试验表明组合系统优化后的力矩闭环控制策略和电流转速双闭环回正控制策略大大加强了整个转向系统的抗干扰能力,改善了转向盘转动时的平滑性及左右对称性;组合系统在有效减轻驾驶员操作负担的同时,也有效地改善了整车的转向特性,提高了汽车的操纵稳定性和主动安全性。
     六、在建立整车7自由度动力学模型的基础上,建立了Adams与matlab的联合仿真模型,进行了仿真试验验证,并与传统机械转向系统的整车动力学特性进行对比。结果表明,本文研发的新型组合转向系统的控制系统能使汽车在不同工况下的横摆角速度增益值基本保持定值,满足了低速轻便、高速稳定的要求。
AFS is the inevitable development demand of automatic-driving, stability control andcomfortable control (variable ratio control) in the future. Based on the consideration ofsecurity, AFS which is adopted the combination of manual control and electromotion to steerhas been used at present. In the area of assisted steering, EPS has developed rapidly andbecome the first choice of small car. Along with the gradual application and transfer tomedium-low-grade automobile of AFS, combination of AFS and EPS will become thedemand of future. Based on this background, the paper did research on AFS, and thecombination control method of AFS add EPS.
     Both EPS and AFS are independent system, combining them will make an effect oneach other. First, the paper studied EPS system and AFS system dividedly, and then stackedthem and amended the control model according to the infection by each other. AFS can beused to the area of variable ratio operation, active control of driving stability and automaticdrive which will improve cars’ comfortable control and stability. AFS in this paper mainlydeveloped control system according to the demand of variable ratio operation.
     The main research and achievement of this paper are as follow:
     (1) The individual EPS system was researched and current colsed-loop control strategiesincluding returnability control algorithm was adopted. Control program was empoldered andassistance characteristics curve was designed and tested on the test-bed in the range of0km/hto95km/h. Moreover, real vehicle experiment of EPS was studied under typical operationcondition. The experiment shows that car with EPS can reduce the burden of drivereffectively and improve steering handiness and returnability. It provided foundation of EPSand AFS combination system’s control model.
     (2) New AFS system with independent intellectual property was researched anddeveloped. Compared with BMW active steering system, the new AFS system has anintegrative performance with high transmission precision (increase4times), small volume(reduce more than60%) and high efficiency (improve20%).
     (3) Variable ratio control model which is based on handling comfort and stability wasresearched and presented.
     (4) The individual AFS system was researched. And according to the demand of AFS’scontrol performance,a double loop controller was designed. And then through adoptingcolsed-loop control method to control AFS motor, a feedback control strategy velocity was、 presented. Moreover, AFS control program was empoldered, simulated and experimented ontest-bed. The experiment shows that the AFS system comes to the meet with handiness in lowspeed and steering precise in high speed. It provided foundation of EPS and AFS combinationsystem’s control model.
     (5) EPS and AFS combination system was researched by setting up simulation about thetwo stacking independent system. And then comparing with each individual system oncharacteristic, the effect between EPS and AFS was analyzed. Aiming at the problem thatsteering torque of whole system is fluctuating and the torque’s difference between turning leftand right is enlarging during AFS’s intervention, control method about the combinationsystem were studied(EPS has seldom influence on AFS). Furthermore, the control method andstrategy were amended and trimmed and torque colsed-loop control strategy includingreturnability control algorithm was adopted. In addition, sliding mode control algorithm wasused and combination system control software and hardware were empoldered and tested onthe Hardware In-the-loop test bench. The test shows that the combination system can not onlyreduce the burden of driver effectively, but also improve the steering characteristic of thewhole car and enhance control stability and security.
     (6) Based on establishment of whole car’s7DOF dynamic model, Adams and matlabco-simulation model were set up and verified by simulative experiment. Then, it wascompared with mechanical steering system. The experiment shows that new compositesystem can keep the yaw velocity gain stable in different working condition andcommendably satisfy the request of handiness in low speed and stability in high speed.
引文
[1]魏建伟,魏民祥,赵万忠.融合主动转向功能的动力转向系统综述[J],机械科学与技术,2011,30(6):913-917
    [2] Koehn P,Eckrich M.Active Steering-the Bmw Approach Towards Modern Steering Technology
    [R].SAE Paper,2004-01-1105
    [3]陈德玲,主动前轮转向系统的控制研究[D],上海交通大学,2008
    [4] AVAK B.Modeling and control of a superimposed steering system[Dissertation].Atlanta:GeorgiaInstitute of Technology.2004.
    [5] Wolfgang Dick. Ent wicklung Einer Ueberlagerungslenkung [J].Automobile Technische Zeitschrift,2003(5)
    [6] Kurishige, M., Tanaka, H.,An EPS control strategy to improve steering maneuverability on slipperyroads[J]. SAE Technical Paper Series. No.2002-01-0618.
    [7]吕威,电动助力转向系统稳定性和电流控制方法研究[D],吉林大学,2010
    [8]李欣,电动助力转向系统操纵性能及控制策略研究[D],上海交通大学,2009
    [9] Amberkar, S., Kushion, M., Diagnostic development for an electric power steering system[J]. SAEpaper. No.2000-01-0819.2000(109),1134-1139.
    [10] Shimizu, Y., Kawai, T., Yuzuriha, J., Improvement in driver-vehicle system performance by varyingsteering with vehicle speed and steering angle: VGS (variable gear-ratio steering system)[J]. SAE Papers.No.1999-01-0395.1999(108),630-639.
    [11] Kurishige, M., Fukusumi, K., moue, N., A new current control strategy for EPS motors[J]. SAE Paper.2001(1),200-205.
    [12]肖闯,汽车稳定性控制方法仿真研究[D],湖南大学,2007
    [13]刘仁志,ESP对汽车转向的控制策略与仿真[D],吉林大学,2009
    [14]高斯,车辆动力学稳定性系统仿真及优化[D],华中科技大学,2006
    [15] Mcann,R.Variable effort steering for vehicle stability enhancement using an electric power steeringsystem[J]. SAE Technical Paper Series. No.2000-01-0817.1-5
    [16] Fujiwara, Y, Adachi, S., Steering assistance system for driver characteristics using gain schedulingcontrol. Proceedings of the American Control Conference(ACC).2002,857-862.
    [17] Liao, Y.G., Du, H. L, Modeling and analysis is of electric power steering system and its effect onvehicle dynamic behavior[J]. International Journal of Vehicle Autonomous Systems (IJVAS).2003,1(2),153-165.
    [18] Kushiro, L, Yamonoto, M., Vehicle behavior under the influence of steering dynamics by means oflow frequency torque input[J]. SAE Technical Paper Series. No.2006-01-0557.
    [19] Tanaka, H., Hitosugi, K., Kurishige, M., et al, Development of torque controlled active steering withimproving the vehicle stability for brushless EPS[J]. SAE Technical Paper Series. No.2007-01-1147.
    [20]吴文江,杜彦良,季学武,电动转向控制系统跟踪性能研究[J],机械工程学报,2004(4):77-80
    [21]吴文江,杜彦良,季学武等,汽车电动转向控制系统抗干扰策略的仿真[J],汽车工程,2003,25(4):364-3660
    [22]吴文江,杜彦良,季学武,陈奎元,增强电动转向系统助力跟踪性能的H∞控制[J],汽车工程,2002(4):465-467
    [23]肖生发,冯樱,刘洋,电动助力转向系统助力特性的研究[J],湖北汽车工业学院学报,2001,15(3):34-37
    [24]任延,杨家军,刘照,电动助力转向器硬件在环仿真系统的设计[J],湖北工学院学报,2004(6):44-46
    [25]刘照,杨家军,廖道训,基于动态分析的电动助力转向系统设计与研究[J],华中科技大学学报,2001(12):24-26
    [26]刘照,杨家军,廖道训,基于混合灵敏度方法的电动助力转向系统控制[J],中国机械工程,2003(10):874-876
    [27]唐新蓬,杨树,电动助力转向系对汽车角输入响应影响的仿真[J],汽车工程,2004(3):315-318
    [28]徐建平,何仁,苗立冬,徐勇刚,电动助力转向系统的建模与仿真分析,中国汽车工程学会,2003学术年会,SAE-C2003E206:654-661
    [29]施国标,林逸,陈万忠等,汽车电动助力转向试验台测试系统开发[J],测控技术,2005,24(3):23-25
    [30]张听,施国标,林逸,电动助力转向系统移线试验转向感觉评价与分析[J],汽车技术,2007(12):14-17
    [31]孟涛,余卓平,陈慧等,电动助力转向控制策略研究及试验验证[J],汽车技术,2005(5):26-30
    [32]孟涛,余卓平,陈慧,李莉,电动助力转向系统的回正与主动阻尼控制策略研究[J],汽车工程,2006,28(12):1125-1128
    [33]陈无畏,王妍,王启瑞等,汽车电动助力转向系统的自适应LQG控制[J],机械工程学报,2005,41(12):167-172
    [34]陈无畏,王妍,王其东等,电动助力转向与主动悬架系统多变量自适应集成控制[J],振动工程学报,2005,18(3):360-365
    [35]王其东,姜武华,陈无畏,赵君卿,主动悬架和电动助力转向系统机械与控制参数集成优化[J],机械工程学报,2008,44(8):67-72
    [36] Kim S J, Kwak B H, Chung S J, Kim J G. Development of an active front steering system[J].International Journal of Automotive Technology,2006,7(3):315-320.
    [37]Paul Y.Steer-by-wire Implication s for Vehicle Handling and Safety[D].Stanford University,USA,2005
    [38] Nagai M.,Shino M, Gao F. Study on integrated control of active front steer angle and direct yawmoment[J].JSAE Review (S0389-4304),2002,23(3):309-315.
    [39] Liebemann E K, Meder K, Schuh J, et al. Safety and performance enhancement: the Bosch electronicstability control (ESP)[C]. SAE.2004, No.2004-21-0060.
    [40] Palkovics L. Intelligent electronic systems in commercial vehicles for enhanced traffic safety [J].Vehicle System Dynamics.2001,35(4-5):227-289.
    [41] Sienel W. Estimation of the tire cornering stiffness and its application to active car steering [C].Proceedings of the36th Conference on Decision&Control.1997.
    [42] Ackermann J. Robust control prevents car skidding [J], Control Systems Magazine, IEEE.1996,17(3):23-31.
    [43] Huh Kunsoo, Seo Chanwon, Kin Joonyoung, et al Active Steering Control Based on the EstimatedTire Forces [C]. Rroc of ACC San Diego, California June1999,729-733
    [44] MotokiShino, Masao Na. Yaw-Moment Contro1of Electric Vehicle for Improving Handling andStability[J]. JSAE Review,2001,22(5):472-480
    [45] MaN.mar S. Koenig D. Vehicle Handling Improvement by Active Steering [J].Vehicle SystemDynamics,2002,38(3):212-242
    [46] He Junjie, Crolla David A, Martin C, et al Integrated Active Steering and Variable Torque DistributionControl for Improving Vehicle Handling and Stability [C]. SAE Paper2004-01-1071
    [47] NorManiha, YahayaMdSan. Sliding Mode Control of Active Car Steering with Various BoundaryLaver Thickness and Disturbance [C].IEEE,2007:2494-2499
    [48]晏蔚光,毋茂盛,余达太等.一种基于横摆力矩和主动前轮转向控制的制动稳定性控制方法[J].北京科技大学学报,2005,27(4):505-508
    [49]高晓杰,余卓平,张立军.机械式前轮主动转向系统的原理与应用[J],汽车工程,2006,28(10):918-921
    [50]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291
    [51]李强,施国标,林逸等.主动前轮转向控制技术研究现状与展望[J].汽车工程,2009,31(7):629-633
    [52]陈德玲,殷承良,陈俐.基于状态观测器的主动前轮转向研究[J].中国机械工程,2007,18(24):3019-3023
    [53]王其东,王霞,陈无畏等.汽车主动前轮转向和防抱死制动协调控制[J].农业机械学报,2008,39(3):2-4,18
    [54]蒋励余卓平高晓杰.宝马主动转向技术概述[J].汽车技术,2006:1-4
    [55] Yoshifumi Morita,Decoupling Control of Electric Power Steering System with Variable GearTransmission System1-4244-0136-4/06/$20.00@2006IEEE
    [56]迟永滨;向丹.汽车主动转向系统的主动转向传动装置[P],华南理工大学2008
    [57] Willy Klier,Concept and Functionality of the Active Front Steering System.Copyright2003SAEInternational
    [58]李彤.基于整车动力学分析的EPS建模控制研究[D].重庆大学,2008.
    [59]苗立东,何仁.基于相位补偿的电动助力转向系统控制方法[J].交通运输工程学报,2007,7(1):37-42
    [60] Ji-Hoon Kim,Jae-Bok Song.Control logic for an electric power steering system using assistmotor[J].Mechatronics,12(2002):447-459.
    [61](德)M·米奇克著.汽车动力学.桑杰译.北京:机械工业出版社,1981
    [62]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991
    [63]刘延柱,洪嘉振,杨海兴著.多刚体系统动力学[M].北京:高等教育出版社,1989.3
    [64]刘照,汽车电动助力转向系统动力学分析与控制方法研究[D],华中科技大学,2004
    [65]赵林峰.全工况电动转向助力系统建模控制与试验研究[D].合肥工业大学,2009.
    [66] JuN.min Wang,Raul G.Longoria.Coordinated Vehicle Dynamics Control with ControlDistribution[C],Proceedings of the2006American Control Conference,5348-5853
    [67]陆正熠,伦景光,倪佑民.汽车转向特性模拟计算的初步研究.汽车工程,19824(1):
    [68] Tingvall C, Krafft M, Kullgren A, et al. The effectiveness of ESP in reducing real life accident [C].ESV Conference.2003.
    [69]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究[D].吉林大学,2009
    [70]郭孔辉.预瞄跟随理论与人-车闭环系统大角度操纵运动仿真[J].汽车工程,1992年1月.
    [71]高振海.驾驶员最优预瞄加速度模型的研究[D].吉林工业大学,2000
    [72] Guo.K-H and H.Guan,Model of Driver/Vehicle Directional Control System [J].Vehicle SystemDynamics Vol.22,No.3-4,May/July,1993.
    [73]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].吉林工业大学,2000.
    [74] A.A.Badawy,F.Bolourchi,S.K. Gaut. ESteer system redefines steering technology. AutomotiveEngineering, SAE International,1997,105(9):15-18
    [75] K. Buchholz. TRW demonstrates electrically power steering and active roll control. AutomotiveEngineer,1996,21(12):104
    [76] T. Nakayama, E. Suda.The present and future of electric power steering.Int. J. of VehicleDesign,1994,15(Nos3/4/5):243-254
    [77]高尚勇,三相交流异步电机在汽车电动助力转向系统中的应用研究[D].重庆大学.2009
    [78]姚胜华.电动助力转向系统的研制[D].浙江大学.2004.
    [79]曾群.纯电动汽车电动助力转向系统机理研究与设计[D].南昌大学.2009
    [80]王建祥.ZF8098型电子伺服动力转向器[J].黄河汽车,1994(2):29-32
    [81]黄清敏.电动助力转向微型客车匹配及控制技术[D].湖南大学.2009
    [82]余志生.汽车理论[M],第3版.北京:机械工业出版社.2000:107-108.
    [83]田陶然,电动助力转向系统与整车匹配软件的设计开发[D].吉林大学,2009
    [84]王军.重型汽车转向系统的结构分析与设计方法研究[D].《武汉理工大学文》,2006
    [85]周冬林.电动助力转向系统仿真及控制系统设计[D],南昌大学,2009
    [86]申荣卫;林逸;台晓虹;施国标.电动助力转向系统建模与补偿控制策略[J].农业机械学报.2007
    [87] KIM J H,SONG J B.Control logic for an electric power steering system using assist motor[J].Mechatronics.2002(12):447–459.
    [88]雷雨成.汽车系统动力学及仿真.[M]北京:国防工业出版社,1997.8
    [89] Jun Tajima,Naohiro Yuhara,Shoichi Sano,Shigenori Takimoto.Effects of Steering SystemCharacteristic on Control Performance from the View Point of Steer-by-Wire System Design[C].SAEPaper No.1999-01-0821.
    [90]石国标,EPS控制策略[J],2008,重庆:转向系统学术峰会会议讲稿,2008
    [91]倪长明.GMR传感器在电动助力转向系统上的应用及仿真分析[D].重庆理工大学.2010
    [92]高勇,陈龙,袁传义等.电动助力转向系统回正控制研究[J].农业机械学报.2007,38(5):6-10.
    [93]程勇,王锋,罗石等.电动助力转向系统回正控制策略研究[J].汽车技术.2007(3):8-10.
    [94]景立群,季学武等.电动助力转向系统主动回正控制[J].汽车零部件.2008(9):9-12.
    [95] GB/T6323.1-1994,汽车操纵稳定性试验方法——蛇形试验
    [96] GB/T6323.4-94,汽车操纵稳定性试验方法——转向轻便性试验.
    [97] GB/T6323.2-1994,汽车操纵稳定性试验方法——转向瞬态响应试验.
    [98] GB/T6323.6-94,汽车操纵稳定性试验方法——稳态回转试验.
    [99]黄炳华,陈祯福.汽车主动转向系统的特性研究[J],武汉理工大学学报,2008年6月(Vol.30)No.3:421-428
    [100]原健钟.汽车主动转向系统研究[D].华南理工大学.2010
    [101]徐伟.汽车主动前轮转向系统研究[D],华南理工大学,2011
    [102]饶振纲.行星齿轮传动设计[M].北京:化学工业出版社.2003
    [103]徐正会,张元洪.车辆可变齿轮比转向系统之创新设计[C].台湾第19届机械工程研讨会论文集,2002.
    [104] Kasselmann T,Keranen T.Adaptive steering[J].Bendix Technical Journal,1969,(2):26~35
    [105] http://baike.baidu.com/view/1145722.htm
    [106]郭雪梅,贾宏光,冯长有.直流无刷电机位置跟踪伺服系统设计与仿真[J].计算机仿真,2008,11(25):297-301
    [107]王望予.汽车设计(第四版)[M].北京:机械工业出版社,2007年6月.
    [108]宗长富,麦莉,郭学立.汽车前轮电子转向系统[J].中国机械工程,2004(Vol.15)No.11:1022-1025.
    [109] Jeha Ryu,Ji-Sun lee,and Hosoo Kim. Evaluation of a Direct Yaw Moment Control Algorithm byBrake Hardware-in-the-Loop Simulation. AVEC,9836671:231-236
    [110]程军.汽车防抱死制动系统的理论与实践[M].北京理工大学出版社,1999
    [111]张长冲. ESP-汽车电子稳定系统仿真研究[D].山东大学,2007
    [112] A.T.van Zanten Bosch ESP System:5Years of Experience[C].SAE Technical Paper2000-01一1633.
    [113]华陈权,王天宇.单片机与PC机串行通讯时浮点数的处理[J].微型电脑应用.2003,19(5):49-51
    [114]杨同杰.基于DSP的直流伺服电机控制器设计与实现[D].南京理工大学
    [115] KOUMBOULIS F N,SKARPETIS M G.Robust control of cars with front and rear wheelsteering[J].IEEE Proceeding of Control Theory Application.2002,149(5):394-404.
    [116]SIENEL W.Robust decoupling for active car steering holds for arbitrary dynamic tirecharacteristics[C]. Proceedings of the3rd European Control Conference.1995:744-748,Italy.
    [117]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2000.
    [118]高东杰,谭杰等.应用先进控制技术[M].北京:国防工业出版社,2003.
    [119]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社.2003.
    [120]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990
    [121]刘金琨.滑模变结构控制MATLAB仿真[M].清华大人学出版社.2005.10.
    [122]陈宁,台永鹏,陈南.分数微积分理论在非线性车辆悬架滑模控制中的应用[J].动力学与控制学报.2009,7(3):258-263.
    [123]胡跃明.变结构控制理论与应用[M].科学出版社2003.
    [124]张克勤.滑模变结构控制理论及其在倒立摆系统中的应用研究[D].浙江大学.2003
    [125]冯樱,郭一鸣,王保华.基于多刚体动力学的主动转向系统建模与仿真[J].机械设计与制造,2012(1):179-181.
    [126]于蕾艳.线控转向系统的角传动比研究[J].农业机械学报,2007(8):190-192.
    [127] Abe,M.;Shibahata,Y;Shimizu,Y.Analysis on Steering Gain and Vehicle Handling Performance withVariable Gear-ratio Steering System(VGS)[J].FISITA paper F2000G349,2000
    [128]陈军.MSC.ADAMS技术与工程分析实例[M].北京:中国水利出版社,2008.
    [129]万岑.ADAMS和MATLAB在线控转向集成控制中的联合仿真[D].广西工学院,2011
    [130]张红党,商高高.基于主动前轮转向横摆角速度反馈控制的研究[J].机械设计与制造,2009(4):203-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700