用户名: 密码: 验证码:
刚—柔耦合问题与空间多杆柔性机械臂的动力学建模理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对柔性多体系统中的刚-柔耦合问题以及空间多杆柔性机械臂的动力学建模理论进行了研究。
     在柔性多体系统动力学中,传统的零次近似耦合模型在建模过程中直接套用了结构动力学中的小变形假设,忽略了大位移刚体运动与小位移弹性变形之间的高阶耦合项。当系统的大范围运动为高速时,零次近似耦合模型的计算结果将出现发散。为此,国内外众多学者对刚-柔耦合问题进行了研究,并提出了较为精确的一次近似耦合模型。一次近似耦合模型考虑了柔性体大范围刚体运动与其自身变形之间的耦合,解决了零次近似耦合模型的“动力刚化”问题,然而其在建模过程中采用了小变形假设,对动力学方程进行了简化,因此无法处理柔性体的大变形问题。为此,本文基于一次近似耦合模型的理论基础,提出了更为精确的一次耦合模型。
     本文以做大范围旋转运动的中心刚体-柔性悬臂梁系统为例对刚-柔耦合建模理论进行了研究,考虑柔性梁横向弯曲变形以及纵向伸长变形,且在纵向位移中计及由于横向变形而引起的纵向缩短项,即非线性二阶耦合变形项。采用假设模态法描述变形,运用第二类Lagrange方程建立了系统的一次耦合动力学方程。在方程中保留了一次近似耦合模型中所省略的二阶耦合变形项的高阶量,由此得到的动力学方程不仅能适用于柔性梁的小变形问题,也同样适用于大变形问题。在此理论基础上,将模型拓展到中心刚体-变截面梁系统以及梁上任意位置带有附加质量的中心刚体-悬臂梁系统。
     在一次近似耦合模型的基础上,对做大范围旋转运动的中心刚体-悬臂梁系统的横向弯曲固有频率进行了分析。对动力学方程进行了无量纲化,从固有频率的角度解释了零次近似耦合模型发散的机理。研究了悬臂梁上附加质量的位置、质量、转动惯量对系统固有频率的影响以及变截面梁的结构变化对系统固有频率的影响。
     在一次耦合模型的基础上,对做大范围旋转运动的中心刚体-悬臂梁系统的动力学特性进行了研究,比较了一次耦合模型、一次近似耦合模型、零次近似耦合模型之间的差异,并验证了一次耦合模型在大变形条件下的适用性。
     基于一次耦合模型的理论基础,对由n个柔性杆和n个柔性铰组成的空间多杆柔性机械臂的动力学建模理论进行了研究。不但考虑了杆件的拉伸、弯曲以及扭转变形,且在纵向位移中计及由于横向变形而引起的纵向缩短项,即非线性二阶耦合变形项。将柔性铰的柔性简化为线弹性扭簧,考虑柔性铰的质量,运用递推拉格朗日动力学方法得到空间多杆柔性机械臂的刚-柔耦合动力学方程。在此基础上编制了通用的空间柔性机械臂的动力学仿真软件,并对平面单杆柔性机械臂、空间多杆柔性机械臂、平面柔性折杆、平面柔性曲杆进行了动力学仿真计算。通过数值仿真算例验证了理论模型的正确性,说明了在建模过程中考虑杆件的“动力刚化”效应、扭转效应、以及铰的柔性的重要性。
In this dissertation, the rigid-flexible coupling problem of the flexible multibody system and the dynamic modeling theory of multi-link spatial flexible manipulator arms are studied.
     In the flexible multibody system dynamics, the traditional zero order approximate coupling model applies mechanically the supposes of small deformation in structure dynamics, but ignores the high order coupling term between the large displacement rigidbody motion and the small displacement elastic deformation. When the large overall motion of the system is at high speed, the result of the zero order approximate coupling model will be divergent. So, scholars pay more attention to the rigid-flexible coupling problem, and a more accurate model, which is called the first order approximate coupling model, is proposed. The coupling effect between the large rigidbody motion and its own deformation is considered in the first order approximate coupling model. But it uses the supposes of small deformation in the modeling to simplify the dynamical equation, and can't deal with the large deformation problems. Thus, a more accurate model, which is called the first order coupling model, is proposed based on the theory of the first order approximate coupling model in this dissertation.
     To study the modeling theory of the rigid-flexible problem, a hub-beam system with large overall motion is researched in the dissertation. Both the transversal deformation and the longitudinal deformation of the flexible beam are considered. And the non-linear coupling term, also known as the longitudinal shortening caused by transversal deformation, is considered in the total longitudinal deformation. The approach of assumed modes is used to describe the deformation of the beam. The first order coupling dynamical equations of the system are established via employing the second kind of Lagrange's equation. The high order quantities of the non-linear coupling term, which are omitted in the first order approximate coupling model, are retained in the equations. Thus, the dynamical equations can be used not only in the small deformation problems, but also in the large deformation problems. Based on this theory, the model can be extended to the hub-variable section beam system and the hub-beam system with a payload on the arbitrary position of the beam.
     The natural frequencies of the hub-beam system with large overall motion are studied though the transversal bending vibration analysis based on the first order approximate coupling model. For convenience of discussion, dimensionless parameters are used in the dynamical equations. The divergence mechanism of the zero order approximate coupling model is explained from the angle of the natural frequencies. Then, the influences of the position, mass, rotary inertia of the payload and the structure change of the variable section beam on the natural frequencies of the system are studied.
     The dynamic characteristics of the hub-beam system with large overall motion are studied based on the first order coupling model. The differences among the first order coupling model, the first order approximate coupling model and the zero order approximate coupling model are compared. And the applicability of the first order coupling model under large deformation situation is verified.
     Based on the theory of the first order coupling model, the dynamic modeling theory of the multi-link spatial flexible-link flexible-joint manipulator arms is investigated. The system considered here is an n-flexible-link manipulator driven by n DC-motors through n revolute flexible-joints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the link's flexibility, both the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrangian equations. In the modeling the nonlinear description of the deformation field of the flexible link is adopted, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples including a planar single-link flexible manipulator, two multi-link spatial flexible manipulators, a planar flexible fold link, and a flexible curve link are given to validate the algorithm presented and to indicate that the dynamic stiffening effects, the torsional effects, the flexibility of the structure all have significant influence on the dynamics of the manipulator.
引文
[1]章定国.火箭发射系统动力学仿真与控制研究[D].南京理工大学博士学位论文,1998.
    [2]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社.1996.
    [3]Wasfy T M, Noor A K. Computational strategies for flexible multibody systems[J]. Appl Mech Rev,2003,56(6):553-613.
    [4]Wallrapp O, Schwertassek R. Representation of geometric stiffening in multibody system simulation[J]. Int Journal for Numerical Methods in Engineering,1991.32: 1833-1850.
    [5]Banerjee A K, Lemak M E. Multi-flexible body dynamics capuring motion-induced stiffness[J]. Journal of Applied Mechanics,1991,58:766-775.
    [6]Banerjee A K. Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints[J]. Journal of Guidance, Control and Dynamics,1994,16(6): 1092-1100.
    [7]Ryu J, Kim S S. A general approach to stress stiffening effects on flexible multibody dynamic systems[J]. Mech Struct and Mach,1994,22(2):157-180
    [8]Ider S K, Amirouche F M L. Influence of geometric nonlinear in the dynamics[J] Journal of Applied Mechanics,1989,55:830-837.
    [9]Padilla C E, Floton A H. Nonlinear strain-displacement relations and flexible multibody dynamics[J]. Journal of Guidance, Control and Dynamics,1992,15:128-136.
    [10]Haering W J. Ryan R R. New formulation for flexible beams undergoing large overall motions[J]. Journal of Guidance, Control and Dynamics,1994,17(1):76-83.
    [11]Mayo J, Dominguez J. Geometrically nonlinear formulation of flexible multibody systems in terms of beam elements:Geometric stiffness[J]. Computers and Structures, 1996.59:1039-1050.
    [12]Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base [J]. Journal of Guidance, Control and Dynamics,1987,10(2):139-151.
    [13]Banerjee A K, Kane T R. Dynamics of a plate in large overall motion[J]. Journal of Applied Mechanics,1989,56:887-892.
    [14]Zhang D J, Liu C O, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion, an integrated approach[J]. Mech Struct and Mach,1995,23(3): 419-438.
    [15]Zhang D J, Huston R L. On dynamic stiffening of flexible bodies having high angular velocity[J]. Mech Struct and Mach,1996,24(3):313-329.
    [16]王建明.柔性体刚柔耦合动力学建模理论及动力刚化有限元算法研究[R].上海交通大学博士后研究工作报告,1999.
    [17]Wu S C, Haug E. Geometric non-linear substructuring for dynamics of flexible mechanical systems[J]. Int Journal for Numerical Methods in Engineering,1988,26: 2211-2226.
    [18]Liu A Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexible multibody system[J]. Computer Methods in Applied Mechanics and Engineering,1994,114:379-396.
    [19]Liu J Y, Hong J Z. Dynamic modeling and modal truncation approach for a high-speed rotating elastic beam[J]. Archive of Applied Mechanics,2002,72:554-563.
    [20]Yang H, Hong J Z, Yu Zheng-yue. Dynamics modeling of a flexible hub-beam system with a tip mass[J]. Journal of Sound and Vibration,2003,266:759-774.
    [21]Cai G P, Hong J Z, Yang S X. Dynamic analysis of a flexible hub-beam system with tip mass[J]. Mechanics Research Communications,2005.32:173-190.
    [22]Cai G P, Lim C W. Dynamics studies of a flexible hub-beam system with significant damping effect [J]. Journal of Sound and Vibration,2008,318:1-17.
    [23]Hong H C, Wen Y L, Kuo M H. Co-rotational finite element formulation for thin-walled beams with generic open section[J]. Computational Methods Applied Mechanics Engineering,2006,195:2334-2370.
    [24]Simo J C, Quoc L V. A three-dimension finite-strain rod model, Part 2:Computational aspects[J]. Computer Methods in Applied Mechanics and Engineering,1986,58: 79-116.
    [25]Shabana A A, Hussien H A, Escalona J L. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems[J]. ASME Journal of Mechanical Design,1998,120:188-195.
    [26]Berzera M, Shabana A A. Development of simple models for the elastic forces in the absolute nodal coordinate formulation[J]. Journal of Sound and Vibration,2000,235(4): 539-565.
    [27]Sugiyama H, Gerstmayrb J, Shabana A A. Deformation modes in the finite element absolute nodal coordinate formulation[J]. Journal of Sound and Vibration,2006,298: 1129-1149.
    [28]Sanborn G G, Shabana A A. On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics,2009.22:181-197.
    [29]Sanborn G G, Shabana A A. A rational finite element method based on the absolute nodal coordinate formulation[J]. Nonlinear Dynamics,2009,58:565-572.
    [30]Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1:A correction in the floating frame of reference of formulation[J]. Journal of Multi-body Dynamics,2005,219(K):187-202.
    [31]Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 2:Nonlinear elasticity [J]. Journal of Multi-body Dynamics,2005, 219(K):203-211.
    [32]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海交通大学博士学位论文,2006.
    [33]Winfry R C. Elastic link mechanism dynamics[J]. ASME Journal o f Engineering for Industry,1971,93 (1):268-272.
    [34]Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis [J]. Journal of Solids and Structures,1972.8:709-731.
    [35]Meirovitch L. A new method of solution of the eigenvalue problem for gyroscopic system[J]. AIAA Journal,1974,14(2):453-465.
    [36]Meirovitch L, Stemple T. Hybrid equations of motion for flexible multibody systems using quasi-coordinates[J]. Journal of Guidance, Control, and Dynamics,1995,18(4): 678-688.
    [37]Cyril X. Dynamics of flexible-link manipulators [D]. McGill University,1988.
    [38]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011.24(1):1-7.
    [39]刘锦阳,洪嘉振.刚柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408-415.
    [40]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析[J].固体力学学报.2002,23(2):159-166.
    [41]杨辉,洪嘉振,余征跃.刚-柔耦合多体系统动力学建模与数值仿真[J].计算力学学报,2003,20(4):402-408.
    [42]蔡国平,洪嘉振.中心刚体-柔性悬臂梁系统的动力特性研究[J].航空学报,2004,25(3):248-253.
    [43]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证[J].力学学报,2003,35(2):253-256.
    [44]杨辉,洪嘉振,余征跃.动力刚化问题的实验研究[J].力学学报,2004,36(1): 118-124.
    [45]邓峰岩,和兴锁,李亮,张娟.计及变形耦合项的平面柔性梁动力学建模及频率分析[J].振动工程学报,2006,19(1):75-80.
    [46]邓峰岩,和兴锁,杨永峰,张娟,李亮.计及非线性变形的刚柔耦合动力学建模[J].机械强度,2006,28(6):800-804.
    [47]邓峰岩,和兴锁,李亮,张娟,赵春燕.耦合变形对大范围运动柔性梁动力学建模的影响[J].计算力学学报,2006,23(5):599-606.
    [48]和兴锁,邓峰岩,吴根勇,王睿.对于具有大范围运动和非线性变形的柔性梁的有限元动力学建模[J].物理学报,2010,59(1):25-29.
    [49]和兴锁,邓峰岩,王睿.具有大范围运动和非线性变形的空间柔性梁的精确动力学建模[J].物理学报,2010,59(3):1428-1436.
    [50]潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,,26(1):28-40.
    [51]潘振宽,孙红旗,臧宏文,徐茂荣.柔性多体系统动力学Stiff微分方程数值积分方法[J].青岛大学学报,1996,11(3):36-39.
    [52]王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725.
    [53]王琪,黄克累,陆启韶.带约束多体系统动力学方程的隐式算法[J].计算力学学报,1999,16(4):410-415.
    [54]于清,洪嘉振.受约束多体系统一种新的违约校正方法[J].力学学报,1999,30(3):300-306.
    [55]赵维加,潘振宽.多体系统Euler-Lagrange方程的最小二乘法与违约修正[J].力学学报,2002,34(4):594-603.
    [56]吴国荣,陈福全,唐瑞霖.一种求解柔性多体系统动力学方程的新方法[J].力学季刊,2005,26(2):211-215.
    [57]缪建成,朱平,陈关龙,朱大炜.多柔性系统响应计算的子循环计算方法研究[J].力学学报,2008,40(4):511-519.
    [58]黄永安,尹周平,邓子辰,熊有伦.多体动力学的几何积分方法研究进展[J].力学进展,2009,39(1):44-56.
    [59]Huang Y A, Deng Z C, Yao L X. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration,2007,299:229-246.
    [60]刘铖,田强,胡海岩.基于绝对节点坐标的多柔体系统动力学高效计算方法[J].力学学报,2010,42(6):1197-1205.
    [61]范子杰.机器人柔性手臂的动力学分析及其粘弹性大阻尼控制的研究[D].西安交通大学博士学位论文.1989
    [62]费从宇.柔性机械臂动力学、逆动力学和主动控制中若干问题的研究[D].哈尔滨工业大学博士学位论文.1992
    [63]Chang P M, Jayasuriya S. An evaluation of several controller synthesis methodologies using a rotating flexible beam as a test bed[J]. ASME Journal of Dynamic Systems, Measurement and Control,1995,117(3):360-373.
    [64]Somolinos J A, Feliu V, Sanchez L. Design, dynamic modelling and experimental validation of a new three-degree-of-freedom flexible arm[J]. Mechatronics,2002,12: 919-948.
    [65]Yigit A S. On the use of an elastic-plastic contact law for the impact of a single flexible link[J]. ASME Journal of Dynamic Systems, Measurement and Control,1995,117: 527-533.
    [66]金栋平,胡海岩.两柔性梁振动碰撞类型的实验研究[J].实验力学,1999,14(2):129-135.
    [67]朱煜,洪嘉振,董富祥,余征跃.柔性圆柱杆接触碰撞实验研究[J].动力学与控制学报,2009,7(2):125-128.
    [68]Low K H, Lau M W S. Experimental investigation of the boundary condition of slewing beams using a high-speed camera system[J]. Mechanism and Machine Theory,1995, 30(4):629-643.
    [69]杨辉,洪嘉振,余征跃.一类刚-柔耦合系统的模态特性与实验研究[J].宇航学报,2002,23(2):67-72.
    [70]杨辉,洪嘉振,余征跃.带柔性附件的中心刚体的频率特性及实验研究[J].空间科学学报,2002,22(4):372-379.
    [71]杨辉,洪嘉振,余征跃.柔性多体系统动力学实验研究综述[J].力学进展,2004,34(2):171-181.
    [72]Turcic D A, Midha A. Dynamic analysis of elastic mechanism systems part I: Applications [J]. ASME Journal of Dynamic Systems, Measurement and Control, 1984.106:249-254.
    [73]Turcic D A, Midha A. Dynamic analysis of elastic mechanism systems part Ⅱ: Experimental results[J]. ASME Journal of Dynamic Systems, Measurement and Control,1984,106:255-260.
    [74]Hastings G G, Book W J. A linear dynamic model for flexible robotic manipulators [J]. IEEE Control Systems Magazine,1987,7(1):61-64.
    [75]方建士,章定国.刚体-柔性梁系统的撞击动力学分析[J].南京理工大学学报,2006,30(4):404-413.
    [76]华卫江,章定国.柔性机器人系统碰撞动力学建模[J].机械工程学报,2007,43(12):222-228.
    [77]Lim H S, Kwon S H, Yoo H H. Impact analysis of a rotating beam due to particle mass collision[J]. Journal of Sound and Vibration,2007,308:794-804.
    [78]Khulief Y A, Shabana A A. A continuous force model for the impact analysis of flexible multibody systems[J]. Mechanism and Machine Theory,1987,22(3):213-224.
    [79]Yigit A S, Ulsoy A G, Scott R A. Spring-dashpot models for the dynamics of a radially rotating beam with impact[J]. Journal of Sound and Vibration,1990,142(3):515-525.
    [80]刘才山,陈滨,王示.多体系统斜碰撞动力学中的结构柔性效应[J].振动与冲击,2000,19(2):24-27.
    [81]刘才山,陈滨.做大范围回转运动柔性梁斜碰撞动力学研究[J].力学学报,2000,32(4):457-465.
    [82]Schiehlen W, Seifried R, Eberhard P. Elastoplastic phenomena in multibody impact dynamics[J]. Comput Methods Appl Mech Engrg,2006,195:6874-6890.
    [83]Dong F X, Hong J Z, Zhu K, Yu Z Y. Initial Conditions of Impact Dynamics[J]. Journal of Shanghai Jiaotong University,2010,15(3):368-371.
    [84]董富祥,洪嘉振.平面柔性多体系统正碰撞动力学建模理论研究[J].计算力学学报,2010,27(6):1042-1048.
    [85]Yigit A S. On the stability of PD control for a two-link rigid-flexible manipulator [J]. ASME Transactions, Journal of Dynamic Systems, Measurement and Control,1994 116(2):208-215.
    [86]Choura S, Yigit A S. Control of a two-link rigid-flexible manipulator with a moving payload mass[J]. Journal of Sound and Vibration,2001,243(5):883-897.
    [87]Saad M M, Dugard L, Hammad S H. A suitable generalized predictive adaptive controller case study:control of a flexible arm[J]. Automatic,1993,29 (3):589-608.
    [88]Cai G P, Lim C W. Active control of a flexible hub-beam system using optimal tracking control method[J]. International Journal of Mechanical Sciences,2006,48:1150-1162.
    [89]丁希仑,陈伟海,张启先.空间机器人柔性臂动力学模糊控制的研究[J].北京航空航天大学学报,1999,25(1):104-107.
    [90]Yesildirek A, Vandegrift M W, Lewis F L. A neural network controller for flexible-link robots[J]. IEEE International Symptomon Intelligence Control,1994:63-68.
    [91]Talebi H A, Khorasani K, Patel R V. Neural network based control schemes for flexible-link manipulators:simulations and experiments[J]. Neural networks,1998,11: 1357-1377.
    [92]Book W J. Analysis of massless elastic chain with servo controlled joints[J]. ASME Journal of Dynamic Systems, Measurements, and Control,1979,101:187-192.
    [93]Payo I, Feliu V, Cortazar O D. Force control of a very lightweight single-link flexible arm based on coupling torque feedback[J]. Mechatronics,2009,19:334-347.
    [94]Knani. Dynamic modeling of flexible robotic mechanisms and adaptive robust control of trajectory computer simulation-Part I[J]. Applied Mathematical Modelling,2002,26: 1113-1124.
    [95]Ho M T, Tu Y W. Position control of a single-link flexible manipulator using H(?)-based PID control[J]. Control Theory and Applications.2006,153(5):615-622.
    [96]冯志宏,霍睿.压电耦合悬臂梁的时滞反馈控制及稳定性分析[J].振动与冲击,2011,30(6):181-184.
    [97]Done G. Past and future progress in fixed and rotary wing[J]. Aeroelasticity, Aeronaut Journal,1996,100:269-279.
    [98]Mukherjee A, Chaudhuri A S. Piezolaminated beams with large deformations [J]. International Journal of Solids and Structures,2002,39:4567-4581.
    [99]Thornburgh R P. Chattopadhyay A, Ghoshal A. Transient vibration of smart structures using a coupled piezoelectric-mechanical theory [J]. Journal of Sound and Vibration, 2004,274:53-72.
    [100]黄永安,邓子辰,姚林晓.考虑大变形的刚-柔耦合旋转智能结构动力学分析[J].应用数学和力学,2007,28(10):1203-1212.
    [101]Kidawa-Kukla J. Vibration of a beam induced by harmonic motion of a heat source[J]. Journal of Sound and Vibration,1997,205(2):213-222.
    [102]魏麟欢,黄永安,邓子辰.旋转刚-柔耦合系统动力学及热冲击响应分析[J].机械科学与技术,2008.27(10):1236-1241.
    [103]刘锦阳,洪嘉振.温度场中的柔性梁系统动力学建模[J].振动工程学报,2006,19(4):469-474.
    [104]刘锦阳,袁瑞.洪嘉振.考虑几何非线性和热效应的刚-柔耦合动力学[J].固体力学学报,2008.29(1):73-77.
    [105]刘锦阳,袁瑞,洪嘉振.考虑热效应的柔性板的刚-柔耦合动力学特性[J].上海交通大学学报.2008,42(8):1226-1273.
    [106]刘锦阳.崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报,2009,22(1):48-53.
    [107]Singh R P, Vander V R J, Likins P W. Dynamics of flexible bodies in tree-topology:a computer-oriented approach[J]. Journal of Guidance, Control and Dynamics,1985,8: 584-590.
    [108]Ho J Y L. Development of dynamics and control simulation of large flexible space systems[J]. Journal of Guidance, Control and Dynamics,1985,8(3):374-383.
    [109]章定国,李德昌,谢大雄.一个机器入动力学高效建模软件[J].机器人,1995,17(3):153-156.
    [110]于清.柔性多体系统单向递推组集建模方法与通用仿真软件的实现[D].上海交通大学博士学位论文,1998.
    [111]曹艳,齐朝晖.树形多刚体系统单向递推组集计算机求解[J].内蒙古大学学报,2002,33(4):363-367.
    [112]Yoo H H, Ryan R R, Scott R A. Dynamics of flexible beams undergoing overall motions[J]. Journal of Sound and Vibration,1995,181(2):261-278.
    [113]Yoo H H, Shin S H. Vibration analysis of rotating cantilever beams[J]. Journal of Sound and Vibration,1998,212(5):807-828.
    [114]Yoo H H, Seo S, Huh K. The effect of a concentrated mass on the modal characteristics of a rotating cantilever beam[J]. Journal of Mechanical Engineering Science,2002, 216(C):151-163.
    [115]Al-Qaisia A A, Al-Bedoor B O. Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams[J]. Journal of Sound and Vibration,2005,280:531-553.
    [116]Yoo H H, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion[J]. Journal of Sound and Vibration,2001,239(1):123-137.
    [117]Yoo H H, Pierre C. Modal characteristic of a rotating rectangular cantilever plate[J]. Journal of Sound and Vibration,2003,259(1):81-96.
    [118]蒋丽忠,洪嘉振.作大范围运动弹性薄板中的几何非线性与耦合变形[J].力学学报,1999,31(2):243-249.
    [119]肖世富,陈滨,刘才山.平动柔性矩形薄板的动力学特性与屈曲分析[J].固体力学学报,2005,26(1):47-54.
    [120]肖世富,陈滨.大范围运动刚体上矩形薄板力学行为分析[J].应用数学和力学,2006,27(4):495-504.
    [121]赵飞云,洪嘉振.作大范围运动矩形板的动力学建模理论研究[J].计算力学学报,2008,25(6):868-873.
    [122]金国光,刘又午,王树新.有大范围运动的柔性矩形板系统动力学建模[J].哈尔滨 工业大学学报,2009,41(1):232-238.
    [123]吴根勇,和兴锁,邓峰岩.旋转复合材料板的动力学性能研究[J].振动与冲击2008,27(8):149-154.
    [124]吴根勇,和兴锁.做大范围运动复合材料板的动力学建模研究[J].计算力学学报,2010,27(4):667-672.
    [125]邹凡,刘锦阳.大变形薄板多体系统的动力学建模[J].应用力学学报,2010,27(4):740-745.
    [126]Farid M, Lukasiewicz S A. Dynamic modeling of spatial manipulators with flexible links and joints[J]. Computers and Structures,2000,75:419-437.
    [127]Chen W. Dynamic modeling of multi-link flexible robotic manipulators[J]. Computers and Structures,2001,79:183-195.
    [128]Liu J Y, Hong J Z. Geometric stiffening of flexible link system with large overall motion[J]. Computers and Structures,2003,81:2829-2841.
    [129]Na K S, Kim J H. Deployment of a multi-link flexible structure[J]. Journal of Sound and Vibration,2006.294:298-313.
    [130]Zhang D G. Zhou S F. Dynamics of Flexible-Link and Flexible-Joint Robots[J]. Applied Mathematics and Mechanics,2006.26(5):695-704.
    [131]Zhang D G. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms[J]. Applied Mathematics and Mechanics,2009, 30(10):1283-1294.
    [132]金国光,刘又午,王树新,张大钧.含动力刚化项的一般多柔体系统动力学研究[J].哈尔滨工业大学学报,2005,37(1):101-103.
    [133]齐朝晖,许永生,罗晓明.含非理想约束多柔体系统递推建模方法[J].力学学报,2008,40(5):684-694.
    [134]田富洋,吴洪涛等.柔性多体系统混合递推动力学建模及实时仿真研究[J].中国机械工程,2010,21(1):6-12.
    [135]蒋丽忠.柔性多体系统刚-柔耦合动力学建模理论研究[D].上海交通大学博士学位论文,1999.
    [136]刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海交通大学博士学位论文,2002.
    [137]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].上海交通大学博士论文,2002.
    [138]陈礼,齐朝晖.多体动力学程序切断铰的处理方法[J].计算力学学报,2007,24(6):795-799.
    [139]齐朝晖,许永生,方慧青.多体系统中的冗余约束[J].力学学报,2011,43(2):390-399.
    [140]齐朝晖,罗晓明,黄志浩.含非理想空间棱柱铰的多体系统接触分析[J].力学学报,2011,43(3):570-578.
    [141]柯柏岩,王树新,金国光,王辉.基于拟合模态法的大范围运动柔性曲线梁动力学建模方法研究[J].宇航学报,2003,24(3):237-277.
    [142]金国光,刘又午,王树新.大范围运动的柔性曲线梁动力学建模及仿真[J].天津大学学报,2004,37(7):629-633.
    [143]章定国,朱志远.一类刚柔耦合系统的动力刚化分析[J].南京理工大学学报,2006,30(1):21-25,33.
    [144]肖建强,章定国.空间运动体上梁的三维动力学建模和仿真[J].空间科学学报,2006,26(3):227-234.
    [145]章定国,余纪邦.做大范围运动的柔性梁的动力学分析[J].振动工程学报,2006,19(4):475-480.
    [146]章定国,吴胜宝,康新.考虑尺度效应的微梁刚柔耦合动力学分析[J].固体力学学报,固体力学学报,2010,31(1):32-39.
    [147]吴胜宝,章定国,康新.刚体-微梁系统的动力学特性研究[J].机械工程学报,2010,46(3):76-82.
    [148]陈思佳,章定国.中心刚体-变截面梁系统的动力学特性研究[J].力学学报,2011,,43(4):790-794.
    [149]李彬,刘锦阳,洪嘉振.计及剪切变形的Timoshenko梁的刚柔耦合动力学[J].计算力学学报,2006,23(4):419-422.
    [150]蔡国平,洪嘉振.考虑附加质量的中心刚体-柔性悬臂梁系统的动力特性研究[J].机械工程学报,2005,41(2):33-40.
    [151]Al-Bedoor B O, Almusallam A A. Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia[J]. Mechanism and Machine Theory, 2000,35:785-820.
    [152]黄永安,邓子辰.中心刚体-楔形梁-质点刚柔耦合系统动力学分析[J].计算力学学报,2007.24(1):14-19.
    [153]Cheng J L, Xu H and Yan A Z. Frequency Analysis of a rotating cantilever beam using assumed mode method with coupling effect[J]. Mechanics Based Design of Structures and Machines,2006,34:25-47.
    [154]方建士,章定国.考虑集中质量的旋转悬臂梁的动力学建模与频率分析[J].机械科学与技术,2011.30(9):1471-1476.
    [155]Xi F, Fenton R G. Coupling effect of a flexible link and a flexible joint[J]. The International Journal of Robotics Research,1994,13(5):443-453.
    [156]Book W J. Recursive Lagrangian Dynamics of Flexible Manipulator Arms[J]. The International Journal of Robotics Research,1984,3(3):87-101.
    [157]管贻生,安永辰.机器人手臂弹性动力学分析的Kane方法[J].机器人,1992,14(1):45-51.
    [158]潘振宽,洪嘉振,刘延柱.柔性机械臂动力学方程单向递推组集建模方法[J].力学学报,1993,25(3):327-333.
    [159]边宇枢,陆震.柔性机器人动力学建模的一种方法[J].北京航空航天大学学报,1999,25(4):486-490.
    [160]Nguyen, P.K. and Hughes, P.C. Teleportation:from the space shuttle to the space station[J]. Progress in Astronautics and Aeronautics 1994,161:353-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700