用户名: 密码: 验证码:
岩溶区土壤CO_2浓度和土壤酶活性的变化规律及其关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酶是土壤生态系统中的重要组成部分,是土壤生物化学过程的积极参与者,是生态系统中物质循环和能量流动过程中最为活跃的生物活性物质,它在陆地生态系统地下生态过程中十分重要。土壤空气中的CO2浓度很高,通常是大气中CO2浓度的几十至上百倍。而对于岩溶区而言,在其特殊的地质背景条件下,土壤中的CO2浓度更是比非岩溶区土壤要高,但以往的研究主要集中在大气CO2浓度升高对土壤酶活性的影响,未研究过土壤CO2浓度及其变化对土壤酶活性的影响。但是这二者之间的关系对于揭示岩溶区土壤,及岩溶生态系统与其他生态系统的差别极有意义,也对岩溶区农业经济合理发展和生态恢复有重要的科学意义。
     本研究以重庆青木关岩溶槽谷区作为研究区,根据研究需要避免复杂因素干扰,选择受人类活动影响较少的,青木关地下河流域的上中游槽房湾至金竹湾一段为主要研究区。选取洼地、坡地两种地貌的草地、灌丛地和竹林地三种主要土地利用类型,在冬季、夏季、秋季三个季节分0-20cm、20-40cm、40-60cm、60-80cm进行取样和土壤CO2监测,监测其土壤酶活性。根据所得数据,揭示岩溶槽谷区土壤CO2浓度的垂直分布规律及季节变化规律;岩溶槽谷区士壤酶活性的垂直分布规律及季节变化规律;以及岩溶槽谷区土壤CO2浓度变化与土壤酶活性变化之间的相互关系,讨论土壤CO2浓度对土壤酶活性的影响。从而,为揭示岩溶区生态环境特殊性以及为岩溶区合理发展生态农业提供科学依据。
     通过为期一年的青木关野外土壤CO2浓度监测,得到了岩溶槽谷区不同地貌位置,不同土地利用方式下,在一年内的土壤CO2浓度变化趋势图。青木关岩溶槽谷区土壤CO2浓度变化的总体规律是:土壤CO2浓度值随着土层深度增加而增加,同一个月份中,最底层的土壤CO2浓度值最大,最表层的土壤CO2浓度值最小;不同地貌部位土壤CO2浓度不同,洼地的土壤CO2浓度高于坡地:不同植被类型条件下的土壤CO2浓度变化幅度不同,草地的土壤CO2浓度增幅最大,灌丛地次之,竹林地增幅最小。
     本研究检测了总共135个土壤样品当中的士壤蔗糖酶活性、脲酶活性、碱性磷酸酶活性、淀粉酶活性和过氧化氢酶活性,得到了这些土壤酶在不同季节、不同深度的活性值。发现土壤中蔗糖酶、脲酶、碱性磷酸酶、淀粉酶的总体规律为表现为表层酶活性大于底层酶活性,有的样品有由表层向底层逐渐降低的垂直分布形势。且这四种酶类的活性随季节变化发生变化。但土壤过氧化氢酶活性的分布规律非常不明显,表层和底层之间没有明显的变化趋势,各个季节之间也没有明显的规律变化。此外,洼地的采样点与位于坡地的采样点相比,具有更加明显的垂直和季节变化规律。
     通过SPSS进行相关分析、通径分析,其结果表明在青木关岩溶槽谷区,土壤CO2浓度与土壤酶活性具有一定的相关关系,不论从不同季节讨论还是从不同土壤层次讨论,土壤CO2浓度都会对土壤酶活性产生影响。从季节上分析,土壤CO2浓度对士壤酶活性的影响较大,并且主要表现在通过其他要素而产生的间接影响方面,其中对蔗糖酶和脲酶活性的影响强度最大,其强度绝对值高于0.3,而其他酶类仅为0.1至0.2。从不同土壤层次上分析,土壤CO2浓度对土壤酶活性的影响主要表现在直接影响方面,其中在各个层次对蔗糖酶和淀粉酶活性的影响强度最大,其强度绝对值在0.3左右。同时,不同土壤CO2浓度变化幅度也会对土壤酶活性产生影响,变幅较大的对土壤酶活性的影响较大,并主要通过对土壤酶的间接影响表现出来,变幅较小的对土壤酶活性的影响较小,并主要对土壤酶产生直接影响。因此,土壤CO2浓度对于水解酶类的蔗糖酶影响最大,对淀粉酶和碱性磷酸酶的影响次之,对脲酶的影响最小,而对于氧化还原酶类的过氧化氢酶影响较大。
     由于土壤CO2浓度对土壤酶活性的影响,岩溶区的土壤-植被系统甚至陆地生态系统也受到了相应的影响。土壤CO2浓度变化对蔗糖酶有积极影响,也促使他对生态系统产生积极影响;土壤CO2浓度变化对淀粉酶和碱性磷酸酶有抑制作用,也促使他们对生态系统产生消极影响;土壤CO2浓度变化对脲酶的抑制作用很小,因此对生态系统的影响较小;土壤CO2浓度变化对过氧化氢酶影响较大,也促使他对生态系统产生消极影响。
Soil enzymes are important components and active participants in the soil biochemical processes, and the most vigorous biological-active substances in the process of material circulation and energy flow in the soil ecosystem. They also are very important for the underground ecological processes of terrestrial ecosystems. The carbon dioxide concentration in karst soil is high, which is tens or hundreds times of atmospheric carbon dioxide concentration. The concentration of soil carbon dioxide in karst area is higher than the non-karst area, for the particularly geological background in the karst zone. Previous studies were focused on atmospheric carbon dioxide concentration affected on soil enzyme activities, rarely discussed the changes in soil carbon dioxide concentration and its effect on soil enzyme activities. It is important for revealing the difference in the soil and ecosystem between karst and non-karst zone, and the rational development of agricultural economy and ecological restoration in karst area to study on this relationship.
     Qingmuguan karst valley in Chongqing is selected as the study area in this research. According to research needs to avoid interference complex factors, we choose the less affected area by human activities, from the Caofangwan to Jinzhuwan which covers the upper and middle stream of Qingmuguan underground river as the main study zone. During winter, summer, and autumn;we select three main land use types at depressions and slopes:grassland, shrub land and bamboo land, and at 0-20cm,20-40cm,40-60cm,60-80cm we sampling and monitoring the soil carbon dioxide concentration,and then testing their soil enzymes activity. According to the data, we reveal the rule of the concentration of soil carbon dioxide in karst valley in the vertical distribution and seasonal variation; and reveal the rule of soil enzymes activity in karst valley in the vertical distribution and seasonal variation;and reveal the relationship between the concentration of soil carbon dioxide concentration and activity of soil enzymes in karst valley, and then discuss the soil carbon dioxide concentration effect on soil enzyme activities. Thus, it revealing the particularity of ecological environment in karst zone and providing scientific supporting for rational development of ecological agriculture in karst zone.
     By a one-year field monitoring of soil carbon dioxide concentration in Qingmuguan karst valley, we get the karst valley soil carbon dioxide concentration trend figure during one year, which is in the different landscape positions and different land use patterns. The variation of soil carbon dioxide concentration in Qingmuguan karst valley in the general is:With the increase of soil depth, soil carbon dioxide concentration increased. In a same month, the soil carbon dioxide concentration was highest at the bottom and lowest at the surface. The concentration of soil carbon dioxide is different in different landform position:soil carbon dioxide concentration at depressions is higher than at slopes. The variation amplitude of soil carbon dioxide concentration is different under different vegetation types:the grass soil carbon dioxide concentrations have the largest increase, followed by shrub land, and then bamboo ground.
     In this issue,135 soil samples were tested in soil invertase activities、soil urease activities、soil alkaline phosphatase activities、soil amylase activities and soil catalase activities. And we got these soil enzymes activity values in different seasons and different depths. This study fonud the general rule of soil invertase, urease, alkaline phosphatase and amylase were surface enzyme activities were larger than bottom, some samples to bottom by surface gradually decreasing vertical distribution situation. And the four enzyme activity changes with the season variety. But the variations of soil catalase activities in temporal and spatial distribution were not obvious. There was no obvious change rules form surface to bottom and no obvious change rules between each season. In addition, depression sites have more significant vertical distribution and seasonal variation than slope sites.
     The results show that soil carbon dioxide concentration has a certain relationship with soil enzyme activity in Qingmuguan karst valley by the correlation, path analysis. Even more, regardless of different seasons or different soil layers, the soil carbon dioxide concentration will have an impact on soil enzyme activities. From the seasonal analysis, soil carbon dioxide concentrations have larger effect on soil enzyme activities, and mainly indirectly impact the enzymes activities through the other chemical properties. This impact was most obviously on invertase and urease. The strength values of these two enzymes were over 0.3. and others were between 0.1 and 0.2. Soil carbon dioxide concentration shows directly influence on soil enzyme activities by analysis different layers of soil, and have most significant impact on invertase and urease in each layers, the value was about 0.3. The amplitude of soil air concentration would affect soil enzymes activities. Lager amplitude has a significant impact on soil enzymes activities and mainly shows indirectly influence on soil enzymes activities, otherwise smaller amplitude has a minor impact on soil enzymes activities and mainly shows directly impact. Thus. Soil carbon dioxide concentration has significant impact on soil hydrolysis enzymes, and mostly on invertase. Amylase and alkaline phosphatase were less affected, urease was least affected, and catalase of soil redox enzymes was greater affected by soil carbon dioxide concentration.
     The soil-vegetation system and terrain ecosystem was affected by soil carbon dioxide concentration, for its impacts on soil enzymes activities. The positive influence on invertase by variation of soil carbon dioxide concentration would attribute to promote the ecosystem status; the inhibition on amylase and alkaline phosphatase would cause negative influence on ecosystem; the variation of soil carbon dioxide concentration has less impact on urease., thus there was litter influence on ecosystem.And soil carbon dioxide concentration had greater impact on catalase and it would cause negative influence on ecosystem.
引文
[1]梁福源,宋林华,唐涛,等.路南石林土壤微生物含量及其对土壤CO2浓度的影响[J].中国岩溶,2003,22(1):6-11.
    [2]李林立.重庆金佛山表层岩溶生态系统夏季CO2浓度特征及其变化规律[D].重庆:西南大学,2003.
    [3]唐灿,周平根.北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动[J].中国岩溶,1999,18(3):213-217.
    [4]梁福源,宋林华,王富昌,等.路南石林地区土壤空气中CO2浓度分布规律与土下岩溶形态研究[J].中国岩溶,2000,19(2):180-187.
    [5]吴秀臣,孙辉,杨万勤.土壤酶活性对温度和CO2浓度升高的响应研究[J].土壤,2007,39(3):358-363.
    [6]辛丽花,韩世杰,郑俊强,等.CO2浓度升高对土壤微生物及土壤酶影响的研究进展[J].土壤通报,2006,37(6):1231-1235.
    [7]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [8]武术,林先贵,尹睿,等.大气CO2浓度升高对添加麦秸条件下稻田土壤酶活性的影响[J].生态与农村环境学报,2008,24(4):32-36.
    [9]陈利军,武志杰,黄国宏,周礼恺.大气CO2增加对土壤脲酶、磷酸酶活性的影响[J].应用生态学报,2002,13(10):1356-1357.
    [10]张玉兰,张丽莉,陈利军,等.稻-麦轮作系统土壤水解酶及氧化还原酶活性对开放式CO2浓度增高的响应[J].应用生态学报,2004,15(6):1014-1018.
    [11]张丽莉,张玉兰,陈利军,等.稻-麦轮作系统土壤糖酶活性对开放式CO2浓度增高的响应[J].应用生态学报,2004,15(6):1019-1024.
    [12]俞锦标,李春华,赵培道,等.贵州普定县岩溶地区土壤空气中CO2含量分布及溶蚀作用的研究[J].中国岩溶,1985,4:325-331.
    [13]王静,宋林华,向昌国,等.不同植被类型覆盖下土壤CO2浓度对洞穴景观的影响[J].地理研究,2004,23(1):71-77.
    [14]周玮,周运超.北盘江喀斯特峡谷区不同植被类型的土壤酶活性[J].林业科学,2010,46(1):136-141.
    [15]Zimmermann S,Frey B.Soil respiration and microbial properties in an acid forest soil:Effects of wood ash[J]. Soil Biology&Biochemistry,2002,34(11):1727-1737.
    [16]Mersi W,Schinner F.An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride[J].Biology and Fertility of Soils,1991,11:216-220.
    [17]Benitiez E, Melgar R,Melgar H, et al. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.)grown with olive cake mulches[J]. Soil Biology&Biochemistry,2000,32:1 829-1835.
    [18]Caldwell BA,Griffths RP,Sollins P.Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils[J].Soil Biology&Biochemistry,1999,31(12):1603-1608.
    [19]林天,何园球,李成亮,等.红壤旱地中十壤酶对长期施肥的响应[J].土壤学报,2005, 42(4):682-686.
    [20]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90.
    [21]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报(自然科学版),2005,33(6):87-92.
    [22]周礼恺.土壤酶的活性[J].土壤学进展,1980,8(4):9-15.
    [23]李丹,何腾兵,刘丛强,等.喀斯特山区土壤酶活性研究回顾与展望[J].贵州农业科学2008,36(2):87-90.
    [24]袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994:1-13.
    [25]覃勇荣,容珍,张康,等.石漠化生态恢复过程中土壤脲酶活性研究[J].现代农业科学,2009,16(1):41-48.
    [26]邹军,喻理飞,李媛媛.退化喀斯特植被恢复过程中土壤酶活性特征研究[J].生态环境学报,2010,19(4):894-898.
    [27]何跃军,刘锦春,钟章成,等.重庆石灰岩地区植被恢复过程土壤酶活性与植物多样性的关系[J].西南大学学报(自然科学版),2008,30(4):139-143.
    [28]陈祖拥,刘方,蒲通达,等.贵州中部喀斯特森林退化过程中土壤酶活性的变化[J].贵州农业科学,2009,37(2):47-50.
    [29]周玮,周运超,田春.花江喀斯特地区花椒人工林的土壤酶演变[J].中国岩溶,2008,27(3):240-245.
    [30]李为,余龙江,李涛,等.岩溶生态系统土壤酶活性的时空动态及其与土壤肥力的关系--以桂林丫吉村岩溶试验场为例[J].农业环境科学学报,2008,27(1):0260-0266.
    [31]周玮,周运超,李进.喀斯特地区土壤有机碳及其碳转化酶研究[J].水土保持研究,2009,16(1):84-89.
    [32]汪远品,何腾兵.贵州主要耕作土壤的脲酶研究[J].热带亚热带土壤科学,1994,3(4):226-232.
    [33]何跃军,钟章成,刘济明,等.石灰岩退化生态系统不同恢复阶段土壤酶活性研究[J].应用生态学报,2005,16(6):1077-1081.
    [34]李媛媛,周运超,邹军,等.黔中石灰岩地区典型灌木林土壤酶活性与植物物种多样性研究[J].水土保持研究,2010,17(3):245-249.
    [35]Korner C,Arnone JAⅢ.1992. Responses to elevated carbon dioxide in artificial tropical ecosystems[J].Science,257:1672-1675.
    [36]Dhillion SS.Roy J,Abrams M.Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem[J]. Plant and Soil,1996,187(2):333-342.
    [37]Moorhead DL, and Linkins AE. Elevated CO2 alters belowground exoenzyme activities in tussok tundra[J]. Plant Soil,1997.189:321-329.
    [38]Kandeler E, Tscherko D, Bardegett RD,et al. The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem[J].Plant Soil, 1998.202:251-262.
    [39]Larson JL,Zak DR,Sinsabaugh RL.Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone[J].Soil Science Society of America Journal,2002,66(6):1848-1856.
    [40]Mayr C.Miller M.Insam H.Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland[J].Journal of Microbiological Methods,1999.36(1/2):35-43.
    [41]袁道先,等.中国岩溶动力系统[M].北京:地质出版社,2002.
    [42]杨平恒.重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律[D].重庆:西南大学地理科学学院,2010.
    [43]袁文吴.土壤微生物活动下的氮、磷变化及对地下河水质的影响研究——以重庆青木关岩溶槽谷区为例[D].重庆:西南大学,2009.
    [44]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业出版社,1999:146-185.
    [45]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978:518-521.
    [46]刘克峰,韩劲等.土壤肥料学[M].北京:气象出版社,2002:127-134.
    [47]张琪,丛鹏,彭励.通径分析在Excel和SPSS中的实现[J].农业网络信息,2007,3:109-111.
    [48]梅守荣.土壤酶活性及其测定[J].上海农业科技,1985,(1):17-18.
    [49]Ebersberger D,Niklaus PA,Kandeler E.Long term CO2 enrichment stimulates N-mineralization and enzyme activities in calcareous grassland[J].Soil Biology & Biochemistry,2003,35(7):965-972.
    [50]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [51]刘子雄.退耕还林不同模式对土壤微生物和酶活性的影响研究[D].重庆:西南大学,2005.
    [52]赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-8.
    [53]Gorissen A,Cotufo MF. Elevated carbon dioxide effects on nitrogen dynamics in grasses,with emphasis on rhizosphere processes[J]. Soil Science Society of America Journal,1999,63(6):1695-1702.
    [54]宋志刚,何旭洪.SPSS 16实用教程[M].北京:人民邮电出版社,2008:132-143.
    [55]段正锋.岩溶区土地利用方式对土壤有机碳及团聚体的影响研究—以重庆市中梁山岩溶槽谷为例[D].重庆:西南大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700