用户名: 密码: 验证码:
喀斯特山地不同人工林土壤特性综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,喀斯特石漠化山地土壤质量退化已成为重要的生态环境问题,以人工造林为主的植被恢复已成为保持水土、涵养水源和提高土地生产力的主要途径。本研究选择贵州省普定县的5种不同类型人工林:8年生刺槐(Robinia pseudoacacia)林;8年、12年、18年生滇柏(Cupressus duclouxian)林及8年生刺槐滇柏混交林为研究对象,并以未造林地作为对照。本文探讨了土壤物理、化学特性及酶活性的季节动态特征,并采用土壤综合质量指数(SQ1)对不同类型人工林地进行综合评价。主要研究结果如下:
     (1)人工造林后土壤物理特性发生了明显的变化,主要表现为:土壤容重下降、土壤总孔隙度、毛管孔隙度、非毛管孔隙度、非毛管孔隙度/毛管孔隙度及田间持水量增加。
     (2)在不同类型人工林和不同林龄滇柏林地的土壤含水量、持水能力及吸水速率表现出相似的变化特征。采用y=a+b*ln (x)和y=a*(1+x)b能较好的拟合土壤持水能力及吸水速率。
     (3)不同人工林地之间的土壤速效养分季节变化存在显著差异(p<0.01),而土壤酶活性却在整个研究期间变化较相似,并且与土壤水分关系密切。统计分析结果表明,土壤理化特性与土壤酶活性之间具有相互依赖、相互作用的关系。(4)利用土壤综合评价指数(SQ1)对不同类型人工林土壤质量进行综合评价,其结果为:8年生刺槐林(0.353)>12年生滇柏林(0.263)>8年生刺槐滇柏混交林(0.164)>8年生滇柏林(0.004)>未造林地(0)>18年生滇柏林(-0.091)。
Degradation of soil quality has been an essential ecological enviroment concern in rocky desertification sites of Karst region. Artificial afforestation can not only conserve soil and water but also meliorate soil quality in Karst forest ecosystem. The thesis taking five types of plantations:locust (Robinia pseudoacacia-8a; RP8); Yunnan cypress(Cupressus duclouxiana-8a,12a,18a; CD8,CD12,CD18); pure and mixed stands of locust and Yunnan cypress (R.pseudoacacia-Cupressus duclouxiana-8a; RD8) and the controlling land (non-plantation area) as the research objects at Puding county, Guizhou province, discussed the dynamics of soil physical and chemical properties and enzyme activities and correlation between soil enzymatic activities and other factors, and then evaluated the soil quality of different types of plantations by adopting soil integrated quality index (SQI). The chief results were as follows:
     (1) Soil physical properties were meliorated obviously after artificial afforestation. Soil bulk density decreased, and soil total porosity, capillary porosity, non-capillary porosity, non-capillary porosity/capillary porosity (NCP/CP) and field moisture capacity increased, respectively.
     (2) Soil water properties such as soil water content, water capacity and water absorption rate all presented the similar order either in different types of plantations or in different ages of Yunnan cupressus stands. Logarithmic function and exponential function could describe dynamic characteristics.
     (3) The dynamic variations of soil available nutrients were different remarkably (p<0.01) but the changes of enzyme activities determined under six sites had a similar tendency throughout the study and associated with soil water content. Statistical analysis showed that there existed an interdependency and interaction between soil physical and chemical properties and soil enzyme activities.
     (4) Comparisons of soil integrated quality index (SQI) of different types of plantations indicated the relative order of soil quality as follows:RP8> CD12> RD8> CD8> CK> CD18, the SQI were 0.353,0.263,0.164,0.004, and -0.091 respectively taking CK as benchmark.
引文
[1]Ajwa H A, dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization [J]. Soil Biology & Biochemistry,1999,31:769-777.
    [2]Burns R G (Eds.). Soil Enzymes. Academic Press, NewYork.1978.
    [3]Burns R G, Dick R P (Eds.). Enzymes in the Environment:Ecology, Activity and Applications. Marcel Dekker, Inc., NewYork.2001.
    [4]Busto M D, Perez-Mateos M. Extraction of humic-p-glucosidase fractions from soil [J]. Biology and Fertility Soils, 1995,20:77-82.
    [5]Cao C, Jiang D, Teng X, et al. Soil chemical and microbiological properties along a chronosequence of Caraganamicrophylla Lam:plantations in the Horqin sandy land of Northeast China [J]. Applied Soil Ecology,2008,40(1): 78-85.
    [6]Dick W A, Cheng L, Wang P. Soil acid and alkaling phosphatase activities as pH adjustment indicators [J]. Soil Biology & Biochemistry,2000,32:1915-1919.
    [7]Dick W A, Tabatabai M A. Significance and potential uses of soil enzymes [M]. In:Metting Jr., F.B. (Eds.). Soil Microbial Ecology, Marcel Dekker, New York, NY, USA,1992,95-127.
    [8]Durin N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase like compounds in wastewater and soil treatment:a review [J]. Applied Catalysis B:Environmental,2000,28:83-99.
    [9]Frey S D, Knorr M, Parrent J L, Simpson R T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management,2004,196:159-171.
    [10]Fu B J, Liu S L, chen L D, et al. Soil quality regime in relation to land cover and slope position cross a highly modified slope landscape[J].Ecology restoration,2004,19:111-118.
    [11]Heribert Insam. Developments in soil microbiology since the mid 1960s [J]. Geoderma,2001,100:389-402.
    [12]Kandeler E, Palli S, Stemmer M, et al. Tillage changes microbial biomass and enzyme activities in particle size fraction of a Haplic Chernozem [J]. Soil Biology & Biochemistry,1999,31:1253-1264.
    [13]Kang H, Freeman C. Phosphatase and arylsulphatase activities in wetland soils:annual variation and controlling factors [J]. Soil Biology & Biochemistry,1999,31:449-454.
    [14]Kiss S, Pasca D, Dragan-Bulardan M (Eds.). Enzymology of Disturbed Soils. Elsevier, Amsterdam. 1998.
    [15]Li J, Zhao B Q, Li X Y, et al. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility [J]. Agricultural Sciences in China,2008,7(3):336-343.
    [16]Luo J, Tillman R W, White R E, et al. Variation in denitrification activity with soil depth under pasture [J]. Soil Biology & Biochemistry,1998,30(7):897-903.
    [17]Mathew E. Dornbush. Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biology & Biochemistry,2007,39:2241-2249.
    [18]Max M C, Wood M, Jarvis S C. A microplate flurimetric assay for the study of enzyme diversity in soils [J]. Soil Biology & Biochemistry,2001,33:1633-1640.
    [19]Mendes C, Bandick A K, Dick R P, et al. Microbial biomass and activities in soil aggregates by winter cover crops [J]. Soil Science Society of America,1999,63:873-881.
    [20]Miller M, Dick R P. Thermal stability and activities of soil enzymes as influenced by crop rotations [J]. Soil Biology & Biochemistry,1995,27:1161-1166.
    [21]Moscatelli M C, Lagomarsino A, De Angelis, et al. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2 [J]. Applied Soil Ecology,2005,30:162-173.
    [22]Pinay G, Barbera P, Carreras-Palou A, et al. Impact of atmospheric CO2 and plant life forms on soil microbial activities [J]. Soil Biology & Biochemistry,2007,39:33-42.
    [23]Ross D T, Saggar S, Tate K R. Elevated CO2 effects on carbon and nitrogen cycling in ryegrass/white colver turves of a Psammaquentsoil[J]. Plant and Soil,1996,182:185-198.
    [24]Saa A, Trasar-Cepeda M C, Carballas T. Soil P status and phosphomonoesterase activity of recently burnt and unburnt soil following laboratory incubation [J]. Soil Biology & Biochemistry,1998,30(3):419-428.
    [25]Sara E, Katarina H, Anna M. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring [J]. Applied Soil Ecology,2007,35:610-621.
    [26]Sardans J, Penuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology& Biochemistry,2005,37:455-461.
    [27]Sinsabaugh R L, Carreiro M M, Repot D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. [J]. Biogeochemistry,2002,60:1-24.
    [28]Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface and subsoil using various techniques [J]. Soil Biology & Biochemistry,2002,34:387-401.
    [29]Theng B K G, Aislabie J, Fraser. Bioavailability of phenenthrene intercalated into all alkylammonium-montmorillonitc clay [J]. Soil Biology & Biochemistry,2001,33:845-848.
    [30]Tiwari M B, Tiwari B K, Mishra R R. Enzyme activity and carbon dioxide evolution from upland and wetland rice soils under three agricultural practices in hilly regions [J]. Biol. Fertil. Soils,1989(7):359-364.
    [31]Van Ginkel J H, Gorissen A, Polci D. Elevated atmospheric carbon dioxide concentration:Effects of increased carbon input in alolium perennesoilon microoganisms and decomposition [J]. Soil Biology & Biochemistry,2000,32:449-456.
    [32]Verburg P S J, Van Dam D, Hefting M M, et al. Microbial transformations of C and N in a boreal forest floor as affected by temperature [J]. Plant and Soil,1999,208:187-197.
    [33]Waldrop M P, Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions [J]. Biogeochemistry,2004,67:235-248.
    [34]Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage throughchanges in microbial enzymatic activity [J]. Ecological Applications,2004,14:1172-1177.
    [35]Zak D R, Pregitzer K S, Curtis P S, et al. Elevated atmospheric CO2 and feedbacks between carbon and nitrogen cycles.[J]. Plant and Soil,1993,151:105-117.
    [36]Zornoza R, Guerrero C,Mataix-Solera J, et al. Assessing air-drying and rewetting pretreatment effect on some soil enzyme activities under Mediterranean conditions [J]. Soil Biology & Biochemistry,2006,38:2125-2134.
    [37]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区土壤质量质量对生态恢复的响应[J].水土保持研究,2005a,12(3):22-26.
    [38]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005b,12(3):31-34.
    [39]安韶山,黄懿梅.黄土丘陵区柠条林改良土壤作用的研究[J].林业科学,2006,42(1):70-74.
    [40]白占国,万国江.贵州碳酸盐岩区域的侵蚀速率及环境效应研究[J].土壤侵蚀与水土保持学报,1998,4(1):1-7,46.
    [41]蔡运龙.中国西南喀斯特山区的生态重建与农林牧业发展:研究现状与趋势[J].资源科学,1999,21(5):37-41.
    [42]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [43]陈爱玲,陈青山,蔡丽萍.杉木建柏混交林土壤质量的研究[J].南京林业大学学报(自然科学版),2001,25(3):4346.
    [44]陈祖拥,刘方,蒲通达,等.贵州中部喀斯特森林退化过程中土壤酶活性的变化[J].贵州农业科学,2009,37(2):47-50.
    [45]程积民,万惠娥,王静,等.黄土丘陵半干旱区天然草地土壤水分调控研究[J].草地学报,2003,11(4):296-300.
    [46]崔晓东,侯龙鱼,马风云卜,等.黄河三角洲不同土地利用方式土壤养分特征和酶活性及其相关性研究[J].西北林学院学报,2007,22(4):66-69.
    [47]董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J].生态环境,2008,17(5):2050-2058.
    [48]杜峰,程积民,山仑.乔灌草植被条件下土壤水分动态特征[J].水土保持学报,2002,16(1):91-94.
    [49]杜伟文,欧阳中万.土壤酶研究进展[J].湖南林业科技,2005,32(5):76-82.
    [50]范阿南,杨凯,刘春华,董茜,辽东山区3种次生林群落土壤酶活性的季节动态[J].东北林业大学学报,2009,37(1):52-54,71.
    [51]范君华,刘明.塔里木极端干旱区5种土地利用方式对土壤微生物多样性与酶活性的影响[J].农业环境科学学报,2006,25(增刊):131-135.
    [52]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246.
    [53]高雪峰,韩国栋,张功,等.荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究[J].草业科学,2007,24(1):10-13.
    [54]耿玉清,白翠霞,赵铁蕊,等.北京八达岭地区土壤酶活性及其与土壤质量的关系[J].北京林业大学学报,2006,28(5):7-11.
    [55]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [56]郭蓓,刘勇,李国雷,等.飞播油松林地土壤酶活性对间伐强度的响应[J].林业科学,2007,43(7):128-133.
    [57]郭泺,夏北成,倪国祥.不同森林类型的土壤持水能力及其环境效应研究[J].中山大学学报(自然科学版),2005,44:327-330.
    [58]郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474.
    [59]何斌,贾黎明,金大刚,等.广西南宁马占相思人工林土壤质量变化的研究[J].林业科学,2007,43(5):10-16.
    [60]何斌,温远光,袁霞等.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,(3):21-26.
    [61]何跃军,钟章成,刘济明,等.石灰岩退化生态系统不同恢复阶段土壤酶活性研究[J].应用生态学报,2005,16(6):1077-1081.
    [62]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26.
    [63]黄宇,汪思龙,冯宗炜等.不同人工林生态系统林地土壤质量评价[J].应用生态学报,2004,15(12):2199-2205.
    [64]姜志强,高捍东.贵州困难立地植被恢复问题与对策[J].西南林学院学报,2008,28(3):20-23.
    [65]焦燕,赵江红,徐柱.农牧交错带开垦年限对土壤理化特性的影响[J].生态环境学报,2009,18(5):1965-1970.
    [66]李德生,张萍,张水龙,等.黄前库区森林土壤蓄水能力研究[J].南京林业大学学报(自然科学版),2004,28(1):25-28.
    [67]李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应—Ⅰ土壤酶活性的响应[J].土壤通报,2003,34(5):463-468.
    [68]李国雷,刘勇,李瑞生,等.油松人工林土壤质量的演变[J].林业科学,2008,44(9):76-81.
    [69]李品荣,陈强,常恩福,等.滇东南石漠化山地不同退耕还林模式土壤地力变化初探[J].水土保持研究,2008,15(1):65-71.
    [70]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社.2008.
    [71]刘广深,徐冬梅,许中坚,等.用通径分析法研究土壤水解酶活性与土壤性质的关系[J].土壤学报,2003,40(5):756-762.
    [72]刘建新.不同农田土壤酶活性与上壤养分相关关系研究[J].土壤通报,2004,35(4):523-525.
    [73]刘江华,刘国彬,陈淑芸.刺槐林地土壤水分与林下植物生物量的关系[J].水土保持研究,2008,22(3):43-46.
    [74]刘明国,苏芳莉,马殿荣,等.多年生樟子松人工纯林生长衰退及地力衰退原因分析[J].沈阳农业大学学报,2002,33(4):274-277.
    [75]刘苑秋,杨家林,杜天真.重建森林对退化红壤土壤酶特性影响[J].江西农业大学学报(自然科学版),2002,24(6):791-795.
    [76]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913.
    [77]龙健,李鹃,腾应,等.贵州高原喀斯特环境退化过程土壤质量的生物学特性研究[J].水土保持学报,2003,17(2):47-50.
    [78]龙健.喀斯特山区土地利用方式对土壤质量演变的影响[J].水土保持学报,2002,16(1):76-79.
    [79]卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    [80]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [81]罗海波,宋光煜,何腾兵,等.贵州喀斯特山区石漠化治理过程中土壤质量特性研究[J].水土保持学报,2004,6(18):112-115.
    [82]聂大刚,王亮,尹澄,等.白洋淀湿地磷酸酶活性及其影响因素[J].生态学杂,2009,28(4):698-703.
    [83]潘新丽,林波,刘庆.模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J].应用生态学报,2008,19(8):1637-1643.
    [84]潘云,吕殿青.土壤容重对土壤水分入渗特性影响研究[J].灌溉排水学报,2009,28(2):59-61,77.
    [85]庞学勇,刘庆,刘世全,等.川西亚高山云杉人工林土壤质量性状演变[J].生态学报,2004a,24(2):261-267.
    [86]庞学勇,刘庆,刘世全,等.川西亚高山针叶林植物群落演替对生物学特性的影响[J].水土保持学报,2004b,18(3):45-48.
    [87]齐泽民,杨万勤.苞箭竹根际土壤微生物数量与酶活性[J].生态学杂志,2006,25(11):1370-1374.
    [88]邱莉萍,刘军,王益权,等.土壤酶活性与土壤质量的关系研究[J].植物营养与肥料学报,2004,10(3):277-280.
    [89]全国农业技术推广服务中心编著.土壤分析技术规范[M].北京:中国农业科技出版社,2006.
    [90]佘雕,吴发启,宋娟丽,等.柠条林地土壤酶活性特征研究[J].干旱地区农业研究,2009,27(2):239-243.
    [91]沈慧,姜凤岐,杜晓军,等.水土保持林土壤质量及其评价指标[J].水土保持学报,2000,14(2):60-65.
    [92]宋会兴,苏智先,彭远英.山地土壤质量与植物群落次生演替关系研究[J].生态学杂志,2005,24(12):1531-1533.
    [93]孙翠玲,郭玉文,佟超然,等.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学,1997,33(6):488-497.
    [94]孙翠玲,朱占学,王珍,等.杨树人工林退化及维护与提高土壤质量技术的研究[J].林业科学,1995,31(6):506-511.
    [95]孙辉,吴秀臣,秦纪洪,等.川西亚高山森林土壤过氧化氢酶活性对升高温度和CO2浓度的响应[J].土壤通报,2007,38(5):891-894.
    [96]孙启祥,张建锋,Franz M.不同土地利用方式土壤化学性状与酶学指标分析[J].水土保持学报,2006,20(4):98-101,159.
    [97]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤质量的作用[J].植物营养与肥料学报,2003,9(4):406-410.
    [98]唐凯,贺敏.贵州喀斯特山地植被恢复技术措施[J].防护林科技,2007,3:134,142.
    [99]万忠梅,宋长春,郭跃东等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008,28(12):5980-5986.
    [100]王兵,刘国彬,薛萐,等.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009,17(3):282-287.
    [101]王健,刘作新.油松刺槐混交林土壤生物学特性研究[J].干旱区研究,2004,21(4):348-352.
    [102]王金乐,林昌虎,何腾兵.贵州喀斯特山区石漠化生态环境背景与生态重建[J].水土保持学报,2006,13(5):148-150, 153.
    [103]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006,117-141.
    [104]吴秀臣,孙辉,杨万勤,等.川西亚高山红桦幼苗土壤蔗糖酶活性对温度和大气二氧化碳浓度升高的响应[J].应用生态学报,2007,18(6):1225-1230.
    [105]熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,10(4):416420.
    [106]徐惠风,刘兴土.长白山区沟谷沼泽乌拉苔草(Carex meyeriand)湿地土壤酶活性与氮素、土壤微生物相关性研究[J].农业环境科学学报,2009,28(5):946-950.
    [107]严昶升.土壤质量研究方法[M].北京:农业出版社,1988.
    [108]杨涛,徐慧,李慧,等.樟子松人工林土壤养分、微生物及酶活性的研究[J].水土保持学报,2005,19(3):50-53.
    [109]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
    [110]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.
    [111]杨志勇,李刚,姚成,等.苏北大丰生态工程区两种植物群落土壤酶活性比较[J].生态学报,2009,29(7):3649-3657.
    [112]余彬彬,金则新,李钧敏.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性[J].西北林学院学报,2008,23(5):30-33.
    [113]曾馥平,彭晚霞,宋同清,等.桂西北喀斯特人为干扰区植被自然恢复22年后群落特征[J].生态学报,2007,27(12):5110-5119.
    [114]张成娥,刘国彬,陈小利.坡地不同利用方式下土壤微生物和酶活性以及生物量特征[J].土壤通报,1999,30(3):101-103.
    [115]张猛,张健.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,21,347-351.
    [116]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90.
    [117]赵谷风,蔡延马奔,罗嫒媛等.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报,2006,26(10):3286-3295.
    [118]赵雪梅,孙向阳,王海燕,等.三倍体毛白杨速生林土壤养分因子及pH值动态变化[J].生态学报,2010,30(13):3414-3423.
    [119]中国林科院,森林土壤可抑制气候变暖2008-11-03. http://www.forestry.gov.cn/distribution/ 2008/11//03/n_sjly-2008-11-03-580.html.
    [120]周广胜,张新时,郑元润.中国陆地生态系统对全球变化的反应模式研究进展[J].地球科学进展,1997,12(3):270-275.
    [121]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [122]周玮,周运超.北盘江喀斯特峡谷区不同植被类型的土壤酶活性[J].林业科学,2010,46(1):136-141.
    [123]朱守谦.喀斯特森林生态研究[M].贵阳:贵州科技出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700