用户名: 密码: 验证码:
PICK1通过促进TGF-βⅠ型受体降解来抑制其信号转导
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转化生长因子β(transformation growth factor-beta, TGF-β)是一类结构上相关的细胞因子大家族,包括TGF-β、Activin、Nodal、骨形成蛋白(bone morphogenicproteins, BMPs)和Myostatin等。TGF-β在早期胚胎发育和组织稳态的维持过程中起着非常重要的作用。其信号转导起始于TGF-β配体与细胞膜表面I型和II型受体的结合,然后位于I型受体胞内段的丝氨酸/苏氨酸激酶区域可以进一步磷酸化Smad蛋白,使其在核内聚集并调控下游靶基因的表达。在不同微环境中,TGF-β信号强度受到严格的调控,而信号转导的失调与包括肿瘤和组织纤维化在内的多种疾病的发生有关。
     PICK1(Protein that interacts with C kinase1)蛋白在神经系统中的研究较为深入,其经典功能是调控突触中AMPA受体的内吞和运输。PICK1蛋白在包括心脏,肺,肝和肾脏在内的多种器官中存在广泛的表达,但其在神经系统之外的功能还未被很好的描述,在信号转导及相关疾病发生中的潜在作用也尚未可知。
     本论文发现,过量表达PICK1蛋白能够在多种细胞内广泛的抑制TGF-β信号转导。敲除Pick1基因能够有效的延长TGF-β I型受体(TβRI)的半衰期,并促进小鼠胚胎成纤维细胞对TGF-β刺激的响应。生物化学研究结果显示,PICK1蛋白是通过促进TβRI经蛋白酶体和溶酶体的降解来抑制TGF-β信号转导的。PICK1可通过其PDZ结构域直接结合TβRI的C末端,并作为脚手架蛋白加强TβRI和窖蛋白(caveolin-1)的相互作用,从而加强TβRI的脂筏/胞膜窖定位。我们进一步发现PICK1能够促进TβRI经窖蛋白介导的方式内吞,增加受体的泛素化及后续降解,从而抑制TGF-β信号转导。最后,我们在人类乳腺癌样本中观察到PICK1的蛋白表达水平与TβRI的蛋白水平及Smad2的磷酸化水平呈显著的负相关,提示PICK1可能通过抑制TGF-β信号影响乳腺癌的发展进程。这些结果显示,PICK1蛋白可作为TGF-β信号转导的重要负调控因子在神经系统之外发挥功能。我们的研究不但建立起PICK1蛋白与TGF-β信号通路的联系,还为深入理解PICK1的生理和病理功能,尤其是其对癌症发展的影响,提供了新的曙光。
Transformation growth factor-beta (TGF-β) belongs to a superfamily of structuralrelated cytokines, consisting of TGF-β, Activin, Nodal, BMPs (bone morphogenicproteins), myostatin and others. TGF-β plays critical roles in early embryonicdevelopment and tissue homeostasis. The signal transduction is initiated via the ligandbinding to two cell surface receptors (type I and type II receptors), and then the Ser/Thrkinase in the intracellular domain of the type I receptor phosphorylates the signalingmediators Smad proteins, leading to their nuclear accumulation and their regulation oftarget gene expression. TGF-β signaling is precisely controlled spatiotemporally, and itsderegulation has been associated with development of human diseases including cancerand tissue fibrosis.
     PICK1(Protein that interacts with C kinase1) has been well studied in neuralsystem. Its classic function is controlling the endocytosis and trafficking ofα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in neuralsynapses. PICK1has ubiquitous expression in many organs including heart, lung, liverand kidney. The non-neural functions of PICK1are less addressed, and its potentialeffects on signal transduction and related diseases remain unclear.
     Here we find that overexpression of PICK1inhibits TGF-β signaling transductionin various cell lines. Knockout of Pick1efficiently prolongs the halflife of TGF-β type Ireceptor (TβRI) and promotes the response of mouse embryonic fibroblast to TGF-βtreatment. Biochemical analyses reveal that PICK1antagonizes TGF-β signaling bytargeting TGF-β type I receptor (TβRI) for proteasome-mediated andlysosome-mediated degradation. PICK1can directly interact with the C-terminus ofTβRI via its PDZ domain and act as a scaffold protein to promote the interactionbetween TβRI and caveolin-1, leading to enhanced lipid raft/caveolae localization ofTβRI. Therefore, PICK1increases caveolin-1-mediated endocytosis, ubiquitination anddegradation of TβRI. Finally, a negative correlation between PICK1expression andTβRI or phospho-Smad2levels is observed in human breast tumors, indicating thatPICK1may participate in breast cancer development through inhibition of TGF-βsignaling. Our findings reveal a novel function of PICK1as an important negativeregulator of TGF-β signaling. Not only does this study reveal the relationship between PICK1and TGF-β signal transduction, but also it provides new insight intophysiological and pathological functions of PICK1, especially its effects on tumordevelopment.
引文
[1] Zhang B, Cao W, Zhang F, et al. Protein interacting with C alpha kinase1(PICK1) is involvedin promoting tumor growth and correlates with poor prognosis of human breast cancer. CancerSci,2010,101:1536-1542.
    [2] Jaulin-Bastard F, Saito H, Le Bivic A, et al. The ERBB2/HER2receptor differentially interactswith ERBIN and PICK1PSD-95/DLG/ZO-1domain proteins. J Biol Chem,2001,276:15256-15263.
    [3] Excoffon K J, Hruska-Hageman A, Klotz M, et al. A role for the PDZ-binding domain of thecoxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci,2004,117:4401-4409.
    [4] Lin W J, Chang Y F, Wang W L, et al. Mitogen-stimulated TIS21protein interacts with aprotein-kinase-Calpha-binding protein rPICK1. Biochem J,2001,354:635-643.
    [5] Massague J. TGFbeta in Cancer. Cell,2008,134:215-230.
    [6] Xu J, Xia J. Structure and function of PICK1. Neurosignals,2006,15:190-201.
    [7] Chen Y G. Endocytic regulation of TGF-beta signaling. Cell Res,2009,19:58-70.
    [8] Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol,2012,13:616-630.
    [9] Derynck R, Akhurst R J, Balmain A. TGF-beta signaling in tumor suppression and cancerprogression. Nat Genet,2001,29:117-129.
    [10] Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, et al. TGF-beta signaling in vascularfibrosis. Cardiovasc Res,2007,74:196-206.
    [11] Massague J, Chen Y G. Controlling TGF-beta signaling. Genes Dev,2000,14:627-644.
    [12] Schmierer B, Hill C S. TGFbeta-SMAD signal transduction: molecular specificity andfunctional flexibility. Nat Rev Mol Cell Biol,2007,8:970-982.
    [13] Massague J. TGF-beta signal transduction. Annu Rev Biochem,1998,67:753-791.
    [14] Feng X H, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. AnnuRev Cell Dev Biol,2005,21:659-693.
    [15] Vitt U A, Hsu S Y, Hsueh A J. Evolution and classification of cystine knot-containinghormones and related extracellular signaling molecules. Mol Endocrinol,2001,15:681-694.
    [16] Lebrin F, Deckers M, Bertolino P, et al. TGF-beta receptor function in the endothelium.Cardiovasc Res,2005,65:599-608.
    [17] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.Cell,2003,113:685-700.
    [18] Lonn P, Moren A, Raja E, et al. Regulating the stability of TGFbeta receptors and Smads. CellRes,2009,19:21-35.
    [19] Liu I M, Schilling S H, Knouse K A, et al. TGFbeta-stimulated Smad1/5phosphorylationrequires the ALK5L45loop and mediates the pro-migratory TGFbeta switch. Embo J,2009,28:88-98.
    [20] Park S H. Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J BiochemMol Biol,2005,38:9-16.
    [21] Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7associates with theTGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell,1997,89:1165-1173.
    [22] Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. CurrOpin Cell Biol,2007,19:176-184.
    [23] Zhang S, Fei T, Zhang L, et al. Smad7antagonizes transforming growth factor beta signalingin the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol,2007,27:4488-4499.
    [24] Shi Y, Wang Y F, Jayaraman L, et al. Crystal structure of a Smad MH1domain bound to DNA:insights on DNA binding in TGF-beta signaling. Cell,1998,94:585-594.
    [25] Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-beta receptor engages TRAF6toactivate TAK1in a receptor kinase-independent manner. Nat Cell Biol,2008,10:1199-1207.
    [26] Yamashita M, Fatyol K, Jin C, et al. TRAF6mediates Smad-independent activation of JNKand p38by TGF-beta. Mol Cell,2008,31:918-924.
    [27] Lee M K, Pardoux C, Hall M C, et al. TGF-beta activates Erk MAP kinase signalling throughdirect phosphorylation of ShcA. Embo J,2007,26:3957-3967.
    [28] Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6byTGFbeta receptors controls epithelial cell plasticity. Science,2005,307:1603-1609.
    [29] Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-beta familysignalling. Nature,2003,425:577-584.
    [30] Onichtchouk D, Chen Y G, Dosch R, et al. Silencing of TGF-beta signalling by thepseudoreceptor BAMBI. Nature,1999,401:480-485.
    [31] Jin W, Kim B C, Tognon C, et al. The ETV6-NTRK3chimeric tyrosine kinase suppressesTGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci U S A,2005,102:16239-16244.
    [32] Sammar M, Stricker S, Schwabe G C, et al. Modulation of GDF5/BRI-b signalling throughinteraction with the tyrosine kinase receptor Ror2. Genes Cells,2004,9:1227-1238.
    [33] Wrighton K H, Lin X, Feng X H. Phospho-control of TGF-beta superfamily signaling. CellRes,2009,19:8-20.
    [34] Bennett D, Alphey L. PP1binds Sara and negatively regulates Dpp signaling in Drosophilamelanogaster. Nat Genet,2002,31:419-423.
    [35] Valdimarsdottir G, Goumans M J, Itoh F, et al. Smad7and protein phosphatase1alpha arecritical determinants in the duration of TGF-beta/ALK1signaling in endothelial cells. BMCCell Biol,2006,7:16.
    [36] Satow R, Kurisaki A, Chan T C, et al. Dullard promotes degradation and dephosphorylation ofBMP receptors and is required for neural induction. Dev Cell,2006,11:763-774.
    [37] Chen Y G, Liu F, Massague J. Mechanism of TGFbeta receptor inhibition by FKBP12. Embo J,1997,16:3866-3876.
    [38] Huse M, Chen Y G, Massague J, et al. Crystal structure of the cytoplasmic domain of the typeI TGF beta receptor in complex with FKBP12. Cell,1999,96:425-436.
    [39] Huse M, Muir T W, Xu L, et al. The TGF beta receptor activation process: an inhibitor-tosubstrate-binding switch. Mol Cell,2001,8:671-682.
    [40] Ogunjimi A A, Briant D J, Pece-Barbara N, et al. Regulation of Smurf2ubiquitin ligaseactivity by anchoring the E2to the HECT domain. Mol Cell,2005,19:297-308.
    [41] Chen Y G, Meng A M. Negative regulation of TGF-beta signaling in development. Cell Res,2004,14:441-449.
    [42] Wrighton K H, Lin X, Feng X H. Critical regulation of TGFbeta signaling by Hsp90. ProcNatl Acad Sci U S A,2008,105:9244-9249.
    [43] Zhang L, Zhou H, Su Y, et al. Zebrafish Dpr2inhibits mesoderm induction by promotingdegradation of nodal receptors. Science,2004,306:114-117.
    [44] Kang J S, Saunier E F, Akhurst R J, et al. The type I TGF-beta receptor is covalently modifiedand regulated by sumoylation. Nat Cell Biol,2008,10:654-664.
    [45] Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched earlyendosomes: role in signaling to Smad2. J Cell Biol,2002,158:1239-1249.
    [46] Lu Z, Murray J T, Luo W, et al. Transforming growth factor beta activates Smad2in theabsence of receptor endocytosis. J Biol Chem,2002,277:29363-29368.
    [47] Le Roy C, Wrana J L. Clathrin-and non-clathrin-mediated endocytic regulation of cellsignalling. Nat Rev Mol Cell Biol,2005,6:112-126.
    [48] Di Guglielmo G M, Le Roy C, Goodfellow A F, et al. Distinct endocytic pathways regulateTGF-beta receptor signalling and turnover. Nat Cell Biol,2003,5:410-421.
    [49] Massague J, Blain S W, Lo R S. TGFbeta signaling in growth control, cancer, and heritabledisorders. Cell,2000,103:295-309.
    [50] Bujak M, Frangogiannis N G. The role of TGF-beta signaling in myocardial infarction andcardiac remodeling. Cardiovasc Res,2007,74:184-195.
    [51] Gomis R R, Alarcon C, Nadal C, et al. C/EBPbeta at the core of the TGFbeta cytostaticresponse and its evasion in metastatic breast cancer cells. Cancer Cell,2006,10:203-214.
    [52] Seoane J, Le H V, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences theoutcome of the p53response to DNA damage. Nature,2002,419:729-734.
    [53] Chen C R, Kang Y, Siegel P M, et al. E2F4/5and p107as Smad cofactors linking the TGFbetareceptor to c-myc repression. Cell,2002,110:19-32.
    [54] Derynck R, Akhurst R J. Differentiation plasticity regulated by TGF-beta family proteins indevelopment and disease. Nat Cell Biol,2007,9:1000-1004.
    [55] He X C, Zhang J, Tong W G, et al. BMP signaling inhibits intestinal stem cell self-renewalthrough suppression of Wnt-beta-catenin signaling. Nat Genet,2004,36:1117-1121.
    [56] Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cellsin the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A,2007,104:10063-10068.
    [57] Sanchez-Capelo A. Dual role for TGF-beta1in apoptosis. Cytokine Growth Factor Rev,2005,16:15-34.
    [58] Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res,2002,307:1-14.
    [59] Zahnow C A, Younes P, Laucirica R, et al. Overexpression of C/EBPbeta-LIP, a naturallyoccurring, dominant-negative transcription factor, in human breast cancer. J Natl Cancer Inst,1997,89:1887-1891.
    [60] Kretzschmar M, Doody J, Timokhina I, et al. A mechanism of repression of TGFbeta/Smadsignaling by oncogenic Ras. Genes Dev,1999,13:804-816.
    [61] Bates R C, Mercurio A M. The epithelial-mesenchymal transition (EMT) and colorectal cancerprogression. Cancer Biol Ther,2005,4:365-370.
    [62] Zavadil J, Bottinger E P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene,2005,24:5764-5774.
    [63] Ahmed S, Nawshad A. Complexity in interpretation of embryonic epithelial-mesenchymaltransition in response to transforming growth factor-beta signaling. Cells Tissues Organs,2007,185:131-145.
    [64] De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol,2003,200:429-447.
    [65] Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumormicroenvironment in breast cancer. Cancer Cell,2004,6:17-32.
    [66] Gupta G P, Massague J. Cancer metastasis: building a framework. Cell,2006,127:679-695.
    [67] Staudinger J, Zhou J, Burgess R, et al. PICK1: a perinuclear binding protein and substrate forprotein kinase C isolated by the yeast two-hybrid system. J Cell Biol,1995,128:263-271.
    [68] Gardner S M, Takamiya K, Xia J, et al. Calcium-permeable AMPA receptor plasticity ismediated by subunit-specific interactions with PICK1and NSF. Neuron,2005,45:903-915.
    [69] Steinberg J P, Takamiya K, Shen Y, et al. Targeted in vivo mutations of the AMPA receptorsubunit GluR2and its interacting protein PICK1eliminate cerebellar long-term depression.Neuron,2006,49:845-860.
    [70] Xia J, Zhang X, Staudinger J, et al. Clustering of AMPA receptors by the synaptic PDZdomain-containing protein PICK1. Neuron,1999,22:179-187.
    [71] Perez J L, Khatri L, Chang C, et al. PICK1targets activated protein kinase Calpha to AMPAreceptor clusters in spines of hippocampal neurons and reduces surface levels of theAMPA-type glutamate receptor subunit2. J Neurosci,2001,21:5417-5428.
    [72] Torres G E, Yao W D, Mohn A R, et al. Functional interaction between monoamine plasmamembrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron,2001,30:121-134.
    [73] Torres R, Firestein B L, Dong H, et al. PDZ proteins bind, cluster, and synaptically colocalizewith Eph receptors and their ephrin ligands. Neuron,1998,21:1453-1463.
    [74] McInvale A C, Staudinger J, Harlan R E, et al. Immunolocalization of PICK1in the ascendingauditory pathways of the adult rat. J Comp Neurol,2002,450:382-394.
    [75] Wang W L, Yeh S F, Chang Y I, et al. PICK1, an anchoring protein that specifically targetsprotein kinase Calpha to mitochondria selectively upon serum stimulation in NIH3T3cells. JBiol Chem,2003,278:37705-37712.
    [76] Rocca D L, Martin S, Jenkins E L, et al. Inhibition of Arp2/3-mediated actin polymerizationby PICK1regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol,2008,10:259-271.
    [77] Lu W, Ziff E B. PICK1interacts with ABP/GRIP to regulate AMPA receptor trafficking.Neuron,2005,47:407-421.
    [78] Hanley J G, Henley J M. PICK1is a calcium-sensor for NMDA-induced AMPA receptortrafficking. Embo J,2005,24:3266-3278.
    [79] Baron A, Deval E, Salinas M, et al. Protein kinase C stimulates the acid-sensing ion channelASIC2a via the PDZ domain-containing protein PICK1. J Biol Chem,2002,277:50463-50468.
    [80] Peter B J, Kent H M, Mills I G, et al. BAR domains as sensors of membrane curvature: theamphiphysin BAR structure. Science,2004,303:495-499.
    [81] Hong C J, Liao D L, Shih H L, et al. Association study of PICK1rs3952polymorphism andschizophrenia. Neuroreport,2004,15:1965-1967.
    [82] Dev K K, Henley J M. The schizophrenic faces of PICK1. Trends Pharmacol Sci,2006,27:574-579.
    [83] Hikida T, Mustafa A K, Maeda K, et al. Modulation of D-serine levels in brains of micelacking PICK1. Biol Psychiatry,2008,63:997-1000.
    [84] Xiao N, Kam C, Shen C, et al. PICK1deficiency causes male infertility in mice by disruptingacrosome formation. J Clin Invest,2009,119:802-812.
    [85] Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3and Smad4to critical TGFbeta-inducible elements in the promoter of human plasminogen activator inhibitor-type1gene.Embo J,1998,17:3091-3100.
    [86] Carcamo J, Weis F M, Ventura F, et al. Type I receptors specify growth-inhibitory andtranscriptional responses to transforming growth factor beta and activin. Mol Cell Biol,1994,14:3810-3821.
    [87] Thorsen T S, Madsen K L, Rebola N, et al. Identification of a small-molecule inhibitor of thePICK1PDZ domain that inhibits hippocampal LTP and LTD. Proc Natl Acad Sci U S A,2010,107:413-418.
    [88] Hanover J A, Willingham M C, Pastan I. Kinetics of transit of transferrin and epidermalgrowth factor through clathrin-coated membranes. Cell,1984,39:283-293.
    [89] Zhang X L, Topley N, Ito T, et al. Interleukin-6regulation of transforming growth factor(TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1signaling. J BiolChem,2005,280:12239-12245.
    [90] Atfi A, Dumont E, Colland F, et al. The disintegrin and metalloproteinase ADAM12contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol,2007,178:201-208.
    [91] Ito T, Williams J D, Fraser D J, et al. Hyaluronan regulates transforming growth factor-beta1receptor compartmentalization. J Biol Chem,2004,279:25326-25332.
    [92] Chen C L, Huang S S, Huang J S. Cellular heparan sulfate negatively modulates transforminggrowth factor-beta1(TGF-beta1) responsiveness in epithelial cells. J Biol Chem,2006,281:11506-11514.
    [93] Bizet A A, Liu K, Tran-Khanh N, et al. The TGF-beta co-receptor, CD109, promotesinternalization and degradation of TGF-beta receptors. Biochim Biophys Acta,2011,1813:742-753.
    [94] Zuo W, Chen Y G. Specific activation of mitogen-activated protein kinase by transforminggrowth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol BiolCell,2009,20:1020-1029.
    [95] Kang J S, Liu C, Derynck R. New regulatory mechanisms of TGF-beta receptor function.Trends Cell Biol,2009,19:385-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700