用户名: 密码: 验证码:
海藻酸钠及其衍生物有序组合体的构筑和功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻酸盐是一类生物高分子,因其具有天然、无毒、安全性好、生物相容性好、在体内可降解吸收等特点,在生物医药、食品、化妆品等诸多领域有广泛应用。本文基于海藻酸钠(NaAlg)在水溶液中的自组装行为和规律,考察了环境因素的改变及NaAlg疏水修饰对其聚集体结构和聚集行为的影响,探讨了NaAlg与表面活性剂的相互作用机制,并以NaAlg及其与表面活性剂复配体系为软模板,制备了尺寸形貌较为特殊的金、银纳/微米粒子。主要研究结果如下:
     1.在含盐的NaAlg稀溶液中,随着介质的pH改变,NaAlg分子结构中-COO-基团可以转变为-COOH基团,从而导致NaAlg分子从舒展链状向胶束转变,直至无规团状沉淀生成。当介质pH为3.0~4.0时,NaAlg胶束的几何形状为球状胶束,这一方面可以从TEM和AFM结果得到明证,还可以从荧光光谱、电学性质和激光光散射等实验结果得到佐证。当溶液的pH进一步降低到2.5附近时,各胶束间的静电排斥明显削弱,使得胶束互相靠近并聚集,随环境的pH进一步下降,海藻酸大量团聚,最终出现沉淀。
     2.利用等温滴定微量热、表面张力、电导、Zeta电位、粘度、荧光光谱等测试手段分别从热力学、表面物理化学、电学、流变学和光谱学等角度考察了阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)与NaAlg之间的相互作用。在NaAlg / CTAB体系中,随NaAlg浓度的增加,使得CTAB的c1减小,而c2则增大。表面活性剂浓度小于c1时,CTAB单体主要在表面定向性吸附,溶液的表面张力明显降低;当浓度增加超过c1时,CTAB分子的阳离子极性头基与NaAlg主链上的-COO-发生静电作用,并产生疏水微区;当CTAB浓度进一步增加超过溶液Zeta电位为零时的浓度(cζ=0)后,CTAB分子的疏水链与NaAlg / CTAB复合物的疏水微区发生疏水作用,形成新的NaAlg / CTAB复合胶束;当浓度进一步增加超过c2时,CTAB分子在NaAlg高分子链上的结合达到饱和,CTAB单体开始形成自由胶束,并与NaAlg / CTAB复合胶束共存。此外,随介质pH值降低,能形成更大的网状交联聚集体,使溶液粘度急剧增加。
     3.阴离子表面活性剂十二烷基硫酸钠(SDS)、非离子表面活性剂辛基酚聚氧乙烯醚(Tritonx-100)与NaAlg之间也可以形成复合胶束,但复合胶束形成与否依赖于溶液的pH和盐浓度。对NaAlg / SDS体系而言,当pH从7.0降到5.0时,SDS与NaAlg很难结合;当pH由5.0降低到3.0时,疏水作用促使SDS与NaAlg形成NaAlg / SDS复合胶束。对TritonX-100-NaAlg体系而言,在酸性条件下TritonX-100与NaAlg主要发生疏水作用,从而形成NaAlg / TritonX-100复合胶束。
     4.采用1-乙基-(3-二甲氨基丙基)碳二亚胺(EDC)为偶联剂,NaAlg与脂肪胺发生酰胺化反应,合成了疏水修饰的NaAlg衍生物。衍生物结构分别以FT-IR、1H-NMR、DSC和TG等技术手段得到表征。通过元素分析确定酰胺的取代度,利用等温滴定微量热、荧光光谱、表面张力、电导等手段研究了疏水修饰NaAlg衍生物在水溶液的聚集行为及与表面活性剂的相互作用。研究结果表明,在稀溶液中,衍生物溶液的表面张力随浓度及疏水取代度的增加而下降;对相同浓度和取代度的衍生物,表面张力随疏水链碳数的增加而下降;相同浓度的衍生物溶液的电导率随取代度的增加而下降。荧光光谱测定显示溶液在较低浓度时即形成疏水微区,微区极性随取代度的增加而降低。表面张力测定结果显示,SDS与疏水修饰NaAlg衍生物复合体系比相同浓度单一体系的表面张力数值更低,并且随NaAlg衍生物取代度的增加,将导致SDS的c1降低和c2增大。
     5.基于以上研究,将NaAlg-表面活性剂体系应用于金、银纳/微米粒子的制备。在NaAlg溶液中,采用晶种生长法制备金、银纳/微米粒子,通过紫外光谱、FT-IR、X射线衍射和透射电镜等测试手段探究了NaAlg及NaAlg与不同表面活性剂混合溶液中金、银纳/微米粒子的形成机理,揭示了金、银纳/微米材料的微观结构、尺寸大小和生长形貌的变化规律。研究结果表明,在NaAlg与氯金酸反应体系中,NaAlg能将氯金酸Au(Ⅲ)还原成Au(0);微波辐照能强化成核过程,晶核一旦形成,金离子则易在晶核上还原成金单质而生长;X射线衍射分析表明金纳米更易沿着非最低能量(111)表面生长,而表面活性剂的加入对NaAlg制备的金纳米粒子的形貌有独特的影响。此外,在室温条件下,NaAlg可缓慢地将Ag+还原成Ag原子,最终形成枝状结构,该结构的形貌受NaAlg浓度调控。
Alginate has been extensively used in the fields of pharmacy, food and cosmetics due to its natural, non-toxic, safty, biocompatibility, degradability and absorbability. Based on the self-assembly behaviors of sodium alginate (NaAlg) in aqueous solution, the effects of pH and hydrophobic modification on the properties and structures of NaAlg aggregates have been investigated. The possible mechanisms of the interactions between NaAlg and traditional surfactants have been proposed. Subsquently, gold and silver nanoparticles with particular size and morphology have been fabricated using NaAlg (and NaAlg/surfactants aggregates) as soft templates.
     Main results and conclusions are as follows,
     1. In the dilute NaAlg solution containing inorganic salt, the pH effect on the aggregate structures was investigated. Because plenty of hydrophilic–COO- groups in the NaAlg polymer chain switched to–COOH groups, which can induce the NaAlg molecular chains aggregating into micelles untile the random group-like precipitate is generated. At pH 3.0-4.0, spherical micelles can be clearly observed by TEM and AFM, which was in the coindence with the proofs of fluorescence spectroscopy, electrical properties, laser light scattering and other experimental results. When pH value of the system decreases to about 2.0, electrostatic repulsion among the micelles obviously weakens, resulting in approach and aggregation among micelles. As the pH value further decreases, alginate acid heavily aggregates, and the precipitation finally appears.
     2. Interactions between cationic surfactant cetyltrimethylammonium bromide (CTAB) and NaAlg are studied with isothermal titration calorimetry, surface tension, conductivity, Zeta potential, viscosity and fluorescence spectrum, etc. In the NaAlg / CTAB system, the c1 of CTAB decreases and c2 increases as the concentration of NaAlg increases. As the surfactant concentration is less than c1, CTAB monomers mainly manifest oriented adsorption on the solution surface, and surface tension of the solution apparently decreases. When the surfactant concentration is over c1, electrostatic interactions between the cationic polar heads on CTAB monomers and -COO- groups along alginate chains take place, and hydrophobic microdomain forms. When the CTAB concentration further increases and excesses cζ=0, hydrophobic interactions happen between hydrophobic chains of CTAB monomers and hydrophobic microdomain of CTAB/alginate complexes. When the CTAB concentration further increases till more than c2, the degree of combination of CTAB molecules with alginate macromolecule chain is saturated, then CTAB monomers begin to form free micelles that coexist with mixed CTAB/alginate micelles. Moreover, with the decrease of the pH of the solution, this makes larger networking aggregate and the viscosity of solution sharply increase.
     3. The complex micelle can be formed between NaAlg and the anionic surfactant sodium dodecyl sulfate (SDS) as well as the non-ionic surfactant octylphenol polyethoxylates (Tritonx-100), which depends upon the pH value and salt concentration of the solution. In the experimental conditions, when the pH value of the solution decreases from 7.0 to 5.0, SDS can not combine with alginate because of electrostatic repulsion. As the pH value of solution decreases from 5.0 to 3.0, NaAlg combines with SDS to form complex micelle by hydrophobic interaction. At the same time, TritonX-100 and NaAlg form complex micelle by hydrophobic interaction in the acidic solution.
     4. NaAlg reacts with fatty amine in the presence of the coupling agent, 1-ethyl- (3-dimethylamino-propyl) carbodiimide (EDC) to obtain hydrophobically modified alginate derivative. The products are characterized by FT-IR, 1H-NMR, DSC and TG, etc, and the substituting degree of amide is confirmed by elementary analysis. The self-assembled behaviors of the hydrophobically modified alginate derivatives (HMA-R) and the interactions between alginate derivatives and surfactants in aqueous solution are investigated by isothermal titration calorimetry, fluorescence spectrum, surface tension and conductivity, etc. In the dilute solution, surface tension of the derivatives solutions decreases as the concentration increases. At the same concentration, the surface tension and conductivity decreases as the substituting degree increases. At the same substituting degree and concentration, surface tension decreases as the number of carbon in the hydrophobic pendants increases. Fluorescence spectroscopy shows hydrophobic microdomain can be formed in the lower concentration and the polarity of microdomain decreases as substituting degree increases. Interactions between SDS and hydrophobically modified alginate derivatives mainly manifest the hydrophobic combination, and the surface tension of mixed system is much lower compared to that of indivadule system. In the mixed system the c1 of SDS will decrease and the c2 of SDS increase with substitution degree increasing.
     5. The gold and silver nano-micnon particles are fabricated by a seeding growth approach in NaAlg solution. The formation mechanisms of noble metal nano-micnon particles are explored in NaAlg solution with or without different surfactants by means of UV-vis spectrum, FT-IR, X-ray diffraction and transmission electron microscope (TEM), etc, and then the variation laws of microstructures, sizes and morphologies of the noble metal materials are revealed. The results show that NaAlg reduces HAuCl to Au in NaAlg/HAuCl4 reaction system, and the nucleation process can be strengthened by the microwave radiation. Once crystal nucleus forms, Au ion on crystal nucleus can be easily reduced to elementary substance and then grow. From X-ray diffraction analysis, the crystal face (111) of prepared gold nanoparticles show a great diffraction intensity, which demonstrates that gold nanoparticles can easily grow along the face. We also find that surfactants have unique influence on preparing gold nanoparticles. At ambient condition, sodium alginate slowly reduces Ag(I) to Ag(0) on the surfaces of Ag seeds, and then form branch structure. Ag particles aggregate into the branch structures with different morphologies under various concentration of NaAlg aqueous solution.
引文
1. Chan C S, Stasio G D, Welch S A, et al. Microbial polysaccharides template assembly of nanocrystal fibers [J]. Science, 2004, 303: 1656-1658
    2. Li J W H, Vederas J C. Drug discovery and natural products: end of an era or an endless frontier [J]. Science, 2009, 325: 161-165
    3.张善明,刘强,张善垒.从海带中提取高粘度海藻酸钠[J].食品工业科技, 2002, 23(3): 86-87
    4. Stanford E C C. Improvements in the manufacture of useful products from seaweeds [P]. British Patent, 142, 1881
    5. Stanford E C C. New substance obtained from some of the commoner species of marine algae, Algin [J]. Chem News, 1883, 47: 254-257
    6. Krefting A. An improved method of treating seaweed to obtain valuable product there from [P]. British Patent, 11538, 1896
    7. Atsuki K, Tomoda Y. Studies on seaweeds of Japan I. The chemical constituents of laminaria [J]. J Soc Chem Ind Jpn, 1926, 29: 509-517
    8. Schmidt E, Vocke F. Zur kenntnis der poly-glykuronsauren [J]. Chem Ber, 1926, 59: 1585-1588
    9. Hirst E L, Jones J K N, Jones W O. The structure of alginic acid, Part I [J]. J Chem Soc, 1939, 1880-1885
    10. Fischer F G, Dorfel H. Die polyuronsauren der braunalgen [J]. Z Phys Chem, 1955, 302: 186-203
    11.纪明侯.海藻化学[M].北京:科学出版社, 1997. 231-251
    12. Haug A, Larsen B. Quantitative determination of the uronic acid composition of alginates [J]. Acta Chem Scand, 1962, 16: 1908-1918
    13. Haug A, Larsen B, Smidsrod O. A study of the constitution of alginic acid by partial acid hydrolysis [J]. Acta Chem Scand, 1966, 20: 183-190
    14. Haug A, Larsen B, Smidsrod O. Studies on the sequence of uronic acid residues in alginic acid [J]. Acta Chem Scand, 1967, 21: 691-704
    15. Atkins E D T, Nieduszynski I A, Mackie W, et al. Structural components of alginic acid. 1. Crystalline structure of poly-β-D-mannuronic acid. Results of X-ray diffraction and polarized infrared studies [J]. Biopolymers, 1973, 12: 1865-1878
    16. Atkins E D T, Nieduszynski I A, Mackie W, et al. Structural components of alginic acid. 2. Crystalline structure of poly-α-L-guluronic acid. Results of X-ray diffraction and polarized infrared studies [J]. Biopolym, 1973, 12: 1879-1887
    17. Haug A, Larsen B, Smidsrod O. Uronic acid sequence in alginate from different sources [J]. Carbohydr Res, 1974, 32: 217-225
    18. Franklin M J, Chitnis C E, Gacesa P, et al. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase[J]. J Bacteriol, 1994, 176: 1821-1830
    19. Jerga A, Raychaudhuri A, Tipton P A. Pseudomonas aeruginosa C5-mannuronan epimerase: steady-state kinetics and characterization of the product [J]. Biochem, 2006, 45: 552-560
    20. Orive G, Ponce S, Hernandez R M, et al. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates [J]. Biomater, 2002, 23: 3825-3831
    21.张虎成,郑洪河.海藻酸钠在KCl水溶液中的粘度行为[J].物理化学学报, 1998, 14: 789-793
    22.周世海,蔡继业,陈勇.钙离子对海藻酸钠自组装行为影响的AFM研究[J].药物生物技术, 2004, 11(2): 81-85
    23. Lu L, Liu X, Tong Z, et al. Critical exponents and self-similarity for sol-gel transition in aqueous alginate systems induced by in situ release of calcium cations [J]. J Phys Chem B, 2006, 110: 25013-25020
    24. Haug A, Myklestad S, Larsen B, et al. Correlation between chemical structure and physical properties of alginates[J]. Acta Chem Scand, 1967, 21: 768-778
    25. Smidsr?d O, Haug A. Dependence upon the gel-sol state of the ion-exchange properties of alginates [J]. Acta Chem Scand, 1972, 26: 2063-2074
    26.秦益民.海藻酸[M].北京:中国轻工业出版社, 2008
    27.陈玺,朱桂贞,唐在明.海藻酸钠在临床的应用[J].中国医院药学杂志, 2000, (9): 46-47
    28.顾其胜,奚廷裴.海藻酸与临床医学[M].上海:第二军医大学出版社,2006. 35-40
    29. Tapia M S, Rojas-GraüM A, Carmona A, et al. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya [J]. Food Hydrocolloids, 2008, 22: 1493-1503
    30. Bylaite E, Meyer A S. Role of viscosity and hydrocolloid in flavour release from thickened food model systems [J]. Dev Food Sci, 2006, 43: 395-398
    31. Rojas-GraüM A, Avena-Bustillos R J, Olsen C, et al. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films[J]. J Food Eng, 2007, 81: 634-641
    32. Smidsr?d O, Skjaok-Brik G. Alginate as immobilization matrix for cells [J]. TrendsBiotechnol, 1990, 8: 71-78
    33. T?nnesen H H, Karlsen J. Alginate in drug delivery systems [J]. Drug Dev Ind Pharm, 2002, 28: 621-630
    34. Hashimoto T, Suzuki Y, Tanihara M, et al. Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin [J]. Biomater, 2004, 25: 1407-1414
    35.王凌云,岑颖洲,李药兰.海藻的特殊功能及其在化妆品中的应用[J].日用化学工业, 2003, 33: 258-260
    36. Podkorytova A V, Vafina L H, Kovaleva E A, et al. Production of algal gels from the brown alga, Laminaria japonica Aresch, and their biotechnological applications [J]. J Appl Phycol, 2007, 19: 827-830
    37.唐淑娟,王亚丽,马立伟.水溶性纤维的应用[J].现代纺织技术, 2006, (5): 56-58
    38. Wikstr?m J, Elomaa M, Syv?j?rvi H, et al. Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy [J]. Biomater, 2008, 29: 869-876
    39. Qin Y, Cai L, Feng D, et al. Combined use of chitosan and alginate in the treatment of waste water [J]. J Appl Polym Sci, 2007, 104: 3581-3587
    40.崔福斋,冯庆玲.生物材料学[M].北京:科学出版社, 1992
    41. Zhang L, Guo J, Zhou J, et al. Blend membranes from carboxymethylated chitosan/ alginate in aqueous solution [J]. J Appl Polym Sci, 2000, 77: 610-616
    42. Sarko A, Muggli R. Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II [J]. Macromol, 1974, 7: 486-493
    43. Ko T P, Ng J D, Mcpherson A. The refined structure of canavalin from jack bean in two crystal forms at 2.1 and 2.0 ? resolution [J]. Acta Crystallog Sect D, 2000, 56: 411-420
    44. Maruyama N, Adachi M, Takahashi K, et al. Crystal structures of recombinant and native soybeanβ-conglycininβ-homotrimers [J]. Eur J Biochem, 2001, 268: 3595-3604
    45. Adachi M, Takenaka Y, Gidamis A B, et al. Crystal structure of soybean proglycinin A1aB1b homotrimer [J]. J Mol Biol, 2001, 305: 291-305
    46. Robb I D. Specialist surfactants [M]. London: Blackie Academic and Professional, 1997
    47. Holmberg K, Jonsson B, Kronberg B, et al. Surfactants and polymers in aqueous solution [M]. West Sussex: Wiley, 2003
    48.江明,艾森伯格A,刘国军,等.大分子自组装[M].北京:科学出版社, 2006
    49. Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructures [J]. Adv Polym Sci, 1992, 100: 31-71
    50. Zhang L, Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly (acrylic acid) block copolymers [J]. Science, 1995, 268: 1728-1731
    51. Duan H, Chen D, Jiang M, et al. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent[J]. J Am Chem Soc, 2001, 123: 12097-12098
    52. Yu K, Zhang L, Eisenberg A. Novel morphologies of“grew-cut”aggregates of amphiphilic diblock copolymers in dilute solution [J]. Langmuir, 1996, 12: 5980-5984
    53. Nardin C, Hirt T, Leukel J, et al. Polymerized ABA triblock copolymer vesicles [J]. Langmuir, 2000, 16: 1035-1041
    54. ?těpánek M, PodhájeckáK, Tesa?ováE, et al. Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. 1. Preparation and basic characterization [J]. Langmuir, 2001, 17: 4240-4244
    55. Weaver J V M, Armes S P, Liu S. A“holy trinity”of micellar aggregates in aqueous solution at ambient temperature: unprecedented self-assembly behavior from a binary mixture of a neutral?cationic diblock copolymer and an anionic polyelectrolyte [J]. Macromol, 2003, 36: 9994-9998
    56. Bendejacq D, Ponsinet V, Joanicot M, et al. Well-ordered microdomain structures in polydisperse poly(styrene)?poly(acrylic acid) diblock copolymers from controlled radical polymerization[J]. Macromol, 2002, 35: 6645-6649
    57. Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution [J]. Polym Adv Technol, 1998, 9: 677-699
    58. Zhang L, Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution [J]. J Polym Sci B, 1999, 37: 1469-1484
    59. Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in ``crew-cut'' aggregates of amphiphilic block copolymers [J]. Science, 1996, 272: 1777-1779
    60. Zhang L, Eisenberg A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly (acrylic acid) block copolymers in dilute solution [J]. Macromol, 1999, 32: 2239-2249
    61. Zhang L, Eisenberg A. Multiple morphologies and characteristics of“crew-cut”micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions [J]. J Am Chem Soc, 1996, 118: 3168-3181
    62. Zhang L, Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromol, 1996, 29: 8805-8815
    63. Cameron N S, Corbierre M K, Eisenberg A. 1998 E.W.R. Steacie award lectureasymmetric amphiphilic block copolymers in solution: a morphological wonderland[J]. Can J Chem, 1999, 77: 1311-1326
    64. Shen H, Zhang L, Eisenberg A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures[J]. J Phys Chem B, 1997, 101: 4697-4708
    65. Shen H, Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O [J]. J Phys Chem B, 1999, 103: 9473-9487
    66. Burke S E, Eisenberg A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS310-b-PAA52/dioxane/water [J]. Langmuir, 2001, 17: 6705-6714
    67. Chen L, Shen H, Eisenberg A. Kinetics and mechanism of the rod-to-vesicle transition of block copolymer aggregates in dilute solution [J]. J Phys Chem B, 1999, 103: 9488-9497
    68. Burke S E, Eisenberg A. Kinetic and mechanistic details of the vesicle-to-rod transition in aggregates of PS310-b-PAA52 in dioxane–water mixtures [J]. Plymer, 2001, 42: 9111-9120
    69. Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose [J]. J Phys Chem B, 2003, 107: 2394-2403
    70. Shinto H, Morisada S, Miyahara M, et al. Langevin dynamics simulations of cationic surfactants in aqueous solutions using potentials of mean force [J]. Langmuir, 2004, 20: 2017-2025
    71. Chen Y M, Matsumoto S, Gong J P, et al. Effect of hydrophobic side chain on poly (carboxyl acid) dissociation and surfactant binding [J]. Macromol, 2003, 36: 8830-8835
    72. Wang X, Li Y, Li J, et al. Salt Effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution[J]. J Phys Chem B, 2005, 109: 10807-10812
    73. Li Y, Wang X, Wang Y. Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants [J]. J Phys Chem B, 2006, 110: 8499-8505
    74. Pettersson E, Topgaard D, Stilbs P, et al. Surfactant/nonionic polymer interaction. A NMR diffusometry and NMR electrophoretic investigation [J]. Langmuir, 2004, 20: 1138-1143
    75. Roscigno P, Asaro F, Pellizer G, et al. Complex formation between poly (vinylpyrrolidone) and sodium decyl sulfate studied through NMR [J]. Langmuir, 2003, 19: 9638-9644
    76. Xie D, Xu K, Bai R, et al. Structural evolution of mixed micelles due to interchain complexation and segregation investigated by laser light scattering[J]. J Phys Chem B, 2007, 111: 778-781
    77. Zhang G, Winnik F M, Wu C. Structure of a collapsed polymer chain with stickers: A single- or multiflower? [J]. Phys Rev Lett, 2003, 90: 35507-35511
    78. Massiera G, Ramos L, Ligoure C. Hairy wormlike micelles: structure and interactions [J]. Langmuir, 2002, 18: 5687-5694
    79.Kubowicz S, Thünemann A F, Weberskirch R, et al. Cylindrical micelles ofα-fluorocarbon-ω-hydrocarbon end-capped poly (N-acylethylene imine) s [J]. Langmuir, 2005, 21: 7214-7219
    80. Leonard M J, Strey H H. Phase diagrams of stoichiometric polyelectrolyte-surfactant complexes [J]. Macromol, 2003, 36: 9549-9558
    81. Deo P, Deo N, Somasundaran P. Complexation of hydrophobically modified polyelectrolytes with surfactants: anionic poly (maleic acid/octyl vinyl ether)/anionic sodium dodecyl sulfate [J]. Langmuir, 2005, 21: 9998-10003
    82. Schwuger M J. Mechanism of interaction between ionic surfactants and polyglycol ethers in water [J]. J Colloid Interface Sci, 1973, 43: 491-498
    83. Romani A P, Gehlen M H, Itri R. Surfactant?polymer aggregates formed by sodium dodecyl sulfate, poly (N-vinyl-2-pyrrolidone), and poly (ethylene glycol) [J]. Langmuir, 2005, 21: 127-133
    84. Ghoreishi S M, Li Y, Bloor D M, et al. Electromotive force studies associated with the binding of sodium dodecyl sulfate to a range of nonionic polymers [J]. Langmuir, 1999, 15: 4380-4387
    85. Wang Y, Han B, Yan H, et al. Microcalorimetry study of interaction between ionic surfactants and hydrophobically modified polymers in aqueous solutions [J]. Langmuir, 1997, 13: 9119-3123
    86. Bai G, Santos L M N B F, Nichifor M, et al. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution [J]. J Phys Chem B, 2004, 108: 405-413
    87. Bai G, Nichifor M, Lopes A, et al. Thermodynamics of self-assembling of hydrophobically modified cationic polysaccharides and their mixtures with oppositely charged surfactants in aqueous solution [J]. J Phys Chem B, 2005, 109: 21681-21689
    88. Rubingh D, Holland P M. Cationic surfactants: physical chemistry [M]. New York: Marcel Dekker, 1991. 189-248
    89. Chari K, Kowalczyk J, Lal J. Conformation of poly (ethylene oxide) in polymer?surfactant aggregates [J]. J Phys Chem B, 2004, 108: 2857-2861
    90. Lisi R D, Simone D D, Milioto S. Polymer?surfactant interactions. A quantitative approach to the enthalpy of transfer of poly (ethylene glycol) s from water to the aqueous sodium perfluoroalkanoates solutions [J]. J Phys Chem B, 2000, 104: 12130-12136
    91. Diab C, Winnik F M, Tribet C. Enthalpy of interaction and binding isotherms of non-ionicsurfactants onto micellar amphiphilic polymers (amphipols) [J]. Langmuir, 2007, 23: 3025-3035
    92. Deo P, Somasundaran P. Interactions of hydrophobically modified polyelectrolytes with nonionic surfactants [J]. Langmuir, 2005, 21: 3950-3956
    93. Griffiths P C, Fallis I A, Teerapornchaisit P, et al. Hydrophobically modified gelatin and its interaction in aqueous solution with sodium dodecyl sulfate [J]. Langmuir, 2001, 17: 2594-2601
    94. Bromberg L, Temchenko M, Colby R H. Interactions among hydrophobically modified polyelectrolytes and surfactants of the same charge [J]. Langmuir, 2000, 16: 2609-2614
    95. Israelachvili J N. Intermolecular and Surface Force [M]. Academic Press, 1992
    96. Noolandi J, Hong K M. Theory of block copolymer micelles in solution [J]. Macromol, 1983, 16:1443-1448
    97. Halperin A. Polymeric micelles: a star model [J]. Macromol, 1987, 20: 2943-2946
    98. Nagarajan R, Ganesh K. Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores [J]. J Chem Phys, 1989, 90: 5843-56
    99. Nyrkova A, Khokhlov A R, Doi M. Microdomains in block copolymers and multiplets in ionomers: parallels in behavior [J]. Macromol, 1993, 26: 3601-3610
    100. Zhulina E B, Birshtein T M. Conformations of molecules of block copolymers in selective solvents (micellar structures) [J]. Vysokomol Soedin, 1985, 27: 511-517
    101. Marko F, Rabin Y. Microphase separation of charged diblock copolymers: melts and solutions [J]. Macromol, 1992, 25: 1503-1509
    102. F?ster S, Zisenis M, Wenz E, et al. Micellization of strongly segregated block copolymers [J]. J Chem Phy, 1996, 104: 9956-9970
    103. Wu C. Laser light scattering determination of the surfactant interface thickness of spherical polystyrene microlatices [J]. Macromol, 1994, 27:7099-7102
    104. Zhang G Z, Li X L, Jiang M, et al. Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution[J]. Langmuir, 2000, 16: 9205-9207
    105. Zhang G Z, Liu L, Zhao Y, et al. Self-assembly of carboxylated poly (styrene- b-ethylene-co-butylene-b-styrene) triblock copolymer chains in water via a microphase inversion [J]. Macromol, 2000, 33: 6340-6343
    106.倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社, 2006
    107. Raffi M, Rumaiz A K, Hasan M M, et al. Studies of the growth parameters for silver nanoparticle synthesis by inert gas eondensation[J]. J Mater Res, 2007, 22: 3378-3384
    108.杨志尹.纳米科技[M].北京:机械工业出版社, 2004
    109. Otsuka H, Akiyama Y, NagasakiY, et al. Quantitative and reversible lectin-induced association of gold nanoparticles modified withα-lactosyl-ω-mercapto-poly(ethylene glycol) [J]. J Am Chem Soc, 2001, 123: 8226-8230
    110. Rojas T C, de la Fuente J M, Barrientos A G, et al. Gold glyconanoparticles as building blocks for nanomaterials design [J]. Adv Mater, 2002, 14: 585-588
    111. Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly [J]. Nature, 2000, 405: 665-668
    112. Jr M B, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2016
    113. Cao Y W, Jin R, Mirkin C A. DNA-modified core?shell Ag/Au nanoparticles [J]. J Am Chem Soc, 2001, 123: 7961-7962
    114. Kim J H, Lee T P. Thermo- and pH-responsive hydrogel-coated gold nanoparticles [J]. Chem Mater, 2004, 16: 3647-3651
    115. Sun L, Liu D, Wang Z. Functional gold nanoparticle?peptide complexes as cell-targeting agents[J]. Langmuir, 2008, 24: 10293-10297
    116. Bae S J, Lee C, Choi I S, et al. Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced raman scattering study [J]. J Phys Chem B, 2002, 106: 7076-7080
    117. Muniz-Miranda M. Surface enhanced raman scattering and normal coordinate analysis of
    1, 10-phenanthroline adsorbed on silver sols [J]. J Phys Chem A, 2000, 104: 7803-7810
    118. Cui Y, Ren B, Yao J L, et al. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced raman spectroscopy [J]. J Phys Chem B, 2006, 110: 4002-4006
    119. Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277: 1078-1081
    120. Wuelfing W P, Gross S M, Miles D T, et al. Nanometer gold clustersprotected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte[J]. J Am Chem Soc, 1998, 120: 12696-12697
    121. Akiyama Y, Otsuka H, Nagasaki Y, et al. Selective synthesis of heterobifunctional poly(ethylene glycol) derivatives containing both mercapto and acetal terminals[J]. Biocongjugate Chem, 2000, 11: 947-950
    122. Han S, Lin J, Zhou F, et al. Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection[J]. Biochem Biophys Res Commun, 2000, 279: 265-269
    123. Levy R N, Thanh T K, Doty R C, et al. The nature of the rapid relaxation of excited charge-transfer complexes [J]. J Am Chem Soc, 2004, 126: 10076-10084
    124. Hone D C, Haines A H, Russell D A. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles[J]. Langmuir, 2003, 19: 7141-7144
    125. Lin C C, Yeh Y C, Yang C Y, et al. Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A [J]. Chem Commun, 2003, (23): 2920-2921
    126. Liu Y, Male K B, Bouvrete P, et al. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins[J]. Chem Mater, 2003, 15: 4172-4180
    127. Zhang C X, Zhang Y, Wang X, et al. Hyper-rayleigh scattering of protein-modified gold nanoparticles[J]. Anal Biochem, 2003, 320: 136-140
    128. Mayya K M, Jain N, Gole A, et al. Time-dependent complexation of glucose-reduced gold nanoparticles with octadecylamine Langmuir monolayers[J]. J Colloid Interface Sci, 2004, 270: 133-139
    129. Selvakannan P R, Mandal S, Phadtare S, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid[J]. J Colloid Interface Sci, 2004, 269: 97-102
    130. Swami A, Kumar A, D’Costa M, et al. Variation in morphology of gold nanoparticles synthesized by the spontaneous reduction of aqueous chloroaurate ions by alkylated tyrosine at a liquid-liquid and air-water interface [J]. J Mater Chem, 2004, 14: 2696- 2702
    131. Qi Z, Zhou H, Matsuda N, et al. Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution [J]. J Phys Chem B, 2004, 108: 7006-7011
    132. Shao Y, Jin Y, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride [J]. Chem Commun, 2004, (9): 1104-1105
    133. Raveendran P, Fu J, Wallen S L. Completely green synthesis and stabilization of metal nanoparticles [J]. J Am Chem Soc, 2003, 125: 13940-13941
    134. Mucalo M R, Bullen C R, Merilyn M-H. Arabinogalactan from the western larch tree: a new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension [J]. J Mater Sci, 2002, 37: 493-504
    135. Adlim M, Bakar M A, Liew K Y, et al. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity[J]. J Mol Catal A: Chem, 2004,212: 141-149
    136. He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers[J]. Chem Mater, 2003, 15: 4401
    137. Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method [J]. Carbohydre Res, 2004, 339: 2627–263144
    138. Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angew Chem Int Ed, 2004, 43: 597-601
    139. Yu D, Yam V W W. Controlled synthesis of monodisperse silver nanocubes in water [J]. J Am Chem Soc, 2004, 126: 13200.
    140.曹洁明,郑明波,陆鹏,等.利用还原性多糖合成银纳米粒子[J].化学学报, 2005, 63: 1541-1544
    141. Zhang L, Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene -b-poly (acrylic acid) block copolymers [J]. Science, 1995, 268: 1728-1731
    142. Choucair A, Eisenberg A. Control of amphiphilic block copolymer morphologies using solution conditions [J]. Eur Phys J E, 2003, 10: 37-44
    143. Soo P L, Eisenberg A. Preparation of block copolymer vesicles in solution [J]. J Polym Sci B: Polym Phys, 2004, 42: 923-938
    144. Liu S, Weaver J V M, Save M, et al. Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles [J]. Langmuir, 2002, 18: 8350-8357
    145. Liu S, Armes S P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer [J]. Langmuir, 2003, 19: 4432-4438
    146. Castelletto V, Hamley I W, Ma Y, et al. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer[J]. Langmuir, 2004, 20: 4306-4309
    147. Dai S, Ravi P, Tam K C, et al. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties[J]. Langmuir, 2003, 19: 5175-5177
    148. Liu F, Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine)[J]. J Am Chem Soc, 2003, 125: 15059-15064
    149. Rodríguez-Hernández J, Lecommandoux S. Reversible inside?out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers[J]. J Am Chem Soc, 2005, 127: 2026-2027
    150. Liu S, Armes S P. Polymeric surfactants for the new millennium: a pH-responsive, zwitterionic, schizophrenic diblock copolymer [J]. Angewandte Chem Int Ed, 2002, 41: 1413-1416
    151. Martin T J, Procházka K, Munk P, et al. pH-dependent micellization of poly (2- vinylpyridine) - block - poly(ethylene oxide) [J]. Macromol, 1996, 29: 6071-6073
    152. Gohy J F, Varshney S K, Jér?me R. Water-soluble complexes formed by poly (2-vinylpyridinium)-block-poly(ethylene oxide) and poly (sodium methacrylate)- block–poly (ethylene oxide) copolymers[J]. Macromol, 2001, 34: 3361-3366
    153. Gohy J F, Varshney S K, Antoun S, et al. Water-soluble complexes formed by sodium poly (4-styrenesulfonate) and a poly (2-vinylpyridinium)– block– poly (ethyleneoxide) copolymer [J]. Macromol, 2000, 33: 9298-9305
    154. Gohy J F, Greutz S, Garcia M, et al. Aggregates formed by amphoteric diblock copolymers in water [J]. Macromol, 2000, 33: 6378-6387
    155. Lee A S, Gast A P, Bütün V, et al. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles [J]. Macromol, 1999, 32: 4302-4310
    156.张俐娜.天然高分子科学与材料[M].北京:科学出版社,2007.39
    157. Chen J P, Hong L, Wu S, et al. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation [J]. Langmuir, 2002, 18: 9413-9421
    158. Lin F, Sun A M. Microencapsulated islets as bioartificial endocrine pancreas [J]. Science, 1980, 210: 908-910
    159. Martinsen A, Skj?k-Br?k G, Smidsr?d O, et al. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates[J]. Carbohydr Polym, 1991, 15: 171-193
    160. Grasdalen H. High-field 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations [J]. Carbohydr Res, 1983, 118: 255-260
    161. Grasdalen H, Larsen B, Smidsr?d O. A p.m.r. study of the composition and sequence of uronate residues in alginates [J]. Carbohydr Res, 1979, 68: 23-31
    162. Winnik F M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media [J]. Chem Rev, 1993, 93: 587-614
    163. Bu H, Kj?niksen A L, Nystr?m B. Effects of pH on dynamics and rheology during association and gelation via the Ugi reaction of aqueous alginate [J]. Eur Polym J, 2005, 41: 1708-1717
    164. Okuzaki H, Osada Y. Ordered-aggregate formation by surfactant-charged gel interaction [J]. Macromol, 1995, 28: 380-382
    165. Ilekti P, Piculell L, Tournilhac F. How to concentrate an aqueous polyelectrolyte / surfactant mixture by adding water [J]. J Phys Chem B, 1998, 102: 344-351
    166. Svensson A, Piculell L, Cabane B, et al. A new approach to the phase behavior of oppositely charged polymers and surfactants [J]. J Phys Chem B, 2002, 106: 1013-1018
    167. Kogej K, Evmenenko G, Theunissen E, et al. Investigation of structures in poly- electrolyte/surfactant complexes by x-ray scattering [J]. Langmuir, 2001, 17: 3175-3184
    168. Khokhlov A R, Kramarenko E Y, Makhaeva E E, et al. Collapse of polyelectrolyte networks induced by their interaction with oppositely charged surfactants [J]. Macromol, 1992, 25: 4779-4783
    169. Li Y, Xu R, Couderc S, et al. Structure of the complexes formed between sodium dodecyl sulfate and a charged and uncharged ethoxylated polyethyleneimine: small-angle neutron scattering, electromotive force, and isothermal titration calorimetry measurements [J]. Langmuir, 2001, 17: 5657-5665
    170. Neumann M G, Schmitt C C, Iamazaki E T. A fluorescence study of the interactions between sodium alginate and surfactants [J]. Carbohydr Res, 2003, 338: 1109-1113
    171. Uskokovi? V. Isn't self-assembly a misnomer? Multi-disciplinary arguments in favor of co-assembly [J]. Adv Colloid Interf Sci, 2008, 141: 37-47
    172. Cao Y, Shen X C, Chen Y, et al. pH-induced self-assembly and capsules of sodium alginate [J]. Biomacromol, 2005, 6: 2189-2196
    173. Yang J, Zhao J, Fang Y. Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values [J]. Carbohydr Res, 2008, 343: 719-725
    174. F?rster S, Abetz V, Muller A H E. Polyelectrolyte block copolymer micelles [J]. Adv Polym Sci, 2004, 166: 173-210
    175. Wen S, Alexander H, Inchikel A, et al. Microcapsules through polymer complexation: Part 3: encapsulation and culture of human Burkitt lymphoma cells in vitro [J]. Biomater, 1995, 16: 325-335
    176. Liu L S, Liu S Q, Ng S Y, et al. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres [J]. J Control Rel, 1997, 43: 65-74
    177. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds [J]. Adv Drug Deliver Rev, 2002, 54:203-222
    178. Martinsen A, Skj?k-Br?k G, Smidsr?d O, et al. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates[J]. Carbohydr Polym, 1991, 15: 171-193
    179.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003. 243
    180. Zana R, Binana-LimbeléW, Kamenka N, et al. Ethyl (hydroxyethyl) cellulose-cationic surfactant interactions: electrical conductivity, self-diffusion and time-resolved fluorescence quenching investigations [J]. J Phys Chem, 1992, 96: 5461-5465
    181. Huggins M L. A study of the products obtained by the reducing action of metals upon salts in liquid ammonia solution [J]. J Am Chem Soc, 1942, 64: 2715-2716
    182. Wang C, Tam K C. Interaction between polyelectrolyte and oppositely charged surfactant: effect of charge density [J]. J Phys Chem B, 2004, 108: 8976-8982
    183. Wang X Y, Li Y J, Li J X, et al. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution[J]. J Phys Chem B, 2005, 109: 10807-10812
    184. Wang G, Olofsson G. Ethyl hydroxyethyl cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfate and some cationic surfactants [J]. J Phys Chem, 1995, 99: 5588-5596
    185. Gianni P, Barghini A, Bernazzani L, et al. Aggregation of cesium perfluorooctanoate on poly(ethylene glycol) oligomers in water[J]. J Phys Chem B, 2006, 110: 9112-9121
    186. Kujawa P, Raju B B, Winnik F M. Interactions in water of alkyl and perfluoroalkyl surfactants with fluorocarbon- and hydrocarbon-modified poly (N-isopropylacrylamides) [J]. Langmuir, 2005, 21: 10046-10053
    187. Dai S, Tam K C. Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants [J]. J Phys Chem B, 2001, 105: 10759-10763
    188. Zana R, Lianos P, Lang J. Fluorescence probe studies of the interactions between poly (oxyethy1ene) and surfactant micelles and microemulsion droplets in aqueous solutions [J]. J Phys Chem, 1985, 89: 41-44
    189. Turro N J, Baretz B H, Kuo P L. Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers [J]. Macromol, 1984, 17: 1321-1324
    190. Kalyanasundaram K, Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems [J]. J Am Chem Soc, 1977, 99: 2039-2044
    191. Siu H, Duhamel J. Associations between a pyrene-labeled hydrophobically modified alkali swellable emulsion copolymer and sodium dodecyl sulfate probed by fluorescence, surface tension, and viscometry [J]. Macromol, 2006, 39: 1144-1155
    192. Winnik FM. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media [J]. Chem Rev, 1993, 93: 587-614
    193. Sahoo D, Narayanaswami V, Kay C M, et al. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III [J]. Biochem, 2000, 39: 6594-6601
    194. Thünemann A F. Polyelectrolyte–surfactant complexes (synthesis, structure and materials aspects) [J]. Prog Polym Sci, 2002, 27: 1473-1572
    195. Ilekti P, Martin T, Cabane B, et al. Effects of polyelectrolytes on the structures and interactions of surfactant aggregates [J]. J Phys Chem B, 1999, 103: 9831-9840
    196. Mezei A, Mészáros R. Novel method for the estimation of the binding isotherms of ionic surfactants on oppositely charged polyelectrolytes [J]. Langmuir, 2006, 22: 7148-7151
    197. Chu D Y, Thomas J K. Effect of cationic surfactants on the conformation transition of poly (methacrylic acid) [J]. J Am Chem Soc, 1986, 108: 6270-6276
    198. Yin D S, Yang W Y, Ge Z Q, et al. A fluorescence study of sodium hyaluronate/surfactant interactions in aqueous media [J]. Carbohydr Res, 2005, 340:1201-1206
    199. Winnik M. A, Bystryak S M, Chassenieux C, et al. Study of interaction of poly(ethylene imine) with sodium dodecyl sulfate in aqueous solution by light scattering, conductometry, NMR, and microcalorimetry[J]. Langmuir, 2000, 16: 4495-4510
    200. Yeh F, Sokolov E L, Khokhlov A R, et al. Nanoscale supramolecular structures in the gels of poly(diallyldimethylammonium chloride) interacting with sodium dodecyl sulfate[J]. J Am Chem Soc,1996, 118: 6615-6618
    201. Yeh F, Sokolov E L, Walter T, et al. Structure studies of poly (diallyldimethylammonium chloride-co-acrylamide) gels/sodium dodecyl sulfate complex[J]. Langmuir, 1998, 14: 4350-4358
    202. Neumann M G, Schmitt C C, Iamazaki E T. A fluorescence study of the interactions between sodium alginate and surfactants [J]. Carbohydr Res, 2003, 338: 1109-1113
    203. Guillemet F, Piculell L. Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant, mixed micelle formation and associative phase separation [J]. J Phys Chem, 1995, 99: 9201-9209
    204. Barbosa S, Taboada P, Castro E, et al. Influence of SDS and two anionic hydrotropes on the micellized state of the triblock copolymer E71G7E71[J]. J Colloid Interface Sci. 2006, 296: 677-684
    205. Bromberg L, Temchenko M, Colby R H. Interactions among hydrophobically modified polyelectrolytes and surfactants of the same charge [J]. Langmuir, 2000, 16: 2609-2614
    206. Bu H, Kj?niksen A L, Elgsaeter A, et al. Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: Calorimetric, rheological, and turbidity studies [J]. Colloids Surf A, 2006, 278: 166-174
    207. Anghel D F, Toca-Herrera J L, Winnik F M, et al. Steady-state fluorescence investigation of pyrene-labeled poly (acrylic acid) s in aqueous solution and in the presence of sodium dodecyl sulfate [J]. Langmuir, 2002, 18: 5600-5606
    208. Seng W P, Tam K C, Jenkins R D, et al. Calorimetric studies of model hydrophobically modified alkali-soluble emulsion polymers with varying spacer chain length in ionic surfactant solutions [J]. Macromol, 2000, 33: 1727-1733
    209. Antunes F E, Marques E F, Gomes R, et al. Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification [J]. Langmuir, 2004, 20: 4647-4656
    210. Burke S E, Palepu R. Interaction of a hydrophbically modified cationic cellulose ether derivative amphiphiles of like charge in an aqueous environment [J]. Carbohydr Polym, 2001, 45: 233-244
    211. Iliopoulos I, Furo I. NMR study of the association of anionic surfactants with an anionic polyelectrolyte hydrophobically modified with perfluorinated side chains [J]. Langmuir, 2001, 17: 8049-8054
    212. Lee C T, Jr, Smith K A, et al. Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants[J]. Macromol, 2004, 37: 5397-5405
    213. Ar?ca M Y, Arpa C, Ergene A, et al. Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized phanerochaete chrysosporium [J]. Carbohydr Polym, 2003, 52: 167-174
    214. Drury J L, Mooney D J. Hydrogels for tissue engineering: scaffold design variables and applications [J]. Biomater, 2003, 24: 4337-4351
    215. Lai H L, AbuKhalil A, Craig D Q M. The preparation and characterisation of drug-loaded alginate and chitosan sponges [J]. Int J Pharm, 2003, 251: 175-181
    216. Wang C, Ye S, Dai L, et al. Enzymatic desorption of layer-by-layer assembled multilayer films and effects on the release of encapsulated indomethacin microcrystals[J]. Carbohydr Res, 2007, 342: 2237-2243
    217. Madziva H, Kailasapathy K, Phillips M. Evaluation of alginate–pectin capsules in cheddar cheese as a food carrier for the delivery of folic acid [J]. LWT-Food Sci Technol, 2006, 39: 146-151
    218. Bu H, Kj?niksen A L, Knudsen K D, et al. Characterization of interactions in aqueous mixtures of hydrophobically modified alginate and different types of surfactant [J]. Colloids Surf A, 2007, 293: 105-113
    219. Daisy S, Vasanthy N, Cyril M K, et al. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin [J]. Biochem, 2000, 39: 6594-6601
    220. Wang Y L, Han B X, Yan H K, et al. Microcalorimetry study of interaction between ionic surfactants and hydrophobically modified polymers in aqueous solutions [J]. Langmuir, 1997, 13: 3119-3123
    221. Binana-Limbele W, Zana R. Interactions between sodium dodecyl sulfate and polycarboxylates and polyethers. Effect of Ca2+ on these interactions [J]. Colloids Surf, 1986, 21: 483-494
    222. Tam K C, Farmer M L, Jenkins R D, et al. Rheological properties of hydrophobically modified alkali-soluble polymers - effects of ethylene-oxide chain length [J]. J Polym Sci B, 1998, 36: 2275-2290
    223. Lu J R, Marrocco A, Su T S, et al. Adsorption of dodecyl dulfate durfactants with monovalent metal counterions at the air-water interface studied by neutron reflection and surface tension [J]. J Colloid Interface Sci, 1993, 158: 303-316
    224. Goddard E D, Ananthapadmanabhan K P. Interactions of surfactants with polymers and proteins [M]. Boca Raton, FL: CRC Press. 1993
    225. Avaltroni F, Seijo M, Ulrich S, et al. Conformational changes and aggregation of alginic acid as determined by fluorescence correlation spectroscopy[J]. Biomacromol, 2007, 8: 106-112
    226. Duval-TerriéC, Cosette P, Molle G, et al. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization [J]. Protein Sci, 2003, 12: 681-689
    227. Glass J E. Polymers in aqueous media [M]. Advances in Chemistry Series 223, Washington, DC, ACS Press, 1989
    228. Rusanov A I. Equation of state and phase transitions in surface monolayer [J]. Colloids Surf A, 2007, 293: 105-113
    229. Malmsten M. Surfactants and Polymers in Drug Delivery [M]. Marcel Dekker, New York, 2002
    230. Piculell L, Lindman B. Association and segregation in aqueous polymer/polymer, polymer /surfactant, and surfactant/surfactant mixtures: similarities and differences [J]. Adv Colloid Interf Sci, 1992, 41: 149-178
    231. Chang Y, Lochhead R Y, McCormick C L. Water-soluble copolymers. 50. Effect of surfactant addition on the solution properties of amphiphilic copolymers of acrylamide and dimethyldodecyl (2-acrylamidoethyl) ammonium bromide [J]. Macromol, 1994, 27: 2145-2150
    232. Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media [J]. Bioconjugate Chem. 1995, 6: 123-130
    233. Kanti P, Srigowri K, Madhuri J, et al. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation [J]. Sep Purif Technol, 2004, 40: 259-266
    234. Chandía N P, Matsuhiro B, Vásquez A E. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy [J]. Carbohydr Polym, 2001, 46: 81-87
    235. Huang R, Du Y, Yang J. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives [J]. Carbohydr Polym, 2003, 52: 19-24
    236. Smitha B, Sridhar S, Khan A A. Chitosan–sodium alginate polyion complexes as fuel cell membranes[J]. Eur Polym J, 2005, 41: 1859-1866
    237. Zohuriaan M J, Shokrolahi F. Thermal studies on natural and modified gums [J]. Polym Test, 2004, 23: 575-579
    238. Shimizu T, Takadab A. Preparation of Bi-based superconducting fiber by metal biosorption of Na-alginate [J]. Polym Gels Networks, 1997, 5: 267-283
    239.Russo R, Giuliani A, Immirzi B, et al. Alginate/polyvinylalcohol blends for agricultural applications: structure-properties correlation, mechanical properties and greenhouse effect evaluation[J]. Macromol Symp, 2004, 218: 241-250
    240. Laurienzoa P, Malinconicoa M, Motta A, et al. Synthesis and characterization of a novel alginate-poly (ethylene glycol) graft copolymer [J]. Carbohydr Polym, 2005, 62: 274- 282
    241. Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem Rev, 2004, 104: 293-346
    242. Markowitz M A, Dunn D N, Chow G M, et al. The effect of membrane charge on gold nanoparticle synthesis via surfactant membranes [J]. J Colloid Interface Sci, 1999, 210: 73-85
    243. Hayashi C. Ultrafine Particles [J]. J Vac Sci Technol A, 1987, 5: 1375-1384
    244. Gleiter H. Materials with ultrafine microstructures: retrospectives and perspectives [J]. Nanostruct Mater, 1992, 1: 1-19
    245. Kwon K, Lee K Y, Lee Y W, et al. Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced raman scattering property [J]. J Phys Chem C, 2007, 111: 1161-1165
    246. Gole A, Dash C, Ramakrishnan V, et al. Pepsin-gold colloid conjugates: preparation,characterization, and enzymatic activity [J]. Langmuir, 2001, 17: 1674-1679
    247. Pei L, Mori K, Adachi M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization [J]. Langmuir, 2004, 20: 7837-7843
    248. Takasu Y, Zhang X G, Minoura S, et al. Size effects of ultrafine palladium particles on the electrocatalytic oxidation of CO[J]. Appl Surf Sci, 1997, 121/122: 596-600
    249. Brust M, Kiely C J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review [J]. Colloids Surf A: Physicochem Eng Asp, 2002, 202: 175-186
    250. Sau T K, Pal A, Jana N R, et al. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles [J]. J Nanopart Res, 2001, 3: 257-261
    251. Reed J A, Cook A, Halaas D J, et al. The effects of microgravity on nanoparticle size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution [J]. Ultrason Sonochem, 2003, 10: 285-289
    252. Henglein A, Meisel D. Radiolytic control of the size of colloidal gold nanoparticles [J]. Langmuir, 1998, 14: 7392-7396
    253. Shimizu T, Teranishi T, Hasegawa S, et al. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state[J]. J Phys Chem B, 2003, 107: 2719 -2724
    254. Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles[J]. Chem Mater, 2001, 13: 2313 -2322
    255. Manna A, Imae T, Yogo T, et al. Synthesis of gold nanoparticles in a winsor II type microemulsion and their characterization [J]. J Colloid Interface Sci, 2002, 256: 297-303
    256. Chen F, Xu G Q, Hor T S A. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion [J]. Mater Lett, 2003, 57: 3282-3286
    257. Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods: electrochemical synthesis and optical properties[J]. J Phys Chem B, 1997, 101: 6661-6664
    258. Turkevitch J, Stevenson P C, Hillier J. Nucleation and growth process in the synthesis of colloidal gold [J]. Discuss Faraday Soc, 1951, 11: 55-75
    259. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature: Phys Sci, 1973, 241: 20-22
    260. Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization [J]. Colloids Surf A: Physicochem Eng Asp, 1999, 149: 193-199
    261. Orendorff C J, Murphy C J. Quantitation of metal content in the silver-assisted growth of gold nanorods [J]. J Phys Chem B, 2006, 110: 3990-3994
    262. Zhang J H, Liu H Y, Wang Z L, et al. Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances [J]. Adv Funct Mater, 2007, 17: 3295-3303
    263. Bakshi M S, Possmayer F, Petersen N O. Simultaneous synthesis of Au and Cu nanoparticles in pseudo-core-shell type arrangement facilitated by DMPG and 12-6-12 capping agents[J]. Chem Mater, 2007, 19: 1257-1266
    264. Asnani M, Thomas J, Sen P, et al. Surfactant controlled synthesis of crystalline phosphovanadate nanorods [J]. Mater Res Bull, 2007, 42: 686-695
    265. Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein[J]. J Phys Chem C, 2007, 111: 10226-10232
    266. Fabris L, Antonello S, Armelao L, et al. Gold nanoclusters protected by conformationally constrained peptides [J]. J Am Chem Soc, 2006, 128: 326-336
    267. Rangnekar A, Sarma T K, Singh A K, et al. Retention of enzymatic activity ofα-amylase in the reductive synthesis of gold nanoparticles[J]. Langmuir, 2007, 23: 5700-5706
    268. Pong B K, Elim H I, Chong J X, et al. New insights on the nanoparticle growth mechanism in the citrate reduction of gold (III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties [J]. J Phys Chem C, 2007, 111: 6281-6287
    269. Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem Commun, 2001, (7): 617-618
    270. Torres E, Mata Y N, Blázquez M L, et al. Gold and silver uptake and nanoprecipitation on calcium alginate beads [J]. Langmuir, 2005, 21: 7951-7958
    271. Gardea-Torresdey J L, Tiemann K J, Parsons J G, et al. XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass[J]. Microchem J, 2002, 71: 193-204
    272. Bronstein L, Chernyshov D, Valetsky P. Laser photolysis formation of gold colloids in block copolymer micelles[J]. Langmuir, 1999,15: 83-91
    273. Watkins II J W, Elder R C, Greene B, et al. Determination of gold binding in an algal biomass using EXAFS and XANES spectroscopies [J]. Inorg Chem, 1987, 26: 1147- 1151
    274. Esumi K, Hosoya T, Suzuki A, et al. Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine)dendrimers[J]. Langmuir,2000, 16: 2978-2980
    275. Esumi K, Hosoya T, Suzuki A, et al. Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly (amidoamine) dendrimers [J]. J Colloid Interface Sci, 2000, 226: 346-352
    276. Saha S, Pal A, Pande S, et al. Alginate gel-mediated photochemical growth of mono- and bimetallic gold and silver nanoclusters and their application to surface-enhanced raman scattering [J]. J Phys Chem C, 2009, 113: 7553-7560
    277. Kawasaki H, Nishimura K, Arakawa R. Influence of the counterions of cetyltrimetyl- ammonium salts on the surfactant adsorption onto gold surfaces and the formation of gold nanoparticles [J]. J Phys Chem C, 2007, 111: 2683-2690
    278. Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. J Am Chem Soc, 2004, 126: 8648-8649
    279. Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem Mater, 2003, 15: 1957-1962
    280. Jin R, Cao Y, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 2001, 294: 1901-1903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700