用户名: 密码: 验证码:
新型钛金属烯烃聚合催化剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了开发新型催化剂,我们合成了一系列磺酰胺类化合物内给电子体。我们将这些磺酰胺类化合物作为内给电子体,应用于齐格勒-纳塔催化剂的制备。我们发现,其中一些催化剂对丙烯聚合具有较高的活性和立体选择性。给电子体化合物的给电子能力显著地影响催化剂的性能。这些内电子给体化合物中的一例已经成功地实现了工业应用。以该化合物作为内给电子体的催化剂,在高压本体聚合条件下催化丙烯聚合的活性达到24KgPP/g-Cat·h-4,聚合产物的等规度达到98%。工业测试结果表明,该催化剂对现有装置有很好的适应性,长周期测试运行平稳。催化剂能够适用于不同牌号产品的开发,催化剂的平均活性达到32KgPP/g-Cat·h-1,聚合产物的等规度达到97%以上。催化剂的各项性能指标均能达到国内最好水平。
     聚己内酯和聚丙交酯作为生物相容、可生物降解的新型材料在过去的十几年里得到了广泛的研究。我们合成了磺酰胺亚胺类配体化合物,并将其用于制备钛金属化合物。这些钛金属化合物对己内酯和丙交酯的开环聚合反应表现出了较高的催化活性,聚合产物具有较窄的分子量分布。化合物较好的热稳定性使其能够适应工业生产的高温条件。这些钛金属化合物催化丙交酯开环聚合表现出了可控聚合的特征。
In order to develop new types of catalysts, we have synthesized a series of internal electron donors based on sulfonyl amine framework. These sulfonyl amines were used as internal electron donors for the preparation of Ziegler-Natta catalysts. We found that some of these catalysts are highly active and stereospecific for the polymerization of propylene. The activity of these catalysts is dramatically influenced by the electronic capability of the substituents. Among these internal electron donors, one of which has been successfully used for industry applications. The catalyst with this internal electron donor exhibitted a high activity and a high stereospecificity, and had a good compatibility with the existing reaction apparatus.
     Over the past decade the most extensively studied biocompatible and biodegradeable polyesters have been those derived from s-caprolactone and lactide. We have prepared several titanium complexes with sulfonamide-imine ligands and used for the ring-opening polymerization of LA and CL under bulk and solution polymerization conditions. These titanium catalysts showed a high catalytic activity to LA and CL, and allowed the well-controlled polymerizations of LA.
引文
[1]孙伯庆,栾英杰,张玉昆译,齐格勒纳塔催化剂和聚合[M],北京:化学工业出版社,1986.
    [2](a) S. H. Kim, G A. Somorjai, Stereospecific Ziegler-Natta Model Catalysts Produced by Electron Beam-Induced Deposition of TiCl4:Deposition Kinetics, Film Structure, and Surface Structure. J. Phys. Chem. B.,2002,106,1386-1391. (b) G. D. Bukatov, V. A. Zakharov, Propylene Ziegler-Natta Polymerization:Numbers and Propagation Rate Constants for Stereospecific and Non-Stereospecific Centers. Macromol. Chem. Phys.,2001, 202,2003-2009. (c) J. C. Chadwick, G. Morini, G. Balbontin, I. Camurati, et al, Effects of Internal and External Donors on the Regioand Stereoselectivity of Active Species in MgCl2-Supported Catalysts for Propene Polymerization. Macromol. Chem. Phys.,2001,202, 1995-2002. (d) V. Busico, R. Cipullo, G. Monaco, et al, High-Resolution 13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Ziegler-Natta Catalysts.1. The "Model" System MgCl2/TiCl4-2,6-Dmemylpyridme/Al(C2Hs)3. Macromol,1999,32,4173-4182. (e) B. Liu, T. Nitta, H. Nakatani, et al, Specific Roles of Al-Alkyl Cocatalyst in the Origin of Isospecificity of Active Sites on Donor-Free TiCl4/MgCl2 Ziegler-Natta Catalyst. Macromol. Chem. Phy.,2002,203,2412-2421. (f) B. Liu, T. Nitta, H. Nakatani, et al, Stereospecific Nature of Active Sites on TiCl4/MgCl2 Ziegler-Natta Catalyst in the Presence of an Internal Electron Donor. Macromol. Chem. Phys.,2003,204,395-402.
    [3]黄葆同,沈之荃等,烯烃双烯烃配位聚合进展,北京:科学出版社,1998.
    [4]J. A. Ewen, Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/methylalumoxane Catalysts. J. Am. Chem. Soc.,1984,106, 6355-6364.
    [5](a) L. K. Johnson, C. M. Killian, M. Brookhart, New Pd(Ⅱ)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and.alpha.-Olefins. J. Am. Chem.Soc.,1995,117,6414-6415. (b) J. K. Johnson, C. M. Killian, Alpha Olefins and OlefinPolymers and Processes Therefor, WO 9623010,1996.
    [6]廖正品,中国塑料工业发展现状及未来,塑群工业,2002,04,1-6.
    [7]Y. Hu, J. C. Vizzini, Superactive and Stereospecific Catalysts. Ⅳ. Influence of Structure of Esters on MgCl2 Supported Olefin Polymerization Catalysts. J. Polymer. Sci. Part A.,1990, 28,273-284.
    [8](a) T. Yono, T. Inoue, S. Ikai, et al, Supported Catalyst for Olefin Polymerization. The Role of the Third Component. Eur. Poly. J.,1986,22,637-641. (b) M. C. Sacchi, I. Tritto, P. Locatelli, the Function of Amines in Conventional and Supported Ziegler-Natta Catalysts. Eur. Poly. J.,1988,24,137-140. (d) K. Soga, T. Shiono, Transition Metal Catalyzed Polymerizations, Cambridge University Press, UK,1988.
    [9]姜进宪,王煊,国外大石化公司聚乙烯新产品开发进展,橡胶技.术与装番,2008,09,11-15.
    [10]崔小明,世界聚乙烯工业现状及生产上艺新进展,工程塑群应用,2005,8,71-74.
    [11]李玉芳,伍小明,世界聚乙烯催化剂研究开发新进展,中国石油和纪工,2005,06,57-60.
    [12]王丽,聚乙烯行业的发展现状和未来走向,中国能源报,2012,015,1-2.
    [13]G. Kotzev, S. Djoumaliisky, M. Krasteva, et al, Effect of Sample Configuration on the Morphology of Foamed LDPE/PP Blends Injection Molded by a Gas Counterpressure Process. Macromol. Mater. Eng.,2007,292,769-779.
    [14]Y. Zhong, D. Janes, Y. Zheng, et al, Mechanical and Oxygen Barrier Properties of Organoclay-polyethylene Nanocomposite Films. Polym. Eng. Sci.,2007,47,1101-1107.
    [15](a) X. Anle, Extrusion of PS/LDPE Blends with Supercritical Carbondioxide:Morphology, Viscosity and Interfacialtension [D]. Canada:University of Waterloo,2002. (b) P. Zhang, N. Q. Zhou, Q. F. Wu, et al, Microcellular Foaming of PE/PP Blends. J. Appl. Polym. Sci.,2007, 104,4149-4159.
    [16]胡友良,马志,吕英莹,LLDPE的发展现状和技术创新,石纪技术与应用,2003,,,14.
    [17]黄安平,朱博超,贾军纪等,国内线性低密度聚乙烯现状,广州纪工,2011,39,3.
    [18]周嫒,谢雁,刘新民等,微晶粉增强中密度聚乙烯的研究,合成树脂及塑群,2004,623-25.
    [19](a)杨继萍,李丽,茂金属低密度聚乙烯的流变性能,高分子材料群学与工程2008,07,129-131.(b)李朋朋,王美玲,邵月君等,不同类型吹膜级聚乙烯树脂结构与性能研究,塑料科技,2009,8.56-60.
    [20](a) B. I. Chaudbry, E. Hage, L. A. Passan, Effects of Processing Conditions on the Phase Morphology of PC/ABS Polymer Blends. J. Appl. Polym. Sci.,1998,67,1605-1613.
    [21](a)许惠芳,魏福庆,李朋朋等,薄膜级高密度聚乙烯流变行为研究,石纪技术与应用,2010,1,34-36.(b)蒋炳炎,侯文潭,邱庆军等,高密度聚乙烯薄壁件注射成型时的结晶特性研究,中国塑群,2010,8,55-59.(c)陈欣,陈西良,超细颗粒填充高密度聚乙烯复合体的导电和流变学性质,化学研究,2010,2,49-57.
    [22](a)王伟,黄健,张云灿,偶联剂处理超细CaCO3增韧HDPE研究,现代塑料加工应用,2006,83,29-32.(b)董国治,小中空高密度聚乙烯容器专用树脂的开发,炼油2010,4,49-50.
    [23](a)王学军,赫荣山,尹岩青,管道防腐用高密度聚乙烯(黑色及黄色)专用料的研制,塑料群技,2000,3,25-27.
    [24]金栋,醋酐的生产技术及国内外市场分析,化工科技市场,2007,12,1-5.
    [25]尹国海,我国聚丙烯工业发展现状及前景分析,化工新型材料,2012,08,5-7.
    [26](a)崔小明,王海瑛,中国聚丙烯生产消费现状及发展前景,当代石油石化,2009,9,22-26.(b)聂颖,崔小明,我国聚丙烯的供需现状及发展前景,中国石油和化工经济分析,2010,,0.50-55.
    [27]李玉芳,伍小明,我国聚丙烯树脂的供需现状,化学工业,2011,12:33-37.
    [28]姜杰,伍青,无规聚丙烯的研究进展,化工新型材料,1999,09,15-25.
    [29]胡于中,陈晓华,王春燕,低等规聚丙烯产品生产及市场前景展望,石油与天然气化工,2006,02,101-103.
    [30](a) L. Resconi, R. L. Jones, A. L. Rheingold, et al, High-Molecular-Weight Atactic Polypropylene from Metallocene Catalysts.1. Me2Si(9-Flu)2ZrX2 (X= Cl, Me). Organometallics,1996,15,998-1005. (b) Y.-X. Chen, M. D. Rausch, J. C. W. Chien, C2v-and C2-Symmetric ansa-Bis(fluorenyl)zirconocene Catalysts:Synthesis and.alpha.-Olefin Polymerization Catalysis. Macromol,1995,28,5399-5404.
    [31](a) Q. Wu, Z. Ye, Q. Gao, et al, Atactic Polymerization of Propylene Catalyzed by Mono(η5-cyclopentadienyl)titanium Tribenzyloxide Combined with Bethylaluminoxane. J. Poly. Sci, Part A:Poly. Chem.,1998,36,2051-2057. (b) Q. Wang, D. J. Gillis, R. Quyoum, et al, J. Organomet. Chem.,1997,527,7-14. (c) C. Pellecchia, A. Immirzi, A. Grassi, et al, Base-free Cationic Mono(cyclopentadienyl)zirconium Complexes:Synthesis, Structural Characterization, and Catalytic Activity in Olefin Polymerization. Organometallics.,1993, 12,4473-4478. (d). J. Sapmannshausen, M. Bochmann, J. Rosch, et al, Titanium-catalysed Formation of High Molecular Weight Elastomeric Polypropene:Evidence for Lliving Propene Polymerisation. J. Organomet. Chem.,1997,548,23-28. (e). K. Nomura, N. Naga, M. Miki, et al, Synthesis of Various Nonbridged Titanium(Ⅳ) Cyclopentadienyl-Aryloxy Complexes of the Type CpTi(OAr)X2 and Their Use in the Catalysis of Alkene Polymerization. Important Roles of Substituents on both Aryloxy and Cyclopentadienyl Groups. Organometallics.,1998,17,2152-2154. (f) S. W. Ewart, M. J. Sarsfield, D. Jeremic, et al, Ethylene and Propylene Polymerization by a Series of Highly Electrophilic, Chiral Monocyclopentadienyltitanium Catalysts. Organometallics.,1998,17,1502-1510.
    [32](a) P. Jutzi, U. Siemeling, et al, Cyclopentadienyl compounds with nitrogen donors in the side-chain. J. Organmet. Chem.,1995,500,175-185. (b) Y.-X. Chen, T. Marks, "Constrained Geometry" Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and a-Olefin Polymerization Catalysis. Organometallics., 1997,16,3649-3657.
    [33](a) J. W. Collette, C. W. Tullock, R. N. MacDonald, et al, Elastomeric polypropylenes from alumina-supported tetraalkyl Group FVB catalysts.1. Synthesis and properties of high molecular weight stereoblock homopolymers. Macromol,1989,22,3851-3858. (b) J. W. Collette, D. W. Ovenall, W. H. Buck, et al, Elastomeric Polypropylenes from Alumina-supported Tetraalkyl Group FVB Catalysts.2. Chain Microstructure, Crystallinity, and Morphology. Macromol.,1989,22,3858-3866. (c)J:R. Park, T. Shiono, K. Soga, Regioirregular Polypropene Prepared with Silica-supported Titanium Catalysts. Macromol., 1992,25,521-524. (d) K. Soga, T. Uozumi, M. Saito, et al, Structure of Polypropene and Poly(ethylene-co-propene) Produced with an Alumina-supported CpTiCl3/common Alkylaluminium Catalyst Cystem. Macromol. Chem. Phys.,1994,195,1503-1515.
    [34](a) J. D. Scollard, D. H. McConville, Living Polymerization of a-Olefins by Chelating Diamide Complexes of Titanium. J. Am. Chem. Soc.,1996,118,10008-10009. (b) R. Baumann, W. M. Davis, R. R. Schrock, Synthesis of Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligand, [((t-Bu-d6)N-o-C6H4)2O]2- ([NON]2-) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2. J. Am. Chem, Soc.,1997,119, 3830-3831. (c) Y.-M. Jeon, S. J. Park, J. Heo, et al, Zirconium Complexes with the New Ancillary Diamido Ligand 2,2'-Ethylenebis(N,N'-(triisopropylsilyl)anilinido)2-:□Syntheses, Structures, and Living a-Olefin Polymerization Activities. Organometallics.,1998,17, 3161-3163. (d) M. G. Thorn, Z. C. Etheridge, P. E. Fanwick, et al, Cationic Group 4 Metal Alkyl Compounds Containing o-Arylphenoxide Ligation. Organometallics.,1998,17, 3636-3638.
    [35]G. Natta, I. Pasquon, R. Zambelli, Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer.J. Am. Chem. Soc.,1962, 84,1488-1490.
    [36](a) J. A. Even, R. L. Jones, A. Razavi,1,2,3,4,6-Pentamethylfulvene:a Convenient Precursor to Substituted Tetramethylcyclopentadienyl Transition Metal Complexes. J. Organomet. Chem.,1988,353,93-102. (b) J. A. Even, R. L. Jones, A. Razavi, et al, Syndiospecific Propylene Polymerizations with Group IVB Metallocenes. J. Am. Chem. Soc.,1988,110, 6255-6256.
    [37](a) Y.-X. Chen, T. J. Marks, "Constrained Geometry" Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and a-Olefin Polymerization Catalysis. Organometallics.,1997,16,3649-3657. (b) T. A. Herzog, D. L. Zubris, J. E. Bercaw, A New Class of Zirconocene Catalysts for the Syndiospecific Polymerization of Propylene and Its Modification for Varying Polypropylene from Isotactic to Syndiotactic. J. Am. Chem. Soc.,1996,118,11988-11989.
    [38]A. J. Lovinger, D. D. Davis, B. Lotz, Temperature Dependence of Structure and Morphology of Syndiotactic Polypropylene and Epitaxial Relationships with Isotactic Polypropylene. Macromol,1991,24,552-560
    [39](a) D. Veghini, L. M. Henting, T. J. Burkhardt, et al, Mechanisms of Stereocontrol for Doubly Silylene-Bridged Cs- and C1-Symmetric Zirconocene Catalysts for Propylene Polymerization. Synthesis and Molecular Structure of Li2[(1,2-Me2Si)2{C5H2-4-(1R,2S,5R-menthyl)}{C5H-3,5-(CHMe2)2)}]-3THF and [(1,2-Me2Si)2{η5-C5H2-4-(1R,2S,5Rmenthyl}{η5-C5H-3,5-(CH Me2)2}]ZrCl2. J. Am. Chem. Soc.,1999,121,564-573. (b) Y.-X. Chen, T. J. Marks, "Constrained Geometry" Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and a-Olefin Polymerization Catalysis. Organometallics.,1997,16,3649-3657
    [40](a) S. H. Shirouzu, H. Takahashi, Transparent Multilayer Sheet Containing Polypropylene Mainlayer and Easily-peelablelayer and Easily-openable Container, EP 829345.1998. (b) O. Saeki, S. H. Kiyama, K. Hamada, et al, Multilayer Transparent Glossypoly Olefin Stretch/shrink Film for Food Packaging., JP 09239927.1997.
    [41]B. Lothar, D. Bolker, Heat-sealable Packaging Film, US 5252384.1993.
    [42]J. A. Brydson, Plastics Materials, Butterworth-Heinemann.1999.
    [43]吴长江,聚丙烯技术新进展,石油化工,2006,3,289-294.
    [44]S. V. Meille, S. Bruckner, Non-parallel Chains in Crystalline γ-isotactic Polypropylene. Nature.,1989,340,455-457.
    [45]P. Corradini, The Impact of the Discovery of Stereoregular Polymers in Macromolecular Science. Macromol. Symp.,1995,89,1-11.
    [46](a) F. J. Karol, G. L. Karapinka, C. Wu, et al, Chromocene Catalysts for Ethylene Polymerization:Scope of the Polymerization. J. Polym. Sci., Polym. Chem. Ed.,.1972,10, 2621-2637.
    [47]洪定一,合成树脂新产品的开发与展望,合成树脂及塑群,1999,03,21-23.
    [48](a) J. C. Chadwick, G. Morini, G. Balbontin, et al, Propene Polymerization with MgCl2-supported Catalysts:Effects of Using a Diether as External Donor. Macromol. Chem. Phys.,1997,198,1181-1188. (b) J. C. Chadwick, J. J. R. Heere, O. Sundermeijer, Factors Influencing Chain Transfer with Monomer and with Hydrogen in Propene Polymerization Using MgCl2-supported Ziegler-Natta Catalysts. Macromol. Chem. Phys.,2000,201, 1846-1852 (c) J. C. Chadwick, G. Morini, G. Balbontin, et al, Effects of Internal and External Donors on the Regio-and Stereoselectivity of Active Species in MgCl2-Supported Catalysts for Propene Polymerization. Macromol.Chem. Phys.,2001,202,1995-2002.
    [49]P. J. Galli, The Reactor Granule Technology:The Ultimate Expansion of Polypropylene Properties. Macromol. Sci., Appl. Chem.,1999,36,1561-1586.
    [50]P. J. Galli, J. C. Haylock. Advances in Ziegler-Natta Polymerization-unique Polyolefin Copolymers, Alloys and Blends Made Directly in the Reactor. Macromol. Symp.,1992,63, 19-54.
    [51]K. H. Reichert, K. R. Meyer, Zur Kinetik Der Niederdruckpolymerisation Von sthylen Mit 16'slichen Ziegler-katalysatoren. Makromol. Chem.,1973,169,163-176.
    [52]H. Sinn, W. Kaminsky, Ziegler-Natta Catalysis. Adv. Organmet. Chem.,1980,18,99-149.
    [53]J. J. Eish, S. I. Pombrick, G. X. Zheng, Organometallic compounds of Group Ⅲ.52. Active sites for ethylene polymerization with titanium(Ⅳ) catalysts in homogeneous media: multinuclear NMR study of ion-pair equilibria and their relation to catalyst activity. Organometalics.,1993,12,3856-3863.
    [54]H. Sinn, W. Kaminsky, New Trends in Polymer Science. Macromol. Symp.,1995,97, xi.
    [55]G. Schmid, D.-C. A. Lehnert, The Complexation of Gold Colloids. Angew. Chem. Int. Ed. Engl,1990,29,780-781.
    [56]X. Yang, C. L. Stem, T. J. Marks, Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo-Lewis Acid Tris(pentafluorophenyl)borane. A Synthetic,Structural, Solution Dynamic, and Polymerization Catalytic Study. J. Am. Chem. Soc.,1994,116, 10015-10031.
    [57]J. C. W. Chien, W. M. Tsai, M. D. Rausch, Isospecific Polymerization of Propylene Catalyzed by Rac-ethylenebis(indenyl)methylzirconium Cation. J. Am. Chem. Soc.,1991, 113,8570-8571.
    [58]E. Y.-X. Chen, T. J. Marks, Cocatalysts for Metal-Catalyzed Olefin Polymerization:□ Activators, Activation Processes, and Structure-Activity Relationships. Chem. Rev.,2000, 100,1391-1434.
    [59]F. R.W.P. Wild, L. Zsolnai, G. Huttner, et al, Ansa-Metallocene Derivatives:IV. Synthesis and Molecular Structures of Chiral Ansa-titanocene Derivatives with Bridged Tetrahydroindenyl Ligands. J. Organomet. Chem.,1982,232,233-247.
    [60]J. A. Ewen, Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/methylalumoxane Catalysts J. Am. Chem. Soc.,1984,106, 6355-6364.
    [61]W. Kaminsky, K. Kuelper, H. H. Brintzinger, et al, Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst. Angew. Chem. Int. Ed. Eng.l, 1985,24.507-508.
    [62]W. Kaminsky, Polymerization Catalysis. Catal. Today.,2000,62,23-24.
    [63]G. G. Hlatky, Heterogeneous Single-Site Catalysts for Olefin Polymerization. Chem. Rev., 2000,100,1347-1376.
    [64]W. Kaminsky, J. Scheirs, Metallocene based Polyolefins [M]. Chichester:John Wiley & Sons, Ltd,1999
    [65]H. Dieck, H. Bruder, D.-C. K. Hellfeldt, et al, Rigid Phenyl-Group Conformation in Complexes. Angew. Chem. Int. Ed. Engl.,1980,92,396-397.
    [66]V. C. Gibison, S. K. Spitzmesser, Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev.,2003,103,283-316.
    [67]L. K. Johnson, C. M. Killian, M. Brookhart, New Pd(Ⅱ)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and.alpha.-Olefins. J. Am. Chem. Soc.,1995,117,6414-6415.
    [68]S. Mecking, Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground. Angew. Chem. Int. Ed. Engl.,2001,40,534-540.
    [69]R. Walter, M. August, Production of Kitonic Bodies. US 2577208,1951.
    [70]E. Drent, P. H. M. Budzelaar, Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. Chem. Rev.,1996,96,663-682.
    [71](a) W. Keim, F. H. Kowaldt, R. Goddard, et al, Novel Coordination of (Benzoylmethy-lene)triphenylphosphorane in a Nickel Oligomerization Catalyst. Angew. Chem. Int. Ed. Engl.,1918,17,466-467. (b) S. M. Pillai, M. Ravindranathan, S. Sivaram, Dimerization of Ethylene and Propylene Catalyzed by Transition-metal Complexes. Chem. Rev,1986,86, 353-399
    [72]R. Mulhaupt, Catalytic Polymerization and Post Polymerization Catalysis Fifty Years After the Discovery of Ziegler's Catalysts. Macromol. Chem. Phys.,2003,204,289-327
    [73]W. Keim, F. H. Kowaldt, R. Goddard, et al, Novel Coordination of (Benzoylmethylene)tri-phenylphosphorane in a Nickel Oligomerization Catalyst. Angew. Chem. Int. Ed. Engl.,1978, 17,466-467
    [74]L. S. Brooke, M. Brookhart, M. A. A. Bennett, Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene.J. Am. Chem. Soc.,1998,120,4049-4050.
    [75]S. K. A. Ostoja, V. Witte, Control of the Molecular Weight of Polyethene in Syntheses with Bis(ylide)nickel Catalysts. Angew. Chem. Int. Ed. Engl,1987,36,63-64.
    [76]T. R. Younkin, E. F. Connor, J. I. Henderson, et al, Neutral, Single-Component Nickel (Ⅱ) Polyolefin Catalysts That Tolerate Heteroatoms. Science.,2000,287,460-462.
    [77]L. S. Brooke, M. Brookhart, M. A. A. Bennett, Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am.Chem. Soc.,1998,120,4049-4050.
    [78]J. P. George, G J. P. Britocsek, V. C. Gibson, et al, Novel Olefin Polymerization Catalysts Based on Iron and Cobalt Chem. Commum.,1998,7:849.
    [79](a) Nippon Oil CoLtd. Ziegler Catalyzed O lefin Polymerization.GB 2130225.1984. (b) Mitsubishi Petrochemical Co. Production of Olefin Polymer. JP 61231008.1986. (c) Montell Technology Company BV. Components and Catalysts for the Polymerization of Olefins. US 6143684.2000. (d) Himont Inc. Components and Catalysts for the Polymerization of Olefins. EP 0361494.1990. (e) Montell North America Inc. Components and Catalysts for the Polymerization of Olefins. EP 0728769.1996. (f)中国石油化工股份有限公司北京化工研究院.一种用于烯烃聚合的催化剂组分及其催化剂.中国专利,CN 1850868.2006.
    [80]李明和,胡友良,Lewis碱对丙烯聚合高效载体催化体系的调变作用,石油化工,1994,1:54-63.
    [81](a) U. Giannini, Compents and Catalysts for the Polymerization of Olefins. EP 0045977. 1982. (b) N. Kashiwa, Process for Production of Olefin Polymer or Copolymer. EP 0125911.1984.(c)莫里尼,用于烯烃聚合的催化剂组分和催化剂.中国专利,CN 1313869.2001.
    [82]莫里尼,用于烯烃聚合的催化剂组分和催化剂.中国专利,CN 1306544A.2001.
    [83]中国化工在线,巴塞尔开发新型齐格勒纳塔催化剂,工业催化,2002,5,16.
    [84]E. Albizzati, U. Gianini, G. Morini, et al, Recent Advances in Propylene Polymerization with MgCl2 Supported Catalysts. Macromol. Symp.,1995,89,73-89.
    [85]M. C. Sacchi, F. Forlini, I. Tritto, et al, Microstructure Distribution of Polypropylenes Obtained in the Presence of Traditional Phthalate/Silane and Novel Diether Donors:A Tool for Understanding the Role of Electron Donors in MgCl2-Supported Ziegler-Natta Catalysts. Macromol,1996,29,5770-5776.
    [86]徐君庭,封麟先,王森辉等,无外给电子化合物的新型聚丙烯催化剂的研究—Ⅰ.聚合结果,浙江大学学报,1998,3:301-303.
    [87]徐德民,新型内给电子体烯烃聚合复相催化剂的研究[D].北京:中科院化学所,2002.
    [88]莫里尼,索达马格里亚,巴卢齐,烯烃聚合催化组分及催化剂,中国专利,CN 1087918.1994.
    [89]莫里尼,古列维奇,巴尔邦廷,用于烯烃聚合的组分和催化剂,中国专利,CN 1242780.2000.
    [90](a)刘海涛,王军,高明智,用于烯烃聚合反应的催化剂组分及其催化剂,中国专利,CN 1715301.2006.(b)王军,李昌秀,高明智,用于制备烯烃聚合催化剂的氨酯化合物, 中国专利,CN 101 104589.2008.
    [91](a)高明智,刘海涛,王军,用于烯烃聚合反应的催化剂组分及其催化剂,中国专利,CN 101125896.2008.(b)王军,刘海涛,高明智,用于制备烯烃聚合催化剂的哌啶酯类化合物,中国专利,CN 101172965.2008.
    [92](a)谢伦嘉,赵思源,李天益,γ-烃基杂原子取代醚及其合成方法,中国专利,CN 1459443.2003.(b)谢伦嘉,赵思源,张明森,一种含双杂原子的芴类化合物及其合成方法和应用,中国专利,CN 1480453.2004.
    [93]U. Roger, P. L. John, Propylene Polymer Catalyst Donor Compenent. US,20080125614. 2008.
    [94]H. J. Henry, et al, Phosphorus Containing Alkyl or Arylsulphonyl Derivatives and Method for Preparing Same. EP 0805159 A11997.
    [95]J. Li, D. Tian, H. Song, et al, Synthesis, Structures, and Reactivity of Nickel Complexes Incorporating Sulfonamido-Imine Ligands. Organometallics.,2008,27,1605-1611.
    [96]L. E. Manzer, Tetragtdrfuran Complexes of Selected Early Transition Metals. Inorg. Synth.., 1982,27,135-140.
    [97]D. C. Bradley, I. M. Thomas, Metallo-organic Compounds Containing Metal-nitrogen Bonds. Part I. Some Dialkylamino-derivatives of Titanium and Zirconium. J. Chem. Soc.,1960, 3857.
    [1]G. Ruan, S. S. Feng, Preparation and Characterization of Poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials.,2003,24,5037-5044.
    [2]陈晓蕾,王鲁民,石建高等,水相环境中生物可降解高分子材料的研究进展,海洋渔业,2009,1,106-112.
    [3]B. S. Stewart, P. K. Yochem, Entanglement of Pinnipeds in Synthetic Debris and Fishing Net and Line Fragments at San Nicolas and San Miguel Islands, California,1978-1986. Mar. Pollut. Bull,1987,18,336-339.
    [4]L. Chen, X. Qiu, M. Deng, et al, The Starch Grafted Poly(1-lactide) and the Physical Properties of Its Blending Composites. Polymer.,2005,46,5723-5729.
    [5]M. A. Huneault, H. B. Li, Morphology and Properties of Compatibilized Polylactide/therm-oplastic Starch Blends. Polymer.,2007,48,270-280.
    [6]F. C. Loeker, C. J. Duxbury, R. Kumar, et al, Enzyme-Catalyzed Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromol,2004,37, 2450-2453.
    [7]P. B. Messersmith, E. P. Giaxtnelis, Synthesis and Barrier Properties of Poly(e-caprola-ctone)-layered Silicate Nanocomposites. J. Polym. Sci., Part A:Polym. Chem.,1995,33, 1047-1057.
    [8]H. Hyun, Y. H. Kim, I. B. Song, et al, In Vitro and in Vivo Release of Albumin Using a Biodegradable MPEG-PCL Diblock Copolymer as an in Situ Gel-Forming Carrier. BioMacromol.,2007,8:1093.
    [9]蒋春莲,卷材涂料用聚酯树脂的研制,当代化工,2005,34,36-38.
    [10]唐奚敏,张亚琼,郭圣荣,水作为有机相添加剂对牛血清白蛋白聚己内酯微球的影响,上海交通大学学报,2009,07,1062-1070.
    [11]马桂蕾,张琳华,宋存先,紫杉醇聚己内酯/泊洛沙姆188载药纳米粒及其抗肿瘤活性,生物医学I程与临床,2009,06,481-485.
    [12]汪小超,袁伟方,顾晓雯等,水滴为模板制备蜂窝状表面的聚己内酯多孔膜及其细胞亲和性,中国科技论文在线,2010,04,291-296.
    [13]黄励中,林宗琼,余厚德等,壳聚糖-聚己内酯复合膜的制备及其性能研究,膜群学与技术,2008,06,48-52.
    [14]刘建华,王国海,徐栋梁,聚己内酯与左旋聚乳酸共聚物支架的细胞相容性测定及与软骨细胞体外复合的实验研究,压学研究生学报,2009,02,131-138.
    [15]王培境,耿雪,叶霖等,具有抗凝功能的可交联四臂星形聚己内酯的合成及其电纺丝加工的初步研究,科技导报,2009,2,,50-55.
    [16]贾骏,段螈嫄,周建学等,聚己内酯电纺纤维支架培养人牙周膜细胞的体外研究,牙 体牙髓牙周病学杂志,2007,05, 243-246,
    [17]M. H. Chisholm, S. S. Iyer, D. G. McCollum, et al, Microstructure of Poly(lactide). Phase-Sensitive HETCOR Spectra of Poly(meso-lactide), Poly(rac-lactide), and Atactic Poly(lactide). Macromol.,1999,32,963-973.
    [18]K. Meinander, M. Niemi, J. S. Hakola, et al, Polylactides-degradable Polymers for Fibres and Films. Macromol. Symp.,1997,123,147-154.
    [19]曹燕琳,尹静波,颜世峰,生物可降解聚乳酸的改性及其应用研究进展,高分子通报,2006,10, 90-97.
    [20]L. Lu, S. J. Peter, M. D. Lyman, In Vitro Degradation of Porous Poly(1-lactic acid) Foams. Biomaterials.,2000,21,1595-1605.
    [21](a) H. R. Kricheldorf, M. Berl, N. Schamagl, Poly(lactones).9. Polymerization Mechanism of Metal Alkoxide Initiated Polymerizations of Lactide and Various Lactones. Macromol., 1988,21,286-293. (b) H. Li, C. Wanh, F. Bai, et al, Living Ring-Opening Polymerization of 1-Lactide Catalyzed by Red-Al. Organometallics.,2004,23,1411-1415. (c) W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra, et al, A Versatile and Highly Efficient Catalyst System for the Preparation of Polyesters Based on Lanthanide Tris(2,6-di-tert-butylphenolate)s and Various Alcohols. Macromol.,1996,29,3332-3333.
    [22]Y. Shibasaki, F. Sanda, H. Sanada, et al, Activated Monomer Cationic Polymerization of Lactones and the Application to Well-Defined Block Copolymer Synthesis with Seven-Membered Cyclic Carbonate. Macromol,2000,33,4316-4320.
    [23](a) H. R. Kricheldorf, I. Kreiser-Saunders, Polylactones,19. Anionic Polymerization of L-lactide in Solution. Makromol. Chem.,1990,191,1057-1066. (b) H. R. Kricheldorf, C. Boettcher, Polylactones 26. Lithium Alkoxide-initiated Polymerizations of L-lactide. Makromol. Chem.,1993,194,1665-1669.
    [24](a) A. Kumar, R. A. Gross, Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. BioMacromol.,2000,1,133-138. (b) F. C. Loeker, C. J. Duxbury, R. Kumar, et al, Enzyme-Catalyzed Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromol.,2004,37,2450-2453.
    [25]J. J. Zhang, C. L. Jian, Y. Gao, et al, Synthesis and Characterization of Multi-Alkali-Metal Tetraphenolates and Application in Ring-Opening Polymerization of Lactide. Inorg. Chem., 2012,51,13380-13389.
    [26]J. P. Davin, J. C. Buffet, T. P. Spaniol, et al, Alkaline Earth Metal Complexes of a Chiral Polyether as Initiator for the Ring-opening Polymerization of Lactide. Dalton. Trans.,2012, 41,12612-12618.
    [27]R. A. Collins, J. Unruangsri, P. Mountford, Synthesis and Rac-lactide Ring-opening Polymerisation Studies of New Alkaline Earth Tetrahydroborate Complexes. Dalton. Trans., 2013,42,759-769.
    [28]G. Li, M. Lamberti, M. Mazzeo, et al, Anilidopyridyl-Pyrrolide and Anilidopyridyl-Indolide Group 3 Metal Complexes:Highly Active Initiators for the Ring-Opening Polymerization of rac-Lactide. Organometallics.,2012,31,1180-1188.
    [29]E. L. Whitelaw, M. D. Jones, M. F. Mahon, Group 4 Salalen Complexes and Their Application for the Ring-Opening Polymerization of rac-Lactide. Inorg. Chem.,2010,49, 7176-7181.
    [30]Y. B. Wang, Y. J. Luo, J. Chen, et al, Synthesis of Mono(guanidinate) Rare Earth Metal Bis(amide) Complexes and Their Performance in the Ring-opening Polymerization of L-lactide and Rac-lactide. New. J. Chem.,2012,36,933-940.
    [31]J. Kratsch, M. Kuzdrowska, M. Schmid, et al, Chiral Rare Earth Borohydride Complexes Supported by Amidinate Ligands:Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of rac-Lactide. Organometallics.,2013,32,1230-1238.
    [32]W. Y. Leea, C. C. Hsieha, J. W. Hsua, et al, Zirconium and Hafnium Amide, Alkoxide, and Pyrrolyl Complexes Manifesting with Pyrrolyl-linked N-donor Ligands:Syntheses, Characterization, and Ring Opening Polymerization of e-Caprolactone. J. Organomet. Chem., 2011,696,3816-3821. Isoconversional Kinetic Analysis of Ring-opening Polymerization of ε-Caprolactone:Steric Influence of Titanium(IV) Alkoxides as Initiators. J. Polym. Res., 2012,19:9799.
    [34]S. H. Kim, J. Lee, D. J. Kim, et al, Titanium Complexes Containing New Dianionic Tetradentate [ONNO]-type Ligands with Benzyl Substituents on Bridging Nitrogen Atoms: Syntheses, X-ray Structures, and Catalytic Activities in Ring Opening Polymerization of Lactide. J. Organomet. Chem.,2009,694,3409-3417.
    [35]E. Kim, E. W. Shin, I. K. Yoo, et al, Characteristics of Heterogeneous Titanium Alkoxide Catalysts for Ring-opening Polymerization of Lactide to Produce Polylactide. J. Molec. Cat. A:Chem.,2009,298,36-39.
    [36]R. R. Gowda, D. Chakraborty, V. Ramkumar, New Aryloxy and Benzyloxy Derivatives of Titanium as Catalysts for Bulk Ring-Opening Polymerization of ε-Caprolactone and δ-Valerolactone. Eur. J. Inorg. Chem.,2009,2009,2981-2993.
    [37]S. L. Zhou, T. Xie, Z. S. Wu, et al, Synthesis, Structure of Zinc Complexes Containing Sulfonylated Binaphtholate Ligands and Their Catalytic Activities towards Ring-Opening Polymerization of Lactide and ε-Caprolactone. Chin. J. Chem.,2012,30,2176-2182.
    [38]M. Lamberti, I. D'Auria, M. Mazzeo, et al, Phenoxy-Thioether Aluminum Complexes as ε-Caprolactone and Lactide Polymerization Catalysts. Organometallics.,2012,31, 5551-5560.
    [39]A. D. Schwarz, A. L. Thompson, P.-Mountford, Sulfonamide-Supported Group 4 Catalysts for the Ring-Opening Polymerization of e-Caprolactone and rac-Lactide. Inorg. Chem.,2009, 48,10442-10454.
    [40]H.-Yi. Chen, W.-Y. Lu, Y.-J. Chen, et al, Synthesis, Characterization, and Catalytic Activity of Titanium Iminophenoxide Complexes in Relation to the Ring-opening Polymerization of L-lactide and e-caprolactone. J.Poly. Sci. Part A:Poly. Chem.,2013,51,327-333.
    [41]J. Li, D. Tian, H. Song, et al, Synthesis, Structures, and Reactivity of Nickel Complexes Incorporating Sulfonamido-Imine Ligands. Organometallics.,2008,27,1605-1611.
    [1]孙伯庆,栾英杰,张玉崑译,齐格勒纳塔催化剂和聚合[M],北京:化学工业出版社,1986.
    [2](a) S. H. Kim, G. A. Somorjai, Stereospecific Ziegler-Natta Model Catalysts Produced by Electron Beam-Induced Deposition of TiCl4:Deposition Kinetics, Film Structure, and Surface Structure. J. Phys. Chem. B.,2002,106,1386-1391. (b) G. D. Bukatov, V. A. Zakharov, Propylene Ziegler-Natta Polymerization:Numbers and Propagation Rate Constants for Stereospecific and Non-Stereospecific Centers. Macromol. Chem. Phys.,2001, 202,2003-2009. (c) J. C. Chadwick, G. Morini, G Balbontin, I. Camurati, et al, Effects of Internal and External Donors on the Regioand Stereoselectivity of Active Species in MgCl2-Supported Catalysts for Propene Polymerization. Macromol. Chem. Phys.,2001,202, 1995-2002. (d) V. Busico, R. Cipullo, G. Monaco, et al, High-Resolution 13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Ziegler-Natta Catalysts.1. The "Model" System MgCl2/TiCl4-2,6-Dimethylpyridine/Al(C2H5)3. Macromol.,1999,32,4173-4182. (e) B. Liu, T. Nitta, H. Nakatani, et al, Specific Roles of Al-Alkyl Cocatalyst in the Origin of Isospecificity of Active Sites on Donor-Free TiCl4/MgCl2 Ziegler-Natta Catalyst. Macromol. Chem. Phy.,2002,203,2412-2421. (f) B. Liu, T. Nitta, H. Nakatani, et al, Stereospecific Nature of Active Sites on TiCl4/MgCl2 Ziegler-Natta Catalyst in the Presence of an Internal Electron Donor. Macromol. Chem. Phys.,2003,204,395-402.
    [3]黄葆同,沈之荃等,烯烃双烯烃配位聚合进展,北京:科学出版社,1998.
    [4]J. A. Ewen, Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/methylalumoxane Catalysts.J. Am. Chem. Soc.,1984,106, 6355-6364.
    [5](a) L. K. Johnson, C. M. Killian, M. Brookhart, New Pd(Ⅱ)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and.alpha.-Olefins. J. Am. Chem.Soc.,1995,117,6414-6415. (b) J. K. Johnson, C. M. Killian, Alpha Olefins and OlefinPolymers and Processes Therefor, WO 9623010,1996.
    [6]廖正品,中国塑料工业发展现状及未来,塑料工业,2002,04,1-6.
    [7]Y. Hu, J. C. Vizzini, Superactive and Stereospecific Catalysts. IV. Influence of Structure of Esters on MgCl2 Supported Olefin Polymerization Catalysts. J. Polymer. Sci, Part A.,1990, 28,273-284.
    [8](a) T. Yono, T. Inoue, S. Ikai, et al, Supported Catalyst for Olefin Polymerization. The Role of the Third Component. Eur. Poly. J.,1986,22,637-641. (b) M. C. Sacchi, I. Tritto, P. Locatelli, the Function of Amines in Conventional and Supported Ziegler-Natta Catalysts. Eur. Poly. J.,1988,24,137-140. (d) K. Soga, T. Shiono, Transition Metal Catalyzed Polymerizations, Cambridge University Press, UK,1988.
    [9]姜进宪,王煊,国外大石化公司聚乙烯新产品开发进展,橡胶技术与装备,2008,09,11-15.
    [10]崔小明,世界聚乙烯工业现状及生产工艺新进展,工程塑群应用,2005,8,71-74.
    [11]李玉芳,伍小明,世界聚乙烯催化剂研究开发新进展,中国石油和化工,2005,06,57-60.
    [12]王丽,聚乙烯行业的发展现状和未来走向,中国能源报,2012,015,1-2.
    [13]G. Kotzev, S. Djoumaliisky, M. Krasteva, et al, Effect of Sample Configuration on the Morphology of Foamed LDPE/PP Blends Injection Molded by a Gas Counterpressure Process. Macromol. Mater. Eng.,2007,292,769-779.
    [14]Y. Zhong, D. Janes, Y. Zheng, et al, Mechanical and Oxygen Barrier Properties of Organoclay-polyethylene Nanocomposite Films. Polym. Eng. Sci.,2007,47,1101-1107.
    [15](a) X. Anle, Extrusion of PS/LDPE Blends with Supercritical Carbondioxide:Morphology, Viscosity and Interfacialtension [D]. Canada:University of Waterloo,2002. (b) P. Zhang, N. Q. Zhou, Q. F. Wu, et al, Microcellular Foaming of PE/PP Blends. J. Appl. Polym. Sci.,2007, 104,4149-4159.
    [16]胡友良,马志,吕英莹,LLDPE的发展现状和技术创新,石化技术与应用,2003,1,1-4.
    [17]黄安平,朱博超,贾军纪等,国内线性低密度聚乙烯现状,广州化工,2011,39,3.
    [18]周嫒,谢雁,刘新民等,微晶粉增强中密度聚乙烯的研究,合成树脂及塑料,2004,6,23-25.
    [19](a)杨继萍,李丽,茂金属低密度聚乙烯的流变性能,高分子材料科学与工程,2008,07,129-131.(b)李朋朋,王美玲,邵月君等,不同类型吹膜级聚乙烯树脂结构与性能研究,塑料科技,2009,8.56-60.
    [20](a) B. I. Chaudbry, E. Hage, L. A. Passan, Effects of Processing Conditions on the Phase Morphology of PC/ABS Polymer Blends. J. Appl. Polym. Sci.,1998,67,1605-1613.
    [21](a)许惠芳,魏福庆,李朋朋等,薄膜级高密度聚乙烯流变行为研究,石化技术与应用,2010,1,34-36.(b)蒋炳炎,侯文潭,邱庆军等,高密度聚乙烯薄壁件注射成型时的结晶特性研究,中国塑料,2010,8,55-59.(c)陈欣,陈西良,超细颗粒填充高密度聚乙烯复合体的导电和流变学性质,化学研究2010,2,49-57.
    [22](a)王伟,黄健,张云灿,偶联剂处理超细CaCO3增韧HDPE研究,现代塑料加工应用,2006,83,29-32.(b)董国治,小中空高密度聚乙烯容器专用树脂的开发,炼油与化工,2010,4,49-50.
    [23](a)王学军,赫荣山,尹岩青,管道防腐用高密度聚乙烯(黑色及黄色)专用料的研制,塑料群技,2000,3,25-27.
    [24]金栋,醋酐的生产技术及国内外市场分析,化工科技市场,2007,12,1-5.
    [25]尹国海,我国聚丙烯工业发展现状及前景分析,化工新型材,2012,08,5-7.
    [26](a)崔小明,王海瑛,中国聚丙烯生产消费现状及发展前景,当代石油石化,2009,9,22-26.(b)聂颖,崔小明,我国聚丙烯的供需现状及发展前景,中国石油和化工经济分析,2010,10,50-55.
    [27]李玉芳,伍小明,我国聚丙烯树脂的供需现状,化学工业,2011,12:33-37.
    [28]姜杰,伍青,无规聚丙烯的研究进展,化工新型材料,1999,09,15-25.
    [29]胡于中,陈晓华,王春燕,低等规聚丙烯产品生产及市场前景展望,石油与天然气化工,2006,02,101-103.
    [30](a) L. Resconi, R. L. Jones, A. L. Rheingold, et al, High-Molecular-Weight Atactic Polypropylene from Metallocene Catalysts.1. Me2Si(9-Flu)2ZrX2 (X= Cl, Me). Organometallics,1996,15,998-1005. (b) Y.-X. Chen, M. D. Rausch, J. C. W. Chien, C2v-and C2-Symmetric ansa-Bis(fluorenyl)zirconocene Catalysts:Synthesis and.alpha.-Olefm Polymerization Catalysis. Macromol,1995,28,5399-5404.
    [31](a) Q. Wu, Z. Ye, Q. Gao, et al, Atactic Polymerization of Propylene Catalyzed by Mono(η5-cyclopentadienyl)titanium Tribenzyloxide Combined with Bethylaluminoxane. J. Poly. Sci, Part A:Poly. Chem.,1998,36,2051-2057. (b) Q. Wang, D. J. Gillis, R. Quyoum, et al, J. Organomet. Chem.,1997,527,7-14. (c) C. Pellecchia, A. Immirzi, A. Grassi, et al, Base-free Cationic Mono(cyclopentadienyl)zirconium Complexes:Synthesis, Structural Characterization, and Catalytic Activity in Olefin Polymerization. Organometallics.,1993, 12,4473-4478. (d). J. Saβmannshausen, M. Bochmann, J. Rosch, et al, Titanium-catalysed Formation of High Molecular Weight Elastomeric Polypropene:Evidence for Lliving Propene Polymerisation. J. Organomet. Chem.,1997,548,23-28. (e). K. Nomura, N. Naga, M. Miki, et al, Synthesis of Various Nonbridged Titanium(IV) Cyclopentadienyl-Aryloxy Complexes of the Type CpTi(OAr)X2 and Their Use in the Catalysis of Alkene Polymerization. Important Roles of Substituents on both Aryloxy and Cyclopentadienyl Groups. Organometallics.,1998,17,2152-2154. (f) S. W. Ewart, M. J. Sarsfield, D. Jeremic, et al, Ethylene and Propylene Polymerization by a Series of Highly Electrophilic, Chiral Monocyclopentadienyltitanium Catalysts. Organometallics.,1998,17,1502-1510.
    [32](a) P. Jutzi, U. Siemeling, et al, Cyclopentadienyl compounds with nitrogen donors in the side-chain. J. Organmet. Chem.,1995,500,175-185. (b) Y.-X. Chen, T. Marks, "Constrained Geometry" Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and α-Olefin Polymerization Catalysis. Organometallics., 1997,16,3649-3657.
    [33](a) J. W. Collette, C. W. Tullock, R. N. MacDonald, et al, Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts.1. Synthesis and properties of high molecular weight stereoblock homopolymers. Macromol.,1989,22,3851-3858. (b) J. W. Collette, D. W. Ovenall, W. H. Buck, et al, Elastomeric Polypropylenes from Alumina-supported Tetraalkyl Group IVB Catalysts.2. Chain Microstructure, Crystallinity, and Morphology. Macromol,1989,22,3858-3866. (c)J. R. Park, T. Shiono, K. Soga, Regioirregular Polypropene Prepared with Silica-supported Titanium Catalysts. Macromol., 1992,25,521-524. (d) K. Soga, T. Uozumi, M. Saito, et al, Structure of Polypropene and Poly(ethylene-co-propene) Produced with an Alumina-supported CpTiCl3/common Alkylaluminium Catalyst Cystem. Macromol. Chem. Phys.,1994,195,1503-1515.
    [34](a) J. D. Scollard, D. H. McConville, Living Polymerization of a-Olefins by Chelating Diamide Complexes of Titanium. J. Am. Chem. Soc.,1996,118,10008-10009. (b) R. Baumann, W. M. Davis, R. R. Schrock, Synthesis of Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligand, [((t-Bu-d6)N-o-C6H4)2O]2- ([NON]2-) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2. J. Am. Chem, Soc.,1997,119, 3830-3831. (c) Y.-M. Jeon, S. J. Park, J. Heo, et al, Zirconium Complexes with the New Ancillary Diamido Ligand 2,2'-Ethylenebis(N,N'-(triisopropylsilyl)anilinido)2-:□ Syntheses, Structures, and Living a-Olefin Polymerization Activities. Organometallics.,1998,17, 3161-3163. (d) M. G. Thorn, Z. C. Etheridge, P. E. Fanwick, et al, Cationic Group 4 Metal Alkyl Compounds Containing o-Arylphenoxide Ligation. Organometallics.,1998,17, 3636-3638.
    [35]G. Natta, I. Pasquon, R. Zambelli, Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer. J. Am. Chem. Soc,1962, 84,1488-1490.
    [36](a) J. A. Even, R. L. Jones, A. Razavi,1,2,3,4,6-Pentamethylfulvene:a Convenient Precursor to Substituted Tetramethylcyclopentadienyl Transition Metal Complexes. J. Organomet. Chem.,1988,353,93-102. (b) J. A. Even, R. L. Jones, A. Razavi, et al, Syndiospecific Propylene Polymerizations with Group IVB Metallocenes. J. Am. Chem. Soc.,1988,110, 6255-6256.
    [37]T. A. Herzog, D. L. Zubris, J. E. Bercaw, A New Class of Zirconocene Catalysts for the Syndiospecific Polymerization of Propylene and Its Modification for Varying Polypropylene from Isotactic to Syndiotactic. J. Am. Chem. Soc,1996,118,11988-11989.
    [38]A. J. Lovinger, D. D. Davis, B. Lotz, Temperature Dependence of Structure and Morphology of Syndiotactic Polypropylene and Epitaxial Relationships with Isotactic Polypropylene. Macromol.,1991,24,552-560.
    [39](a) D. Veghini, L. M. Henting, T. J. Burkhardt, et al, Mechanisms of Stereocontrol for Doubly Silylene-Bridged Cs- and C1-Symmetric Zirconocene Catalysts for Propylene Polymerization. Synthesis and Molecular Structure of Li2[(1,2-Me2Si)2{C5H2-4-(1R,2S,5R-menthyl)}{C5H-3,5-(CHMe2)2)}]·3THF and [(1,2-Me2Si)2{η5-C5H2-4-(1R,2S,5R-menthy1)}{η5-C5H-3,5-(CH Me2)2}]ZrCl2. J. Am. Chem. Soc.,1999,121,564-573. (b) Y.-X. Chen, T. J. Marks, "Constrained Geometry" Dialkyl Catalysts. Efficient Syntheses, C-H Bond Activation Chemistry, Monomer-Dimer Equilibration, and a-Olefin Polymerization Catalysis. Organometallics.,1997,16,3649-3657.
    [40](a) S. H. Shirouzu, H. Takahashi, Transparent Multilayer Sheet Containing Polypropylene Mainlayer and Easily-peelablelayer and Easily-openable Container, EP 829345.1998. (b) O. Saeki, S. H. Kiyama, K. Hamada, et al, Multilayer Transparent Glossypoly Olefin Stretch/shrink Film for Food Packaging., JP 09239927.1997.
    [41]B. Lothar, D. Bolker, Heat-sealable Packaging Film, US 5252384.1993.
    [42]J. A. Brydson, Plastics Materials, Butterworth-Heinemann.1999.
    [43]吴长江,聚丙烯技术新进展,石油纪化工,2006,3,289-294.
    [44]S. V. Meille, S. Bruckner, Non-parallel Chains in Crystalline y-isotactic Polypropylene. Nature.,1989,340,455-457.
    [45]P. Corradini, The Impact of the Discovery of Stereoregular Polymers in Macromolecular Science. Macromol. Symp.,1995,89,1-11.
    [46](a) F. J. Karol, G L. Karapinka, C. Wu, et al, Chromocene Catalysts for Ethylene Polymerization:Scope of the Polymerization. J. Polym. Sci., Polym. Chem. Ed.,.1972,10, 2621-2637.
    [47]洪定一,合成树脂新产品的开发与展望,合成树脂及塑料,1999,03,21-23.
    [48](a) J. C. Chadwick, G. Morini, G Balbontin, et al, Propene Polymerization with MgCl2-supported Catalysts:Effects of Using a Diether as External Donor. Macromol. Chem. Phys.,1997,198,1181-1188. (b) J. C. Chadwick, J. J. R. Heere, O. Sundermeijer, Factors Influencing Chain Transfer with Monomer and with Hydrogen in Propene Polymerization Using MgCl2-supported Ziegler-Natta Catalysts. Macromol. Chem. Phys.,2000,201, 1846-1852 (c) J. C. Chadwick, G. Morini, G. Balbontin, et al, Effects of Internal and External Donors on the Regio-and Stereoselectivity of Active Species in MgCl2-Supported Catalysts for Propene Polymerization. Macromol.Chem. Phys.,2001,202,1995-2002.
    [49]P. J. Galli, The Reactor Granule Technology:The Ultimate Expansion of Polypropylene Properties. Macromol. Sci., Appl. Chem.,1999,36,1561-1586.
    [50]P. J. Galli, J. C. Haylock. Advances in Ziegler-Natta Polymerization-unique Polyolefin Copolymers, Alloys and Blends Made Directly in the Reactor. Macromol. Symp.,1992,63, 19-54.
    [51]K. H. Reichert, K. R. Meyer, Zur Kinetik Der Niederdruckpolymerisation Von Sthylen Mit loslichen Ziegler-katalysatoren. Makromol. Chem.,1973,169,163-176.
    [52]H. Sinn, W. Kaminsky, Ziegler-Natta Catalysis. Adv. Organmet. Chem.,1980,18,99-149.
    [53]J. J. Eish, S. I. Pombrick, G. X. Zheng, Organometallic compounds of Group Ⅲ.52. Active sites for ethylene polymerization with titanium(IV) catalysts in homogeneous media: multinuclear NMR study of ion-pair equilibria and their relation to catalyst activity. Organometalics.,1993,12,3856-3863.
    [54]H. Sinn, W. Kaminsky, New Trends in Polymer Science. Macromol. Symp.,1995,97, xi.
    [55]G. Schmid, D.-C. A. Lehnert, The Complexation of Gold Colloids. Angew. Chem. Int. Ed. Engl,1990,29,780-781.
    [56]X. Yang, C. L. Stem, T. J. Marks, Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo-Lewis Acid Tris(pentafluorophenyl)borane. A Synthetic.Structural, Solution Dynamic, and Polymerization Catalytic Study. J. Am. Chem. Soc.,1994,116, 10015-10031.
    [57]J. C. W. Chien, W. M. Tsai, M. D. Rausch, Isospecific Polymerization of Propylene Catalyzed by Rac-ethylenebis(indenyl)methylzirconium Cation. J. Am. Chem. Soc.,1991, 113,8570-8571.
    [58]E. Y.-X. Chen, T. J. Marks, Cocatalysts for Metal-Catalyzed Olefin Polymerization:□ Activators, Activation Processes, and Structure-Activity Relationships. Chem. Rev.,2000, 100,1391-1434.
    [59]F. R.W.P. Wild, L. Zsolnai, G. Huttner, et al, Ansa-Metallocene Derivatives:IV. Synthesis and Molecular Structures of Chiral Ansa-titanocene Derivatives with Bridged Tetrahydroindenyl Ligands. J. Organomet. Chem.,1982,232,233-247.
    [60]J. A. Ewen, Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/methylalumoxane Catalysts. J. Am. Chem. Soc.,1984,106, 6355-6364.
    [61]W. Kaminsky, K. Kuelper, H. H. Brintzinger, et al, Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst. Angew. Chem. Int. Ed. Eng.l, 1985,24.507-508.
    [62]W. Kaminsky, Polymerization Catalysis. Catal. Today.,2000,62,23-24.
    [63]G. G. Hlatky, Heterogeneous Single-Site Catalysts for Olefin Polymerization. Chem. Rev., 2000,100,1347-1376.
    [64]W. Kaminsky, J. Scheirs, Metallocene based Polyolefins [M]. Chichester:John Wiley & Sons, Ltd,1999
    [65]H. Dieck, H. Bruder, D.-C. K. Hellfeldt, et al, Rigid Phenyl-Group Conformation in Complexes. Angew. Chem. Int. Ed. Engl,1980,92,396-397.
    [66]V. C. Gibison, S. K. Spitzmesser, Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev.,2003,103,283-316.
    [67]L. K. Johnson, C. M. Killian, M. Brookhart, New Pd(Ⅱ)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and.alpha.-Olefins. J. Am. Chem. Soc.,1995,117,6414-6415.
    [68]S. Mecking, Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground. Angew. Chem. Int. Ed. Engl.,2001,40,534-540.
    [69]R. Walter, M.August, Production of Kitonic Bodies. US 2577208,1951.
    [70]E. Drent, P. H. M. Budzelaar, Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. Chem. Rev.,1996,96,663-682.
    [71](a) W. Keim, F. H. Kowaldt, R. Goddard, et al, Novel Coordination of (Benzoylmethy-lene)triphenylphosphorane in a Nickel Oligomerization Catalyst. Angew. Chem. Int. Ed. Engl.,1918,17,466-467. (b) S. M. Pillai, M. Ravindranathan, S. Sivaram, Dimerization of Ethylene and Propylene Catalyzed by Transition-metal Complexes. Chem. Rev.,1986,86, 353-399.
    [72]R. Miilhaupt, Catalytic Polymerization and Post Polymerization Catalysis Fifty Years After the Discovery of Ziegler's Catalysts. Macwmol. Chem. Phys.,2003,204,289-327.
    [73]W. Keim, F. H. Kowaldt, R. Goddard, et al, Novel Coordination of (Benzoylmethylene)tri-phenylphosphorane in a Nickel Oligomerization Catalyst. Angew. Chem. Int. Ed. Engl.,1978, 17,466-467.
    [74]L. S. Brooke, M. Brookhart, M. A. A. Bennett, Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am. Chem. Soc.,1998,120,4049-4050.
    [75]S. K. A. Ostoja, V. Witte, Control of the Molecular Weight of Polyethene in Syntheses with Bis(ylide)nickel Catalysts. Angew. Chem. Int. Ed. Engl,1987,36,63-64.
    [76]T. R. Younkin, E. F. Connor, J. I. Henderson, et al, Neutral, Single-Component Nickel (Ⅱ) Polyolefin Catalysts That Tolerate Heteroatoms. Science.,2000,287,460-462.
    [77]L. S. Brooke, M. Brookhart, M. A. A. Bennett, Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene. J. Am.Chem. Soc.,1998,120,4049-4050.
    [78]J. P. George, G. J. P. Britocsek, V. C. Gibson, et al, Novel Olefin Polymerization Catalysts Based on Iron and Cobalt Chem. Commum.,1998,7:849.
    [79](a) Nippon Oil CoLtd. Ziegler Catalyzed O lefin Polymerization.GB 2130225.1984. (b) Mitsubishi Petrochemical Co. Production of Olefin Polymer. JP 61231008.1986. (c) Montell Technology Company BV. Components and Catalysts for the Polymerization of Olefins. US 6143684.2000. (d) Himont Inc. Components and Catalysts for the Polymerization of Olefins. EP 0361494.1990. (e) Montell North America Inc. Components and Catalysts for the Polymerization of Olefins. EP 0728769.1996. (f)中国石油化工股份有限公司北京化工研究院.一种用于烯烃聚合的催化剂组分及其催化剂.中国专利,CN 1850868.2006.
    [80]李明和,胡友良,Lewis碱对丙烯聚合高效载体催化体系的调变作用,石油纪工,1994,1:54-63.
    [81](a) U. Giannini, Compents and Catalysts for the Polymerization of Olefins. EP 0045977. 1982. (b) N. Kashiwa, Process for Production of Olefin Polymer or Copolymer. EP 0125911.1984.(c)莫里尼,用于烯烃聚合的催化剂组分和催化剂.中国专利,CN 1313869.2001.
    [82]莫里尼,用于烯烃聚合的催化剂组分和催化剂.中国专利,CN 1306544A.2001.
    [83]中国化工在线,巴塞尔开发新型齐格勒纳塔催化剂,工业催化,2002,5,16.
    [84]E. Albizzati, U. Gianini, G. Morini, et al, Recent Advances in Propylene Polymerization with MgCl2 Supported Catalysts. Macromol. Symp.,1995,89,73-89.
    [85]M. C. Sacchi, F. Forlini, I. Tritto, et al, Microstructure Distribution of Polypropylenes Obtained in the Presence of Traditional Phthalate/Silane and Novel Diether Donors:A Tool for Understanding the Role of Electron Donors in MgCl2-Supported Ziegler-Natta Catalysts. Macromol,1996,29,5770-5776.
    [86]徐君庭,封麟先,王森辉等,无外给电子化合物的新型聚丙烯催化剂的研究一I.聚合结果,浙江大学学报,1998,3:301-303.
    [87]徐德民,新型内给电子体烯烃聚合复相催化剂的研究[D].北京:中科院化学所,2002.
    [88]莫里尼,索达马格里亚,巴卢齐,烯烃聚合催化组分及催化剂,中国专利,CN 1087918.1994.
    [89]莫里尼,古列维奇,巴尔邦廷,用于烯烃聚合的组分和催化剂,中国专利,CN 1242780.2000.
    [90](a)刘海涛,_王军,高明智,用于烯烃聚合反应的催化剂组分及其催化剂,中国专利,CN 1715301.2006.(b)王军,李昌秀,高明智,用于制备烯烃聚合催化剂的氨酯化合物,中国专利,CN 101104589.2008.
    [91](a)高明智,刘海涛,干军,用于烯烃聚合反应的催化剂组分及其催化剂,中国专利, CN 101125896.2008.(b)王军,刘海涛,高明智,用于制备烯烃聚合催化剂的哌啶酯类化合物,中国专利,CN 101 172965.2008.
    [92](a)谢伦嘉,赵思源,李天益,γ-烃基杂原子取代醚及其合成方法,中国专利,CN 1459443.2003.(b)谢伦嘉,赵思源,张明森,一种含双杂原子的芴类化合物及其合成方法和应用,中国专利,CN 1480453.2004.
    [93]U. Roger, P. L. John, Propylene Polymer Catalyst Donor Compenent. US,20080125614. 2008.
    [94]H. J. Henry, et al, Phosphorus Containing Alkyl or Arylsulphonyl Derivatives and Method for Preparing Same. EP 0805159 A11997.
    [95]J. Li, D. Tian, H. Song, et al, Synthesis, Structures, and Reactivity of Nickel Complexes Incorporating Sulfonamido-Imine Ligands. Organometallics.,2008,27,1605-1611.
    [96]L. E. Manzer, Tetragtdrfuran Complexes of Selected Early Transition Metals. Inorg. Synth.. 1982,21,135-140.
    [97]D. C. Bradley, I. M. Thomas, Metallo-organic Compounds Containing Metal-nitrogen Bonds. Part I. Some Dialkylamino-derivatives of Titanium and Zirconium. J. Chem. Soc.,1960, 3857.
    [98]G. Ruan, S. S. Feng, Preparation and Characterization of Poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials.,2003,24,5037-5044.
    [99]陈晓蕾,王鲁民,石建高等,水相环境中生物可降解高分子材料的研究进展,海洋渔业,2009,1,106-112.
    [100]B. S. Stewart, P. K. Yochem, Entanglement of Pinnipeds in Synthetic Debris and Fishing Net and Line Fragments at San Nicolas and San Miguel Islands, California,1978-1986. Mar. Pollut. Bull.,1987,18,336-339.
    [101]L. Chen, X. Qiu, M. Deng, et al, The Starch Grafted Poly(1-lactide) and the Physical Properties of Its Blending Composites. Polymer.,2005,46,5723-5729.
    [102]M. A. Huneault, H. B. Li, Morphology and Properties of Compatibilized Polylactide/therm-oplastic Starch Blends. Polymer.,2007,48,270-280.
    [103]F. C. Loeker, C. J. Duxbury, R. Kumar, et al, Enzyme-Catalyzed Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromol,2004,37, 2450-2453.
    [104]P. B. Messersmith, E. P. Giaxtnelis, Synthesis and Barrier Properties of Poly(ε-caprola-ctone)-layered Silicate Nanocomposites. J. Polym. Sci., Part A:Polym: Chem.,1995,33, 1047-1057.
    [105]H. Hyun, Y. H. Kim, I. B. Song, et al, In Vitro and in Vivo Release of Albumin Using a Biodegradable MPEG-PCL Diblock Copolymer as an in Situ Gel-Forming Carrier. BioMacromol,2007,8:1093.
    [106]蒋春莲,卷材涂料用聚酯树脂的研制,当代化工,2005,34,36-38.
    [107]唐奚敏,张亚琼,郭圣荣,水作为有机相添加剂对牛血清白蛋白聚己内酯微球的影响, 上海交通大学学报,2009,07,1062-1070.
    [108]马桂蕾,张琳华,宋存先,紫杉醇聚己内酯/泊洛沙姆188载药纳米粒及其抗肿瘤活性,生物医学I程与临床,2009,06,481-485.
    [109]汪小超,袁伟方,顾晓雯等,水滴为模板制备蜂窝状表面的聚己内酯多孔膜及其细胞亲和性,中国科技论文在线,2010,04.291-296.
    [110]黄励中,林宗琼,余厚德等,壳聚糖-聚己内酯复合膜的制备及其性能研究,膜科学与技术,2008,06,48-52.
    [111]刘建华,王国海,徐栋梁,聚己内酯与左旋聚乳酸共聚物支架的细胞相容性测定及与软骨细胞体外复合的实验研究,医学研姓学报,2009,02,131-138.
    [112]王培境,耿雪,叶霖等,具有抗凝功能的可交联四臂星形聚己内酯的合成及其电纺丝加工的初步研究,科技导报,2009,21,50-55.
    [113]贾骏,段螈螈,周建学等,聚己内酯电纺纤维支架培养人牙周膜细胞的体外研究,牙体牙髓牙周病学杂志,2007,05,243-246.
    [114]M. H. Chisholm, S. S. Iyer, D. G. McCollum, et al, Microstructure of Poly(lactide). Phase-Sensitive HETCOR Spectra of Poly(meso-lactide), Poly(rac-lactide), and Atactic Poly(lactide). Macromol.,1999,32,963-973.
    [115]K. Meinander, M. Niemi, J. S. Hakola, et al, Polylactides-degradable Polymers for Fibres and Films. Macromol. Symp.,1997,123,147-154.
    [116]曹燕琳,尹静波,颜世峰,生物可降解聚乳酸的改性及其应用研究进展,,高分子通报,2006,10,90-97.
    [117]L. Lu, S. J. Peter, M. D. Lyman, In Vitro Degradation of Porous Poly(1-lactic acid) Foams. Biomaterials.,2000,21,1595-1605.
    [118](a) H. R. Kricheldorf, M. Berl, N. Scharnagl, Poly(lactones).9. Polymerization Mechanism of Metal Alkoxide Initiated Polymerizations of Lactide and Various Lactones. Macromol., 1988,21,286-293. (b) H. Li, C. Wanh, F. Bai, et al, Living Ring-Opening Polymerization of 1-Lactide Catalyzed by Red-Al. Organometallics.,2004,23,1411-1415. (c) W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra, et al, A Versatile and Highly Efficient Catalyst System for the Preparation of Polyesters Based on Lanthanide Tris(2,6-di-tert-butylphenolate)s and Various Alcohols. Macromol.,1996,29,3332-3333.
    [119]Y. Shibasaki, F. Sanda, H. Sanada, et al, Activated Monomer Cationic Polymerization of Lactones and the Application to Well-Defined Block Copolymer Synthesis with Seven-Membered Cyclic Carbonate. Macromol.,2000,33,4316-4320.
    [120](a) H. R. Kricheldorf, I. Kreiser-Saunders, Polylactones,19. Anionic Polymerization of L-lactide in Solution. Makromol. Chem.,1990,191,1057-1066. (b) H. R. Kricheldorf, C. Boettcher, Polylactones 26. Lithium Alkoxide-initiated Polymerizations of L-lactide. Makromol. Chem.,1993,194,1665-1669.
    [121](a) A. Kumar, R. A. Gross, Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis:Effects of Organic Media and Temperature. BioMacromol,2000,1,133-138. (b) F. C. Loeker, C. J. Duxbury, R. Kumar, et al, Enzyme-Catalyzed Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromol.,2004,37, 2450-2453.
    [122]J. J. Zhang, C. L. Jian, Y. Gao, et al, Synthesis and Characterization of Multi-Alkali-Metal Tetraphenolates and Application in Ring-Opening Polymerization of Lactide. Inorg. Chem., 2012,51,13380-13389.
    [123]J. P. Davin, J. C. Buffet, T. P. Spaniol, et al, Alkaline Earth Metal Complexes of a Chiral Polyether as Initiator for the Ring-opening Polymerization of Lactide. Dalton. Trans.,2012, 41,12612-12618.
    [124]R. A. Collins, J. Unruangsri, P. Mountford, Synthesis and Rac-lactide Ring-opening Polymerisation Studies of New Alkaline Earth Tetrahydroborate Complexes. Dalton. Trans., 2013,42,759-769.
    [125]G. Li, M. Lamberti, M. Mazzeo, et al, Anilidopyridyl-Pyrrolide and Anilidopyridyl-Indolide Group 3 Metal Complexes:Highly Active Initiators for the Ring-Opening Polymerization of rac-Lactide. Organometallics.,2012,31,1180-1188.
    [126]E. L. Whitelaw, M. D. Jones, M. F. Mahon, Group 4 Salalen Complexes and Their Application for the Ring-Opening Polymerization of rac-Lactide. Inorg. Chem.,2010,49, 7176-7181.
    [127]Y. B. Wang, Y. J. Luo, J. Chen, et al, Synthesis of Mono(guanidinate) Rare Earth Metal Bis(amide) Complexes and Their Performance in the Ring-opening Polymerization of L-lactide and Rac-lactide. New. J. Chem.,2012,36,933-940.
    [128]J. Kratsch, M. Kuzdrowska, M. Schmid, et al, Chiral Rare Earth Borohydride Complexes Supported by Amidinate Ligands:Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of rac-Lactide. Organometallics.,2013,32,1230-1238.
    [129]W. Y. Leea, C. C. Hsieha, J. W. Hsua, et al, Zirconium and Hafnium Amide, Alkoxide, and Pyrrolyl Complexes Manifesting with Pyrrolyl-linked N-donor Ligands:Syntheses, Characterization, and Ring Opening Polymerization of ε-Caprolactone. J. Organomet. Chem., 2011,696,3816-3821. Isoconversional Kinetic Analysis of Ring-opening Polymerization of ε-Caprolactone:Steric Influence of Titanium(Ⅳ) Alkoxides as Initiators. J. Polym. Res., 2012,19:9799.
    [130]S. H. Kim, J. Lee, D. J. Kim, et al, Titanium Complexes Containing New Dianionic Tetradentate [ONNO]-type Ligands with Benzyl Substituents on Bridging Nitrogen Atoms: Syntheses, X-ray Structures, and Catalytic Activities in Ring Opening Polymerization of Lactide. J. Organomet. Chem.,2009,694,3409-3417.
    [131]E. Kim, E. W. Shin, I. K. Yoo, et al, Characteristics of Heterogeneous Titanium Alkoxide Catalysts for Ring-opening Polymerization of Lactide to Produce Polylactide. J. Molec. Cat. A:Chem.,2009,298,36-39.
    [132]R. R. Gowda, D. Chakraborty, V. Ramkumar, New Aryloxy and Benzyloxy Derivatives of Titanium as Catalysts for Bulk Ring-Opening Polymerization of ε-Caprolactone and δ-Valerolactone. Eur. J. Inorg. Chem.,2009,2009,2981-2993.
    [133]S. L. Zhou, T. Xie, Z. S. Wu, et al, Synthesis, Structure of Zinc Complexes Containing Sulfonylated Binaphtholate Ligands and Their Catalytic Activities towards Ring-Opening Polymerization of Lactide and ε-Caprolactone. Chin. J. Chem.,2012,30,2176-2182.
    [134]M. Lamberti, I. D'Auria, M. Mazzeo, et al, Phenoxy-Thioether Aluminum Complexes as ε-Caprolactone and Lactide Polymerization Catalysts. Organometallics.,2012,31, 5551-5560.
    [135]A. D. Schwarz, A. L. Thompson, P. Mountford, Sulfonamide-Supported Group 4 Catalysts for the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Inorg. Chem.,2009, 48,10442-10454.
    [136]H.-Yi. Chen, W.-Y. Lu, Y.-J. Chen, et al, Synthesis, Characterization, and Catalytic Activity of Titanium Iminophenoxide Complexes in Relation to the Ring-opening Polymerization of L-lactide and ε-caprolactone. J.Poly. Sci. Part A:Poly. Chem.,2013,51,327-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700