用户名: 密码: 验证码:
基于数学形态学和分形的金相图像处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生产的快速发展和科学技术的日趋进步,对制造机械设备的各种金属材料的可靠性和安全性要求越来越高,进而对金属材料质量检验和控制的手段、方法的要求也越来越高。迄今为止,金相技术一直是材料科学与工程领域应用最广泛、最易行有效的研究和检验方法,计算机辅助定量金相分析,具有精度高、速度快等优点,现正逐渐成为金相技术的核心,而金相图像处理又是定量金相分析的关键环节,因此开展对金相图像处理中关键技术的研究对金相技术的应用和发展有着巨大的工程价值。
     金相图像处理的关键技术包括金相图像的边缘检测、图像分割(包括晶界恢复与重建)算法和分形维数计算。数学形态学是一种非常实用的金相图像处理方法,其关键是膨胀和腐蚀两种基本运算以及结构元素的构造。但传统的数学形态学膨胀运算影响金相图像灰度的连续性和均匀性,并且其形态变换的结构元素不变,是对整个图像的一种均衡的处理过程,这就会导致图像的“过处理”或“欠处理”,影响定量金相分析的准确性。为此,本文首先依据数学形态学理论,对金相图像的边缘检测和图像分割(包括晶界恢复与重建)进行深入研究,提出相关的理论和方法,并通过实验加以验证。分形理论是现代数学与非线性科学研究中十分活跃的一个分支,分形维数则是分形理论应用中最重要的一个方面,广泛应用于图像处理和分析领域。数学上有关分形维数的定义有好几种,但采用什么方法来计算金相图像的分形维数则是一个急待研究的问题。为此,本文深入分析金相图像和分形维数各种算法的特点,结合二者的特点提出相关的理论和方法,并通过实验加以验证。
     本文的主要研究工作和创新性成果包括:
     (1)针对现有金相图像边缘检测导致伪检测、漏检测以及多像素宽度边缘等“错误处理”问题,结合考虑金相图像复杂、含杂质和噪声较多等特点,提出了基于多尺度多结构元素的数学形态学边缘检测方法。经实验证明该算法是行之有效的,与传统的边缘检测方法相比,它提取的边缘更准确,连续性和光滑性更好,为金相图像晶粒参数的准确测定及分形维数的准确计算提供了技术支撑。
     (2)从理论上系统论证了传统的膨胀运算对金相图像灰度连续性、均匀性的不良影响以及这种影响的程度与相应的结构元素之间的关系,对传统的灰度膨胀运算的定义作了合理的改进,为本文提出的金相图像晶界恢复与重建技术——多尺度测地膨胀奠定了理论基础。此外,还从理论上系统论证了传统的腐蚀运算保持金相图像灰度的连续性和均匀性,为结构元素尺度的选取提供了理论依据。
     (3)依据已经证明的关于灰度膨胀、腐蚀运算对图像灰度连续性影响的结论,针对传统的金相图像分割算法的不足,结合金相图像的特点,提出了基于改进的膨胀运算的金相图像晶界恢复与重建技术——多尺度测地膨胀。用改进的膨胀运算取代传统的膨胀运算,提高了金相图像晶粒的边界恢复和重建的准确度、清晰度,减少了金相图像“过分割”、“欠分割”或“错误分割”的现象;用多尺度迭代腐蚀取代了传统的(单一尺度)重复腐蚀,用多尺度测地膨胀取代了传统的(单一尺度)重复测地膨胀,缩短了程序运行时间,提高了金相图像晶粒的边界恢复和重建的效率。
     (4)结合金相图像的特点,利用本文构建的多尺度多结构元素边缘检测算子,提出基于形态膨胀体覆盖的金相图像分形维数算法。通过实验验证该算法是行之有效的,具有较高的理论和工程应用价值。
With the rapid development of production and the great progress of science and technology, the reqirements for reliability and safety of all kinds of metal materials applied in machinery and equipment have become more sophisticated, which requires more sophisticated methods to inspect and control the quality of the metal materials. So far, the metallographical technology has been the most easy and effective method of research and testing that widely applied in materials science and engineering. The computer-aided quantitative metallographical analysis, with a high accuracy, speed, etc., now is becoming the core of the metallographical technology, while the technology of the metallographical image processing is the key to the computer-aided quantitative metallographical analysis. Therefore, the research of the key technologies in the metallographical image processing has a great practical value in the developments and applications of the metallographical technology.
     The key technology in the metallographical image processing includes edge detection, segmentation (including the restoration and reconstruction of grain edges) and fractal dimension calculation of the metallographical image. Mathematical morphology is a very practical method of metallographical image processing. The key of the method is the construction of two basic operations namely dilation and erosion, and the construction of structural elements in the mathematical morphology. However, the traditional morphological dilation affects the continuity and uniformity of gray of the metallographical image. In addition, the form and size of the structural elements in the traditional operations do not change, which means that the traditional operations are uniformily balanced processings to the whole morphological image and would cause the image to over-processing (over-segmentation) or less-processing (less-segmentation) that reduces the accuracy of the computer-aided quantitative metallographical analysis. Therefore, in this paper, the key processes in the metallographical image processing——edge detection and image segmentation (including the restoration and reconstruction of grain edges) are researched first based on mathematical morphology theory. Some theories and methods relevant to the edge detection and image segmentation are suggested and verified theoretically and experimentally. Fractal theory is a very active branch of modern mathematics and nonlinear science.
     Fractal dimension, now widely applied in image processing and analysis, is the most important aspect of the application of fractal theory. There are several kinds of mathematical definition of fractal dimension, but how to calculate the fractal dimension of the metallographical image is a pressing issue for further study. Therefore, in this paper, the characteristics of the metallographical image and the algorithm of the fractal dimension are analyzed thoroughly. Some theories and methods are put forward combined with the characteristics and verified by experiments.
     The main results of research and innovation in this paper include:
     (1) For the false detection, leak detection, and multi-pixel width edge in the existing metallographical image edge detection, the "error processing" problem, and for the complexity of metallographical images that contains a large number of impurities and noise, edge detection algorithms based on multi-scale and muti-form of morphological structureal elements are proposed in this paper. A large number of experiments show that this algorithm is more effective and the edges detected by it are more accurate, continous and smooth in comparison to the traditional edge detection methods. This provides a technical support for the accurate measurements of the grain parameters and calculation of the fractal dimension in the metallographical images.
     (2) The adverse effects of traditional operation of dilation on the gray continuity in the metallographical image is researched theoretically, which is related to the size of structural element. The traditional definition of dilation is modified reasonablly which lays the theoretical foundation for the multi-scale geodesic deliltion, the technology of restoration and reconstruction of the grain edges in the metallographical image. In addition, demonstrate theoretically that the traditional operation of erosion maintain the continuity and uniformity of gray in the metallographical image, which provides the theory basis for the selection of scale of structure elements.
     (3) Based on the conclusions proved in (2) and related to the effects of traditional operation of dilation and erosion on the gray continuity in the metallographical image, aimed at the shortage of the traditional watershed segmentation algorithm, and combined with the features of the metallographical image, a new algorithm based on the modified delition, called multi-scale geodesic deliltion, the technology of restoration and reconstruction of the grain edges in the metallographical image, is proposed in this paper. In this algorithm, the traditional delition is replaced by the modified delition, which improves the accuracy and clarity of the grain edges restored and reconstructed and reduces greatly the phenomenon of“over-segmentation”,“less-segmentation”or“wrong- segmentation”in the metallographical image. In addition, the traditional iterative erosion with single-scale is replaced by the multi-scale iterative erosion, and the traditional repeat geodesic delition with single-scale is replaced by the multi-scale geodesic delition, which reduces the program run time greatly and improves the efficiency of the restoration and reconstruction of grain edges in the metallographical image.
     (4) Combined with the characteristics of the metallographical image, using the edge detection algorithms based on multi-scale and muti-form of morphological structureal elements, an algorithm of fractal dimension in the metallographical image based on the morphological dilation body coverage is suggested in this paper. It is proved by a large number of experiments that the algorithm is more effective compared with the current algorithm and has certain advantages over the current algorithm.
引文
[1]余国踪.化工容器及设备[M].北京:化学工业出版社,1980.
    [2]刘国权,刘胜新,黄启今等.金相学和材料显微组织定量分析技术(综述)[J].中国体视学与图像分析, 2002, 7(4):248-251.
    [3] Agnieszka Szczotok , Janusz Szala, Jan Cwajna, et al. Selection of etchingmethods of primary carbidesin MAR-M247 nickel–base superalloy for computer-aidedquantitative metallography[J]. Materials characterization, 2006, 56: 348-354.
    [4]王锋.复杂金相组织的形态学分析与程序设计[D].重庆:重庆大学, 2002.
    [5] Zhu Q, Sellars C M, Bhadeshia D H. Quantitative metallography of deformed grains[J]. Materials science and technology, 2007, 23(7):751-757.
    [6]秦国友.定量金相[M].成都:四川科学技术出版社,1987.
    [7]衣雪梅.金相显微组织的计算机分析与识别系统研究[D].西安:西北农林科技大学, 2006.
    [8]吴建军.计算机图像处理技术在定量金相分析中的应用研究[D].重庆:重庆大学, 2002.
    [9] Tan W J,Wu C D,Zhao S Y, et al. Study on key technology of metallographical image processing and recognition[J]. 2008 Chinese control and decision comference, 2008, 1(11): 1832-1837.
    [10]汤力琨.金相组织图像分析中关键算法研究[D].成都:四川大学,2005.
    [11]季虎,孙即祥,邵晓芳等.图像边缘提取方法及展望[J].计算机工程与应用, 2004, 14(3): 70-73.
    [12]杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用,2005,18(3):21-23.
    [13]程宏煌,戴卫恒,姚趁趁.图像分割方法综述[J].电信快报, 2000, 10(1): 18-20 .
    [14]吴亚东.图像复原算法研究[D].成都:电子科技大学, 2006.
    [15]阮秋琦.数字图像处理[M].北京:电子工业出版社,2001: 19-73.
    [16] Zbig Niew, Latal C, Leszek Wojnar. Computer-aided versus manual grain size assessment in asingle phase material[J]. Materials characterization, 2001, 46:227–233.
    [17]陈威.基于图像处理的定量金相分析系统[D].广州:广东工业大学, 2004.
    [18]衣雪梅,郭康权. Matlab图形图像处理在农机材料定量金相分析中的应用[J].农机化研究, 2006(5): 169-171.
    [19] Luciano M.F., Ribeiro, Ana Lucia Horovistiz, et al. Fractal analysis of eroded surfaces by digital image processing[J]. Materials Letters, 2002, 56: 512-517.
    [20] Ji Z,Li H H,Li Q, et al. A Novel mathematical morphology filter and its performance analysis in noise reduction[J]. Chinese journa1 of electronics, 2005, 14(1): 125-131.
    [21]黄丽华,王家平.金相图像分析仪的现状及发展前景探讨[J].光学仪器,2003, 25(6):50-53.
    [22]于洋,刘二莉,周铁涛等.边界追踪及Freeman码在定量金相中的应用[J].北京航空航天大学学报, 2004,30(8): 767-770.
    [23]徐建华.图像处理与分析[M].北京:科学出版社,1999: 55-108.
    [24]孙兆林. MATLAB 6.x图像处理[M].北京:清华大学出版社,2002: 240-284.
    [25] Horgan G. W.. Mathematical morphology for analyzing soil structure from images[J]. European journal of soil science, 1998, 49: 161-173.
    [26]章毓晋.图像工程(上册)图像处理[M].北京:清华大学出版社,2005: 365-386.
    [27]连静.图像边缘特征提取算法研究及应用[D].长春:吉林大学,2008.
    [28]闫海霞.基于数学形态学的图像边缘检测和增强算法的研究[D].长春:吉林大学,2009.
    [29]赵于前.基于数学形态学的医学图像处理理论与方法研究[D].长沙:中南大学, 2006.
    [30] Codaro E.N, Nakazato R.Z, Horovistiz A.L, et al. An image processing method for morphology characterization andpitting corrosion evaluation[J]. Materials Science and Engineering, 2002, 334: 298–306.
    [31] Banfield, Jeffrey D, Raffery, Adrian E. Ice floe identification in satellite images using morphology and clustering about principal curves[J]. Journal of the American statistical association, 1992, 87: 417-423.
    [32] Marino Jelavic, Terry Whalen. Morphology changes the shape of machine vision[J]. Maging and graphics, 1987, 17(11): 1931-1936.
    [33] SOILE P.著.形态学图像分析原理与应用[M].北京:清华大学出版社,1999: 23-102.
    [34] Saldner H.O, Molin N, Stetson K.A. Fourier-transform evaluation of phase data inspatially phase-biased TV holograms[J]. Applied optics, 1996, 35: 332-336.
    [35] Zhao Y Q, Gui W H,Chen C H. Noise image edge detection by synthetic weighted multi-scale morphology[A]. International conference on sensing, computing and automation(ICSCA), Chongqing, China, 2006: 589-591.
    [36]于洋,刘二莉,周铁涛等.直线与任意曲线求交算法在晶粒度计算的应用[J].北京航空航天大学学报, 2005, 31(3): 316-320.
    [37]章毓晋.图像工程(下册)图像理解[M].北京:清华大学出版社,2005: 18-64.
    [38]房国志,徐建东,王全等.基于多尺度结构元素边缘检测算法[J].光电子·激光,2010,21(4):569-571.
    [39]刘清,林士胜.基于数学形态学的图像边缘检测算法[J].华南理工大学学报(自然科学版),2008,36(9):113-117.
    [40]侯志强,韩崇昭,左东广等.基于局部多结构元素数学形态学的灰度图像边缘检测算法[J].西安交通大学学报,2003,37(4):439-440.
    [41] Sun J P,Wu B. Image mathematical morphology and image restoration application in detecting underground bin level[J]. Journal of coal science & engineering (China), 2004, 10(2): 105-110 .
    [42] Tan W J, Wu C D, Zhao S Y, et al. Study on key technology of metallographical image processing and recognition[J]. Chinese control and decision conference, 2009, 1(11): 1832-1837.
    [43]唐常青,吕宏伯,黄铮等.数学形态学方法及应用[M].北京:科学出版社, 1990: 1-163.
    [44] Jiang J A, Chuang C L, Lu Y L, et al. Mathematical-morphology-based edge detectors for detection of thin edges in low-contrast regions[J]. Institution of engineering and technology image processing, 2007, 1(3): 269-277.
    [45] Soille P. Constrained connectivity for the processing of very-high-resolution satellite images[J]. Ineranational journal of remote sensing, 2010, 31(22): 5879-5893.
    [46] Gonzalez R C,Woods R E. Digital image processing using MATLAB[M]. London: Prentice Ha11, 2003: 8-107.
    [47] Tolosa S C, Blacher S, Denis A, et al. Two methods of random seed generation to avoid over-segmentation with stochastic watershed: application to nuclear fuel micrographs[J]. Journal of microscopy-oxford, 2009, 236(1): 79-86.
    [48]袁天云,姜志国,孟如松.目标分割图中粘连对象的自动切割和分离[J].中国体视学与图像分析,2003,8(1):40-43.
    [49]李新城,王有鹏,朱伟兴,张炎.基于形态学的金相组织图像晶界复原方法[J].计算机工程与设计,2008,29(14):3807-3809.
    [50]刘双科,王建飞等.材料显微组织中的晶界识别与提取[J].中国体视学与图像析,2008,13(2): 134-137.
    [51]林小竹,土彦敏,杜天苍,田瑞卿.基于分水岭变换的目标图像的分割与计数方法[J].计算机工程,2006,32(15):181-183.
    [52]王鹏伟,吴秀清,张名成.基于多尺度形态学融合的分水岭图像分割方法[J].数据采集与处理,2006,21(4):398-402.
    [53] Shatadal P, Javas D S, Bulley N R. Digital image analysis for software separation and classification of touched grains: 2. Classification[J]. Transactions of the ASAE, 1995, 38( 2): 645-649.
    [54]丁伟杰,范影乐,庞全.一种改进的基于分水岭算法的粘连分割研究[J].计算机工程与应用,2007,43( 10) : 70-72.
    [55]凌云,王一鸣,孙明等.基于机器视觉的大米外观品质检测装置[J].农业机械学报,2005,36(3):71-74.
    [56] Codaro E N, Nakazato R Z, Horovistiz A L, et al. An image analysis study of pit formation on Ti—6Al—4V[J]. Materials science and engineering. 2003, 34:1202–210.
    [57] (英)肯尼思·法尔科内著.分形几何——数学基础及应用[M].曾文曲译.沈阳:东北大学出版社,1991: 76-153.
    [58]张运祥.分形理论及图像分形维数实时计算的研究[D].广州:第一军医大学,2001.
    [59]陈小梅,倪国强.基于局部分形维数的遥感图像分割[J].光电工程,2008,35(1):136-139.
    [60]文志英.分形几何的数学基础[M].上海:上海科技教育出版社, 2000: 21-44.
    [61]谢和平等编译,分形几何—数学基础与应用[M].重庆:重庆大学出版社,1991: 19-75.
    [62] Mandelbrot. B.B. The fractal geometry of nature, San francisco[M]. W.H.Freeman andCo. 1982: 10-15.
    [63] Barnsley M. Fractals Everywhere[M]. Academic Press Inc. 1988: 45-68.
    [64]吴显斌.基于分形理论的定量金相分析系统的开发[D].北京:中国石油大学,2009.
    [65]于万波.基于分形与迭代的图象特征表示[D].大连:大连理工大学, 2006.
    [66]王建萍.基于数字图像处理的金相几何参数的定量分析与研究[D].杭州:浙江大学,2003.
    [67]薛家祥,刘晓,朱思君等.基于分形和数学形态学的TIG焊熔池图像分析[J].华南理工在大学学报(自然科学版),2007,35(8):7-10.
    [68]于天河,戴景民,贾丽娟.用分形理论增强红外图像的方法[J].哈尔滨工业大学学报,2009,41(11):77-80.
    [69]赵莹,高隽,陈果等.一种基于分形理论的多尺度多方向纹理特征提取方法[J].仪器仪表学报,2008,29(4):787-791.
    [70]薛东辉,朱耀庭,朱光喜等.分形方法用于有噪图象边缘检测的研究[J].通讯学报,1996, 17 (1): 7-11.
    [71]祝文化,李建雄,张明中.混凝土损伤裂纹的二维数字图像盒维数算法[J].武汉理工大学学报,2008,30(6):60-62.
    [72]宁林新,李宏,张炯明.钢中夹杂物分形维数[J].钢铁研究学报,2005,17(6): 59-62.
    [73]王印培,陈进,孙晓明.珠光体球化的分形研究[J].理化检验—物理分册,2003, 39(3): 129-132.
    [74]周捷,王印培,柳曾典.分形金相的初步探讨—关于晶粒度的分形特征[J].华东理工大学学报,2000, 26(2): 188-190.
    [75]丛树林,孙凯,刘忆.碳化物对高铬铸铁性能影响的分形理念探讨[J].热加工工艺,2006, 35(12): 17-19.
    [76]唐文兵,王印培.高温蠕变相中的金相分维变化[J].理化检验—物理分册,2003, 39(12): 614-616.
    [77] Berke J. Using spectral fractal dimension in image classification.[J]. Innovations and advances in computer sciences and engineering,2010, 31(13): 237-241.
    [78] Wang X S, Qi D W, Li Y X. Edge detection of decayed wood image based on mathematical morphological double gradient algorithm[A]. 2008 IEEE Internationalconference on automation and logistics, 2008, 1(6): 1226-1231.
    [79]章毓晋.图像工程(中册)图像分析[M].北京:清华大学出版社,2005: 367-428.
    [80] Jing X J, Yu N, Shang Y. Image Filtering Based on Mathematical and visual perception principle[J]. Chinese journal of electronics, 2004, 13(4):1432-1441.
    [81]李凤慧.基于数学形态学的图像噪声处理[J].信息技术, 2006, 6(1): 89-93.
    [82] Lin H,Du P J,Hao C S,et al. Edge detection method of remote sensing images based on mathematical morphology of multi-structure elements[J]. Chinese geographical science, 2004, 14(3): 263-268.
    [83]赵怀勋,郑敏,李志强.一种基于数学形态学的含噪、低对比度图像的边缘检测方法[J].计算机与数字工程, 2006,34(7):289-293.
    [84] Qi D W, Li Y X, Yu L. The application of mathematical morphological optimization algorithm in edge detection of defected wood image[A]. 2008 IEEE International conference on automation and logistics, 2008 1(6): 2271-2276.
    [85] Warchomicka F, Stockinger M, Degischer H.P. Quantitative analysis of the microstructure of nearβtitanium alloy during compression tests[J]. Journal of materials processing technology. 2006, 177: 473–477.
    [86] Michalska, Joanna. Qualitative and quantitative analysis ofσandχphases in 2205 duplex stainless steel[J]. Materials characterization, 2006,56(4): 355-362.
    [87] Journaux S, Gouton P, Thauvin G. Evaluating creep in materals by grain boundary extraction using derectional wavelets and mathematical morphology[J]. Journal of materials processing technology. 2001, 117: 132–145.
    [88]邓仕超,刘铁根,萧泽新.应用Canny算法和灰度等高线的金相组织封闭边缘提取[J].光学精密工程,2010,18(1):2315-2323.
    [89] Liang D,Gao J,Cao W, et al. The location algorithm of the inclined license plates based on mathematical morphologyand orientation field[J]. Chinese journal of electronics, 2003, 12(2): 1561-1566.
    [90]张梅,文静华,张祖勋,张剑清.基于形态学水线区域的深度图像分割[J].光学技术,2009,35(3):326-329.
    [91]匡芳君,徐蔚鸿,王艳华.基于改进分水岭算法的粘连大米图像分割[J].碾米工业,2010,8:5-8.
    [92]华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2001: 90-105.
    [93]华东师范大学数学系.数学分析(下)[M].北京:高等教育出版社,2001: 40-69.
    [94]В.А.卓里奇著.数学分析(第1卷)[M].蒋铎等译.北京:高等教育出版社,2006: 78-116.
    [95]В.А.卓里奇著.数学分析(第2卷)[M].蒋铎等译.北京:高等教育出版社,2006: 37-78.
    [96] (苏)卓里奇(Bopny,B.A.)著.数学分析[M].蒋铎,王昆扬,周美珂译.北京:高等教育出版社,1989: 102-128.
    [97]张佳,周群彪.膨胀运算的代数性质及其在提高膨胀运算效率方面的应用[J].四川大学学报(自然科学版),2008,45(3):517-521.
    [98]邓廷权,陈延梅.基于形态学膨胀的粗集研究[J].哈尔滨工业大学学报,2006,38(12):2148-2151.
    [99]夏涛,黄士科,陈海清.基于局部灰度分析的红外图像轮廓跟踪算法[J].激光与红外,2006,36(2):151-154.
    [100]廖正全,滕奇志,罗代升.合金图像分割算法研究[J].计算机应用,2009,29(12):3326-3328.
    [101]王国权,周小红,蔚立磊.基于分水岭算法的图像分割方法研究[J].计算机仿真,2009,26(5):254-258.
    [102] Ye P, Weng G R. Microarray image segmentation using region growing algorithm and mathematical morphology[J]. Fifth international conference on information assurance and security, 2009, 2: 373-376.
    [103] Zeng X P, Li Y M, Han L. Urinary sediment image segmentation based on wavelet and mathematical morphology[A]. 2006 IMACS: Multiconference on computational engineering in systems applications, 2006, 1(2): 1504-1509.
    [104] Krylov V, Polyakova M. The method of image contour segmentation based on wavelet transform and mathematical morphology[J]. TCSET 2006: Modern problems of radio engineering, Telecommunications and computer science, Proceedings, 006, 236-238.
    [105] Debayle J, Pinoli J C. Multiscale image filtering and segmentation by means of adaptive neighborhood mathematical morphology[A]. 2005 International conferenceon image processing (ICIP), 2005, 1(5): 2669-2672.
    [106] Chien S Y,Chen L G. Reconfigurable morphological image processing accelerator for video segmentation. Journal of signal processing systems for signal image and video technology,2011, 62(1):77-96.
    [107] Wu H S, Deligdisch L, Fiel M I, et al. Image segmentation of secondary septa in lungs[J]. Journal of imaging science and technology, 2011, 55(1): 438-441.
    [108] Wei W, Xin Y. Rapid, man-made object morphological segmentation for aerial images using a multi-scaled, geometric image analysis[J]. Image and vision computing, 2010, 28(4): 626-633.
    [109] Zhang X M, Song J S, Yi Z X, et al. Image segmentation based on NSCT and watershed[J]. ICIEA: 2009 4th IEEE conference on industrial electronics and applications, 2009, 1(6) : 3045-3048.
    [110] Sha S Z, Weng G R, Qin S W. Leukocytes image segmentation and extraction based on mathematical morphology[A]. Proceedings of the 26th Chinese control conference, 2007, 4: 497-499.
    [111]魏志强,杨淼.基于分水岭变换和区域融合的建筑物彩色图像分割[J].红外与毫米波学报,2008,27(6):447-451.
    [112]张艳诚,毛罕平,胡波等.作物病害图像中重叠病斑分离算法[J].农业机械学报,39(2):112-115.
    [113] Bezerra F N, Paula I C, Medeiros F S, et al. Morphological segmentation for sagittal plane image analysis[A].Conf Proc IEEE Eng Med Biol Soc, 2010, 1(47): 73-76.
    [114] Flores F C, Lotufo R D. Watershed from propagated markers: An interactive method to morphological object segmentation in image sequences[J]. Image and vision computing, 2010, 28(11): 1491-1514.
    [115]刘相滨,邹北骥,孙家广.一种改进的基于边界跟踪的粘连目标分离算法[J].湖南师范大学自然科学学报,2009,29(2):28-31.
    [116]韩守东,赵勇,陶文兵等.基于高斯超像素的快速Graph Cuts图像分割方法[J].自动化学报,37(1): 11-20.
    [117]杨蜀秦,宁纪锋,何东健.一种基于主动轮廓模型的连接米粒图像分割算法[J].农业工程学报,2010,26(2):207-211.
    [118]朱纪磊,汤慧萍,奚正平,邸小波.多孔结构分形分析及其在材料性能预报中的应用[J].稀有金属材料与工程,2009,38(12):2106-2110.
    [119]李晋江,张彩明,范辉,原达.基于分形的图像修复算法[J].电子学报,2010,38(10):2430-2435.
    [120] Asvestas P A, Matsopoulos G K, Nikita K S. Applications of fractal theory on medical data processing[J]. Stud health technol inform. 2000, 79: 425-441.
    [121] Uemura K. Toyama H. et.al. Genetation of fractal dimension images and its application[J]. Bone 2000, 27 (2): 271-276.
    [122] Geraets W G. Stelt P F. Fractal properties of bone[J]. Dentomaxillofac radiol, 2000, 29(3): 144-153.
    [123] Kang M Z, Zeng Y T, Liu J G. Fractal research on red blood cell aggredation[J]. Clin hemorheol microcirt, 2000, 22(3): 229-236.
    [124]杨彦从,彭瑞东,周宏伟.三维空间数字图像的分形维数计算方法[J].中国矿业大学学报,2009,38(2):251-258.
    [125] Mandelbrot B B. Wen Z Y, et al. Translation. Fractals—Form[M]. Chance and dimension. Beijing :Word Publishing Corporation ,1999 ,15-35.
    [126] Wang X, Liu L, Tang Z M. Infrared dim target detection based on fractal dimension and third-order characterization[J]. Chinese optics letters, 2009, 7(10): 931-933.
    [127] Gu F, Zhang J H, Chen Y L. Fractal dimension of scattering equivalent section of aerosol and its calibration mechanism[J]. Chinese optics letters, 2009, 7(9): 857-860.
    [128]李业学,谢和平,刘建峰. RGB图像分形维数计算方法研究[J].岩石力学与工程学报,2008,27(1):2779-2784.
    [129]张志,董福安,伍友利.二维灰度图像的分形维数计算[J].计算机应用,2005, 25 ( 12):2853- 2867.
    [130]杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报, 2006, 35(4): 478-482.
    [131]李兵,张培林,任国全等.基于数学形态学的分形维数计算及在轴承故障诊断中的应用[J].振动与冲击,2010,29(5):191-195.
    [132]梁基照,吴成宝. PP/纳米碳酸钙复合材料冲击强度与断口表面分维关系的研究[J].材料工程,2009,10:53-56.
    [133] Metze K. Fractal dimension of chromatin and cancer prognosis[J]. Epigenomics, 2010, 2(5): 601-605.
    [134] Sharma N, Dey P. Fractal dimension of cell Clusters in effusion cytology[J]. Dlagnostic cytopathology, 2010, 38(12): 866-868.
    [135] Wainwright A, Liew G, Burlutsky G, et al. Effect of image quality, color, and format on the measurement of retinal vascular fractal dimension[J]. Investigative ophthalmology & visual science, 2010, 51(11): 5525-5529.
    [136] Chauveau J, Rousseau D, Chapeau-Blondeau F. Fractal capacity dimension of three-dimensional histogram from color images[J]. Multidimensional systems and signal processing, 2010, 21(2):197-211.
    [137]翁永基,许述剑,边丽.腐蚀和腐蚀模型研究中的分形方法[J].中国腐蚀与防护学报, 2006, 26(5): 315-320.
    [138]И.П.那汤松著.实变函数论[M].徐瑞云译.北京:高等教育出版社,2010: 89-104.
    [139]江泽坚.实变函数[M].北京:高等教育出版社,1959: 91-113.
    [140]郑维行,王声望.实变函数与泛函分析概要(第一册)[M].北京:高等教育出版社,2005: 134-149.
    [141]郑维行,王声望.实变函数与泛函分析概要(第二册)[M].北京:高等教育出版社,2005: 10-35.
    [142]王建华译.测度论[M].北京:科学出版社,1958: 11-125.
    [143] Pentland A P. Fractal-based description of natural scenes[J]. IEEE transactions on pattem analysis and machine intelligence, 1984, 6(6): 661-674.
    [144] Pentland A P. Shading into texture[J]. Artificial intelligence, 1986, 29: 147-170.
    [145] Wei G, Tang J. Study of Minimum Box-Counting method for image fractal dimension estimation[J]. 2008 China international conference on electricity distribtion, 2009, 1(2): 1-5.
    [146]全书海.基于表面灰度图像的加工表面形貌分形特征研究[D].武汉:武汉理工大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700