用户名: 密码: 验证码:
低风速风电机组风轮气动优化设计及优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着规模化风电产业的不断发展,陆上常规较高风速以上风能资源的开发利用技术已接近成熟,开发低风速风能资源逐渐成为一个新的研究方向,低风速风能开发对扩大风能利用范围及补充化石能源短缺现状具有重要意义。
     低风速风能开发利用的核心在于风电机组对低风速风能的捕获效率,研究低风速风电机组叶片翼型优化、风轮气动性能优化,对提升低风速风能转换效率、降低机组成本、均衡机组载荷起到关键作用。本课题在国家科技支撑项目“5.0MW双馈式变速恒频近海风电机组整机设计、集成及示范(2009BAA22B02)”的资助下,围绕低风速风电机组风轮气动优化设计和机组优化控制方法、理论及关键技术开展了如下主要研究工作:
     (1)基于叶片气动设计理论和遗传算法优化理论,应用遗传算法优化叶片翼型参数,以中低风速风电机组叶片翼型为优化基准翼型,翼型升阻比为优化适应值函数,叶片上下表面的几何控制参数为翼型优化设计变量,经过遗传进化,获得了低风速风电机组叶片优化翼型系列。与基准翼型相比,优化翼型具有较高的升阻比和更大的升力系数。
     (2)基于Navier-Stokes方程的数值模拟方法,应用GAMBIT和FLUENT软件对优化翼型进行流场数值模拟,研究优化翼型的气动性能,包括翼型周围压力分布、速度分布、升阻力系数,数值分析结果验证了优化翼型的有效性。
     (3)基于叶素-动量理论,应用遗传算法优化叶片气动设计,以风能利用系数变量dCpmax为优化目标函数,弦长和扭角分布函数系数为叶片优化设计变量,经过遗传进化,获得了低风速风电叶片气动优化模型,并基于该叶片,应用GH Bladed软件,构建3MW低风速风轮动力学模型,分析计算风轮气动性能,结果表明,低风速风电机组风轮具有更高的效率和更宽的高效率区,推力载荷较小,验证了叶片气动优化的有效性。
     (4)将模糊控制应用于双馈风电机组最大功率捕获和动态载荷控制,在GHBladed软件环境构建3MW低风速风电机组数学模型,设计转速模糊控制器和机组动态载荷模糊控制器,并进行动态仿真,结果显示应用模糊控制能使风电机组有效捕获最大功率和控制动态载荷。构建了一个基于dSACE控制系统的双馈风电机组在环测试平台,在环测试研究采用模糊控制的双馈风电机组性能,实验结果进一步验证了模糊控制在非线性时变的风电机组系统控制上的显著优点。
With the consistent promotion of wind resource exploitation, conventional development of comparatively high-wind-speed wind power projects is getting harder and the wind power transmission cost is getting higher. Hence, it becomes a new direction to tap low-wind-speed wind resource. In order to realize distribute wind power feeding into grid, wind power local utilization, to make up for the shortcomings of conventional wind energy utilization, and to complement the deficiency of fossil energy, tapping low-wind-speed wind resource is of great significance.
     The kernel of exploitation of low-wind-speed wind power lies in the energy capture efficiency of wind turbine generator system (WTGS), optimization of low-wind-speed blade airfoil, and optimization of WTGS aerodynamic characteristics of wind turbine. These are the key to enhance low-wind-speed wind energy conversion efficiency, to lower WTGS costs, and to balance WTGS load. Sponsored by the National Science and Technology Support Project "5.0MW Doubly-Fed Variable Speed Constant Frequency Offshore Wind Turbine Design, Integration and Demonstration"(2009BAA22B02), this research involved optimization method, theoiy and key techniques of aerodynamic design of low-wind-speed rotor and WTGS control. The main contents are as follows:
     Based on aerodynamic design theory of blades and genetic algorithm optimization, the blade airfoil parameters were optimized, using the mid-low wind speed blade airfoil as the reference base, lift-drag ratio as fitness function, geometric control parameter of upper and lower surfaces as design variables for airfoil optimization. After100generation of generic evolution, finally the low-wind-speed series optimized blades airfoils were obtained. Compared to the reference base airfoil, optimized airfoils had higher lift-drag ratio and better lift coefficient.
     Based on numerical simulation method of Navier-Stokes equation, softwares GAMBIT and FLUENT were used for simulating air flow field of optimized airfoils and studying their aerodynamic characteristics, which included the pressure distribution around airfoil, speed distribution, lift-drag ratio. The numerical analysis results verified the validity of optimized airfoils.
     Based on Blade Element Momentum (BEM) theory, the blade aerodynamic design was optimized with genetic algorithm, using rotor power coefficient variable dCpmax as the optimization objective function, geometric chord and twist of airfoil distribution function coefficient as design variables for blade optimization. After generic evolution, the low-wind-speed blade aerodynamic model was obtained. Based on this blade, software GH Bladed was used for constructing a3MW low-wind-speed wind rotor dynamics model to analyze aerodynamic characteristics of the rotor. The results showed low-wind-speed wind rotor had higher efficiency and wider high-efficiency-region, less thrust load, therefore the validity of blade aerodynamics optimization was verified.
     Fuzzy control was applied in maximum wind energy capturing and dynamic load control of doubly fed induction wind generator system (DFIG). In environment of software GH Bladed, a3MW low-wind-speed WTGS mathematical model was constructed. Fuzzy controller of speed and dynamic load was designed and analyzed using them. Simulation results verified that the optimal wind energy curve occurred with fuzzy control and therefore highest wind energy capturing efficiency. Also, a dSPACE control system based DFIG in the loop test platform was constructed, and tested the characteristics of DFIG. The tests verified further the significant advantage of fuzzy control on onlinear time-varying wind generator control system.
引文
[1]中国可再生能源学会风能专业委员会.2013年中国风电装机容量统计.http://www. cwea.org.cn/,201403
    [2]蒯狄正,李群,江林.低风速风力发电技术研究[J].江苏电机工程,2009,28(B11):4-6
    [3]赵靓.低风速型风电机组发展调查[J].风能,2012(12):54-56
    [4]Haihui Song, Jianjun Wang, Zhihua Hu, Jin Zhou. Research on Low-wind-speed Wind Power[C]. Applied Mechanics and Materials Vols.448-453 (2014):1811-1814
    [5]SANGPANICH U, AULT G A, LO K L. Economic feasibility of wind farm using low wind speed turbine[C]:Universities Power Engineering Conference (UPEC 2009). Glasgow:IEEE,2009
    [6]PREINDL M, BOLOGNANI S. Optimization of the generator to rotor ratio of MW wind turbines based on the cost of energy with focus on low wind speeds[C].37th Annual Conference on IEEE Industrial Electronics Society(IECON 2011). Melbourne, VIC:IEEE,2011
    [7]De Tian, Haihui Song, Modeling and simulation on transformer computer protection in wind farm[J]. Applied Mechanics and Materials,2013,437, ppl73-176
    [8]U.Sangpanich, G.A.Ault, K.L.Lo. Economic Feasibility of Wind Farm Using Low Wind Speed Turbine[C].Universities Power Engineering Conference(UPEC 2009):1-5
    [9]Jialin Zhang, Zhenggui Zhou, Yansheng Lei. Design and research of high-performance low-speed wind turbine blades[C]. World Non-Grid-Connected Wind Power and Energy Conference,2009:1-5
    [10]张维智,贺德馨.低雷诺数高升力翼型的设计和实验研究[J].空气动力学学报,第16卷第3期,1998年9月
    [11]范忠瑶,康顺,赵萍.2.5MW风力机气动性能数值模拟研究[J].工程热物理学报,第31卷第2期,2010年2月
    [12]刘勋,鲁庆华,訾宏达,孙伟军.2MW风电机组叶片气动性能计算方法的研究[J].电气技术,2009年第8期
    [13]张果宇,冯卫民,刘长陆,俞剑锋.风力发电机叶片设计与气动性能仿真研究[J]. 能源研究与利用,2009年第1期
    [14]吕由.风力机叶片绕流的数值模拟研究[D].辽宁工程技术大学硕士学位论文,2010年12月
    [15]赖旭,何伟,胡雄.风力机翼型及叶片气动性能数值模拟[J].武汉大学学报(工学版),第43卷第3期,2010年6月
    [16]张亚锋,宋笔锋,李占科.高升力翼型的气动优化设计和实验研究[J].飞行力学[J].第24卷第4期,2006年12月
    [17]章嘉麟.基于并行遗传算法的叶轮机叶片优化设计[D].南京航空航天大学硕士论文,2009年12月
    [18]王晓鹏.遗传算法及其在气动优化设计中的应用研究[D].西北工业大学博士论文,2000年12月
    [19]闫海津,李佳,胡丹梅.水平轴风力机叶片翼型流场的数值模拟[J].能源技术,第31卷第2期,2010年4月
    [20]申新贺,叶杭冶.低风速地区风电开发成本探讨[J].中国可再生能源学会,2011年学术年会论文(风能),北京:2011年9月
    [21]朱挽强.3KW偏低风速风力发电机叶片设计研究[D].东北师范大学硕士学位论文,2007年5月
    [22]吴正泳.低风速条件风力发电机组的初步研究[D].华北电力大学(北京)硕士学位论文,2008年3月
    [23]杨伟波.小型磁悬浮低风速风力发电机关键技术研究[D].武汉理工大学硕士学位论文,2009年5月
    [24]姚志岗.大型风力发电机叶片的设计研究[D].华北电力大学硕士论文,200812.
    [25]巩真,刘志璋,冯国英.低风速离网型风力发电机的叶片设计[J].能源工程,2008年第5期
    [26]王军,周丙超.基于MATLAB的小型风力机叶片设计[J].水电能源科学,2007年第10期
    [27]杨承志,柳慧春,周云龙.水平轴风力机的叶片设计与基于CFD的流场分析[J].东北电力大学学报,第30卷第1期,2010年2月
    [28]韩新月.水平轴风力机叶片多目标优化设计及结构动力学分析[D].汕头大学硕士论文,2005年9月
    [29]朱德臣.水平轴风力机叶片附近区域流场的数值研究[D].内蒙古工业大学硕士 论文,2007年6月
    [30]徐浩,朱益红,韩建景,李永泉.具有较强气动性能的风力发电机叶片研究[J].可再生能源,第30卷第6期,2012年6月
    [31]钱杰,张锦光,吴俊.小型低风速风力发电机叶片设计[J].武汉理工大学学报(信息与管理工程版),第32卷第5期,2010年10月
    [32]尹耀安.大型风力机叶片设计与CFD分析[D].华中科技大学硕士论文,200806.
    [33]杨瑞,李仁年,张士昂,李德顺.钝尾缘风力机翼型气动性能计算分析[J].机械工程学报,第46卷第2期,2010年1月
    [34]张磊,杨科,徐建中,张明明.白井艳钝尾缘翼型非定常气动特性及机理[J].工程热物理学报,第32卷第3期,2011年3月
    [35]邓磊,乔志德,杨旭东,熊俊涛.基于RANS方程大型风力机翼型钝尾缘修型气动性能计算[J].太阳能学报,第33卷第4期,2012年4月
    [36]韩中合,焦红瑞.加装钝尾缘改善风力机桨叶气动性能的研究[J].动力工程,第29卷第11期,2009年11月
    [37]李秋悦,申振华.翼型进行钝尾缘修改后气动性能的数值研究[J].沈阳航空工业学院学报,第24卷第1期,2007年2月
    [38]sweep-twist-design-offers-higher-output-at-lower-load. http://www.renewable energy world.com/
    [39]Scott Larwood, Mike Zuteck. Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior[C] windpower,2006
    [40]康传明,张卫民.大型后掠自适应风力机叶片的气动扭角设计优化[J].空气动力学学报,第29卷第4期,2011年8月
    [41]单鹏,桂幸民,周盛等.高负荷后掠风扇设计若干基本问题[J].工程热物理学报,第20卷第5期,1999年9月
    [42]李媛,康顺,樊小莉等.后掠风力机叶片气动性能数值模拟[J].工程热物理学报,第32卷第9期,2011年9月
    [43]陈洪胜.后掠型风力机叶片的气动特性研究[D].中国科学院研究生院博士学位论文,2012年5月
    [44]王晓东.大型双馈风电机组动态载荷控制策略研究[D].沈阳工业大学博士学位论文,2011年6月
    [45]何兰芳.风力发电机叶片扭转的动力特性数值分析与研究[D].华中科技大学博 士学位论文,2017年6月
    [46]郭亮.风力发电机组疲劳载荷测试系统的研究与设计[D].乌鲁木齐:新疆大学.2006年
    [47]岳勇.风力发电机组机械零部件抗疲劳设计方法的研究[D].乌鲁木齐:新疆农业大学,2005
    [48]韩玉清,吕路勇,邢晓坡.风轮叶片叶根疲劳强度分析方法的研究[J].能源工程.2009,(3):33-36
    [49]张峥,陈欣.风力机疲劳问题分析[J].华北水利水电学院学报.2008,29(3):41-43
    [50]张锦源.风力机可靠性的研究[D].汕头:汕头大学,2006
    [51]宋聚众.1.5MW变速恒频风力发电机组气动与结构设计技术[D].汕头:汕头大学,2007
    [52]孙靖宇.基于永磁同步电机的电动变桨研究[D].兰州:兰州交通大学.2010
    [53]刘雄辉,李德源,吕文阁,成思源.水平轴风力机轮毂强度和疲劳寿命分析方法研究[J].太阳能学报.2012,33(5):763-767
    [54]王平,曹家勇,张执南.大型风力发电机轮毂强度的有限元分析与应用[J].华北电力2009,37(7):1206-1208
    [55]Wang Ping,Cao Jiayong,Zhang Zhinan.Finite element analysis for strength of wheel hubs of large wind turbines[J]. East China Electric Power,2009,37(7):1206-1208
    [56]孙传宗,姚兴佳,单光坤,等.MW级风力发电机轮毂强度分析[J].沈阳工业大学学报,2008,30(1):46-49
    [57]Sun Chuanzong, Yao Xingjia, Shan Guangkun, et al. Strength analysis of MW wind turbine hub[J]. Journal ofShenyang University of Technology,2008,30(1):46-49
    [58]邓良.大型风力发电机组轮毂强度数值分析[J].电气技术,2009,(8):75-79
    [59]李华明.基于有限元法的风力发电机组塔架优化设计与分析.[D].乌鲁木齐:新疆农业大学,2004
    [60]李德源,叶枝全,陈严,包能胜.风力机玻璃钢叶片疲劳寿命分析[J].太阳能学报.2004,25(5):592-598
    [61]习培玉.风电机组全程运行仿真研究[D].北京:华北电力大学.2010
    [62]宋聚众,赵萍,刘平,钟贤和,曾明伍.水平轴风力机载荷工况设计方法研究[J].东方电气评论.2009,23(2):60-63
    [63]孙佳林,奚玲玲.兆瓦级风力发电机运行流程与安全策略的研究与实践[J].上海电 气技术.2009,2(4):33-37
    [64]郑甲红,柳毅,杜翠.兆瓦级风力发电机塔筒的有限元分析[J].机械设计与制造.2010,12:26-28
    [65]Adel A. Shaltout, Maged F. Mostafa. Starting Process of Wind Generators [J].WEIG.IEEE.2008
    [66]R.R.Hill,D.Muthumuni,T.Bartel,H.Salehfar,M.Mann.A Dynamic Simulation of a Fixed Speed Stall Control Wind Turbine at Start Up[C].IEEE.2005
    [67]王健.变载荷工况下风力发电机连接部件接触强度分析研究[D].乌鲁木齐:新疆大学,2010
    [68]张红磊.大型风电机组齿轮箱疲劳特性数值模拟[D].北京:华北电力大学.2010
    [69]赵德钊.海上风机系统载荷仿真及轮毂的优化设计[D].哈尔滨:哈尔滨工业大学.2010
    [70]李鸿儒.大规模双馈型风电并网稳定性仿真研究[D].西南交通大学硕士论文.2012年5月
    [71]陈峰,郭家虎,王恒.基于DIgSILENT_PowerFactory的双馈风力发电系统的建模和仿真[J].工矿自动化,2012年第12期
    [72]陈实,谢少.基于DSP的简单、经济、使用的无功补偿器的设计[J].电力电容器.2003.11(2):11-28
    [73]张洋.风电场无功补偿容量及其控制方法的研究[D].吉林:东北电力大学.2005
    [74]项真,解大,龚锦霞.用于风电场无功补偿的STATCOM动态特性分析[J].电力系统自动化.2008.32(9):92-94
    [75]李琦芬,张建平,丁权飞等.基于PSASP与DIgSILENT/PowerFactory软件的风电机组建模与仿真研究[J].华东电力,第40卷第2期,2012年2月
    [76]赵艳军,曾沅.基于双馈式风电机组的风电场实用动态等值模型研究[J].广东电力,第25卷第4期,2012年4月
    [77]Noel A. Janssens, Guillaume Lambin, and Nicolas Bragard. Active Power Control Strategies of DFIG Wind Turbines[J]. IEEE Power Tech 2007, Lausanne (Switzerland),1-5 July 2007
    [78]Chanxia Zhu, Lingling Fan, Minqiang Hu. Modeling and Simulation of a DFIG-Based Wind Turbine for SSR[J]. North American Power Symposium (NAPS), 2009
    [79]J. A. Orosa, E. J. Garcia-Bustelol, J. A. Perez. Climate effects in low speed wind turbine's concentrators[J]. POWERENG 2009 Lisbon, Portugal, March 18-20,2009
    [80]Young-Ger Seo, Young-Chan Kim, Jong-Sun Ko, Soon-Chan Hong. Development of Simulator for DFIG-based Wind Turbine[C]. The 7th International Conference on Power Electronics October 22-26,2007, EXCO, Daegu, Korea
    [81]程昱舒.双馈风力发电机组的建模及其并网研究[D].太原理工大学硕士学位论文,2010年5月
    [82]习培玉.风电机组全程运行仿真研究[D].华北电力大学硕士学位论文,2010年3月
    [83]孙俊.风力发电控制系统研究与设计[D].华中科技大学硕士学位论文,2009年5月
    [84]M. KAYIKCI, J. V. MILANOVIC. DFIG MODELLING AND THE RELEVANCE OF MODEL SIMPLIFICATION[C].18th International Conference on Electricity Distribution Turin,6-9 June 2005
    [85]D.C. Riawan, C.V. Nayar. Improved Power Transfer Capability of SEIG in Variable Speed Wind Turbine Generation System[C]. Power Engineering Conference,2009. AUPEC 2009. Australasian Universities
    [86]Ali H. Kasem, El-Saadany. Maximizing the Wind Power Production of DFIG-Based Wind Turbines at Low Wind Speed Operation[C]. Power Symposium,2008. NAPS '08.40th North American
    [87]M. Ghofrani, A. Arabali, Etezadi-Amoli. Modeling and simulation of a DFIG-based wind-power system for stability analysis[C]. Power and Energy Society General Meeting,2012 IEEE,1-5
    [88]Fan Xiaoxu, Lv Yuegang, Bai Yan, Xu Daping. Modeling and simulation of the Variable-frequency excitation power supply served for the wind power DFIG[C]. Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China September 2008
    [89]Yin Xu, Laijun Chen, Ying Chen. Simplified modeling of DFIG with PWM nonlinear characteristics for fast transient simulation[C].2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin
    [90]S H Song, J H Im, H J Choi. Simulation Modeling and Experimental Validation of Generator Control Strategy in DFIG System[C]. Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE
    [91]H. Djeghloud, A. Bentounsi, H. Benalla. Simulation of a DFIG-based wind turbine with active filtering function using Matlab/Simulink. XIX International Conference on Electrical Machines-ICEM 2010, Rome
    [92]孔屹刚.大型风力机功率控制与最大能量捕获策略研究[D].上海交通大学博士学位论文,2009年1月
    [93]杨晓红,葛海涛.基于模糊控制的风力发电机组低风速时最大风能追踪控制仿真研究[J].机械设计与制造,2010年第8期
    [94]井明波.兆瓦级风力发电机模糊控制器设计[D].兰州理工大学硕士学位论文,2008年5月
    [95]张猛,陶彩霞,许杰田.双馈风力发电机控制方法的分析研究[J].电力学报.2010.25(8):298-301
    [96]陈皓勇,王锡凡.机组组合问题的优化方法综述[J].电力系统自动化.1999.23(4).51-54
    [97]Chao Sheng, Jie Zeng, Wenjia Chu, etc.. Study on Modeling Simulation and Identifi-cation of Wind Generator Based on DIgSILENT[C]. Asia-Pacific Power and Energy Engineering Conference (APPEEC2012)
    [98]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004
    [99]王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [100]Holland J H. Adaptation in Nature and Artifial Systems. MIT Press 1975
    [101]De Jonk K A. An Analysis of the Behavior of Class of Genetic Adaptive Systems. PHD Gissertation, University of Michigan,1975,76-9381
    [102]Goldberg D E. Genetic Algorithms in Search, Optimization and Mechine Learning, Addison-Wesley,1989
    [103]Tian De,Chen Guanghua Li Qi. Aerodynamic optimization of variable pitch wind turbine blade based on adaptive genetic algorithm [J]. Applied Mechanics and Materials,2012,1:298-292
    [104]Hirsch C. Numerical computation of internal and external flow:fiindamentals of computational fluid dynamics [M]. Butterworth-Heinemaim, Burlington,2nd edition, 2007
    [105]Ashford G. A.,Powell K. G. An Unstructured Grid Generation and Adaptative Solution Technique for High-Reynolds Number Compressible Flow[R]. VKI (Von Karman Institute) Lecture Series 1996-06,1996
    [106]王晓鹏.遗传算法及其在气动设计中的应用研究[D].西北工业大学,2002.
    [107]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2006,26(6):792-800
    [108]韩新月.水平轴风力机叶片多目标优化设计及结构动力学分析[D].汕头大学.2008.
    [109]Rai M. M. Application of Domain Decomposition Methods to Turbomachinery Flows[A]. ASME Advances and Applications in Computational Fluid Dynamics[C]. 1988
    [110]Ahrem R,Hackenberg M, Post P,et al. MpCCI-Mesh Based Parallel Code Coupling Interface. Institute for Algorithms and Scientific Computing (SCAI),2000:10-11
    [111]Loftin L A,Airfoil section characteristics at high angle of attack[R]. NACA-TN-3241,1954
    [112]Viterna, L.A.& Janetzke, D.C. Theoretical and experimental power from large horizontal-axis wind turbines [C]. Fifth Biennial Wind Energy Conference & Workshop,1981
    [113]P.J. Moriarty, A. C. Hansen. AeroDyn Theory Manual[R]. National Renewable Energy Laboratory,2005
    [114]陈广华.风力发电机组组合式叶片结构设计研究[D].华北电力大学博士学位论文,2013年6月
    [115]谢园奇.不同翼型风电机组风轮叶片的气动设计与模拟实验[D].华北电力大学硕士学位论文,2009年
    [116]E.A.Bossanyi. Gh Bladed User Manual[M]. Garrad Hassan and Partners Limited, 2009
    [117]Hansen Martin. O. L.,肖劲松.风力机空气动力学[M].北京:中国电力出版社,2009
    [118]IEC61400-1, Wind Turbines-Part 1; Design Requirements[S]. Third edition 2005-08. Geneva:International Electrotechnical Commission,2005.
    [119]IEC61400-3, Wind Turbines-Part 3:Design Requirements for Offshore Wind Turbines [S]. Edition 1.02009-02. Geneva:International Electrotechnical Commission,2009
    [120]Germanischer Lloyd.Rules and Guedelines:Industrial Service:Guideline for the Certification of Wind Turbines[M]. German:Germanischer Lloyd,2010:166-168
    [121]GL2010 IV-part 1, Rules and Guidelines, Iv-Industrial Services, Guideline for the Certification of Wind Turbines[S]. Edition 2010. Hamburg:Germanischer Lloyd WindEnergie GmbH,2010
    [122]雷航.水平轴风电机组风轮系统动态载荷特性研究[D].华北电力大学硕士学位论文,2014年
    [123]何伟.湍流风场模拟与风力发电机组载荷特性研究[D].华北电力大学博士学位论文,2013年6月
    [124]叶杭冶.风力发电机组监测与控制[M].北京:机械工业出版社,2013
    [125]宋海辉,田德.浓缩风能型风力发电提水系统及其仿真研究[J].太阳能学报,2011,32(11):pp1556-1559
    [126]T. Buhl, K. Thomsen, H. Markou, Design guidelines for integrated aeroelastic control of wind turbines, Ris(?) National Laboratory, Demark,2006
    [127]Tony Burton. Wind Energy Handbook. Copyright(?)2001 by John Wiley & Sons, Ltd
    [128]De Tian, Haihui Song. Modeling and simulation on transformer computer protection in wind farm[J]. Applied Mechanics and Materials,2013,437, pp173-176
    [129]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2005
    [130]G, D Skokos, A.V.Machias. Design and Development of Fuzzy Logic Control Strategies for Wind turbine Generators. Wind Eng.1995,19(5):235-247
    [131]Simoes M.G., Bose B.K., Spiegel R.J.. Design and Performance Evaluation of a Fuzzy Logic Based Variable Speed Wind Generation System. IEEE Trans. Industry Applications,1997,33(4)
    [132]Gilberto C.D., Sousa, Bose B. K., Cleland J. G.. Fuzzy Logic Based On-line Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive. IEEE Trans. Industrial Electronics,1997,42(2)
    [133]宋海辉,田德,王伟龙.双馈风电机组最大风能捕获在环测试研究[J].太阳能学报,2014,35(2):pp373-378
    [134]De Tian, Haihui Song, Weilong Wang. Modeling and Real-Time Simulation on Doubly Fed Induction Wind Generator[J]. Applied Mechanics and Materials,2013, 263-266, pp2123-2126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700