用户名: 密码: 验证码:
台湾桤木无性系苗木快繁与多性状综合选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台湾桤木(Alnus formosana)原产于中国台湾,在原产地高达30m以上,胸径30cm以上,以生长快、干形通直、纹理直、易于加工等特点被广泛栽培。它是生产木地板、家俱等的优质木材,也可作刨花板、造纸原料。随着加工业的发展,台湾桤木的木材一直都供不应求,导致台湾桤木无性系苗木供不应求,为了满足生产对台湾桤木无性系苗木的需要,研究台湾桤木无性系快繁技术及开展台湾桤木多性状优良无性系综合选育就显得非常必要。
     本研究选用湖南省林业科学院初选出的台湾桤木无性系,采用完全随机区组试验设计方法,研究了台湾恺木无性系苗木快繁与选择、光合生理、营养生长、生殖生长及木材材性以及相互关系,并开展了多性状综合选择研究等。主要结论如下:
     1、台湾桤木无性系遗传特性、栽植密度、植株定干高度、修枝、施肥等影响台湾桤木采穗圃无性系植株的萌芽数。选择出了2个高产穗条无性系:湘桤F03、湘桤F04。建立台湾桤木无性系采穗圃,栽植密度以株行距1m×2m为宜,无性系植株定干高度以90cm为宜:。
     2、台湾桤木植株不同年龄其枝条扦插生根率有显著差异,4年生以上植株扦插生根率显著降低。不同无性系扦插生根率有显著差异,选择出了扦插生根率达80%以上的15个无性系即湘恺F01、湘桤F02、湘桤F03、湘恺F04、洲桤F05、湘桤F06、湘桤F07、湘桤F08、湘桤F09、、湘桤F10、湘桤F11、湘桤F12、湘桤F13、湘桤F14和湘桤F15。在简易条件下,扦插时间以9月上旬扦插生根率最高。扦插基质以纯沙土扦插成活率最高。穗条带顶芽或带1~2片叶可显著提高穗条生根率。不同浓度GGR生根剂处理后的穗条生根率有显著差异,以300mg/L浓度处理穗条切口其扦插生根率最佳。
     3、台湾桤木插条不定根形成有皮部生根和愈伤组织生根两种生根类型,大多数无性系呈现皮部生根类型,少数无性系同时包含两种生根类型;台湾桤木无性系生根能力与生根率之间成正相关关系。
     4、建立了台湾桤木苗木培育单位而积苗木株数与苗高生长、地径生长关系的数学模型:单位面积苗木数量与苗木平均高度的数学模型为y=2.0147x-30.9568(50≤x≤70);单位面积苗木数量与苗木平均地径的数学模型为y156.3578-169.1596x(0.4≤x≤0.6)。
     5、光合生理研究表明:台湾桤木光饱和点、补偿点及表观量子效率分别为1177.8μmol·m-2·s-1、20.0μmol·m-2·s-1、0.0345,说明台湾桤木利用弱光的能力比较强。
     6、氮、磷、钾肥对台湾桤木的光合特性有一定的影响,在25个处理中,处理N12P12K9光合能力最强。光合速率与蒸腾速率、光合有效辐射、气温和叶温呈显著正相关,胞间CO2浓度与光合速率、蒸腾速率呈显著负相关关系,叶片水压亏缺受相对空气湿度的影响大,空气相对湿度受气温、光强影响显著,与蒸腾速率呈显著负相关。
     7、选育出了4个生长性状优良的台湾桤木无性系:F02、F07、F12和F21。
     8、参试无性系木材基本密度为0.4747g.cm-3~0.3032g.cm-3,选育出了3个木材基本密度较大的台湾桤木无性系:F02、F12和F15。
     9、参试无性系木材纤维素含量为45%~55%,选育出了4个木材纤维素含量较大的台湾桤木无性系:F02、F11、F12和F15。
     10、台湾桤木木材纤维长度属于中级长度,纤维长宽比均大于35,其纤维长宽比的变动幅度主要集中在37~50之间,纤维长度、宽度和长宽比在数值组间变化差异小,在无性系间差异不显著。
     11、9a生台湾桤木基本密度变异属于从髓心向外以曲线形式缓慢增加的模式,且年轮段间差异水平不显著。参试的台湾桤木5个无性系纤维素含量在年轮段间的差异较大。纤维长度的径向变异总体仍为上升趋势,纤维宽度在年轮段间的差异较大,长宽比随着生长轮数的增加也随之增加,1-3年轮段到4-6年轮段的增幅为5.49%,4-6年轮段到7-9年轮段的增幅为3.21%。
     12、采用生长作为选择的主程序,而将材性改良作为次程序的育种路线,对台湾桤木无性系多性状进行选择,在国内首次选出了3个生长和材性兼优的台湾桤木无性系,即:F02、F07、F12。
     13、参试台湾桤木10个无性系种子千粒重差别较大,种子千粒重最大的是无性系F05,其种子千粒重达到了1.09g,种子千粒重最小的是无性系F09,只有0.42g,单果出籽率的变异系数(CV)的变异幅度为25.00%~37.42%。球果长、宽和鲜重在无性系间都存在显著差异,综合分析无性系F05是参试10个无性系中种实性状最优且最稳定。
Taiwan alder (Alnus formosana) originated in China Taiwan was up to more than30m in height and to more than30cm in DBH in the origin. It has been widely cultivated due to good characteristics of fast growth, straight trunk form, softy timber, straight texture, easy processing. It has been used as high-quality materials for making wood floor and furniture, also for making particleboard and paper making. With the industrial development, Taiwan alder seedlings has been in short supply, the market demand of Taiwan alder seedlings is growing. In order to meet the needs of production on clones seedlings of Taiwan Alder, rapid propagation techniques of clones and comprehensive breeding of multiple characters of excellent clones in Taiwan Alders have been necessarily studied.
     Based on clones varieties of Taiwan Alder selected by Hunan Academy of Forestry, rapid propagation and selection, photosynthesis, vegetative growth, reproductive growth and wood properties of clones seedlings of Taiwan alder had been studied by the experiment method of completely randomized block design. The main conclusions were showed as follows:
     1. Bud numbers of Taiwan alder clone of cutting orchard depended mainly on the genetic characteristics and planting density, but also closely related with the stem height, pruning, fertilization.2kinds of high-yielding clones cuttings, Xiang Qi F03and Xiang Qi F04, were selected from Taiwan alder clones.1m×2m of planting density and90cm of plant stem height were appropriate for the establishment of the Taiwan alder clones.
     2. Cuttings rooting rate of Taiwan alder showed significantly difference among clones of different ages. A significant reduction in cuttings rooting rate were showed in more than4years old.15kinds of clone varieties which rooting rate reached more than80%were selected, they were Xiangqi F01, Xiangqi F02, Xiangqi F03, Xiangqi F04, Xiangqi F05, Xiangqi F06, Xiangqi F07, Xiangqi F08, Xiangqi F09,Xiangqi F10, Xiangqi F11, Xiangqi F12, Xiangqi F13, Xiangqi F14and Xiangqi F15. In simple conditions, early September was the best as cutting time because of the highest rooting rate, pure sand was the best as cutting medium because of the highest survival rate. Cutting with terminal bud or1to2leaves significantly increased the rooting rate. There were significant difference of rooting rate among cutting treated by different concentrations GGR, the effect of300mg/L concentration GGR was the best.
     3. Adventitious root of Taiwan alder cuttings formed two types of thedermal rooting and callus rooting, the most of cutting roots belonged to thedermal rooting, but few of cutting roots contained these two types. The rooting ability of Taiwan alder clones were positive related with the rooting rates.
     4. The mathematical models were established between the seedling numbers per unit area and the height growth or diameter growth of Taiwan alder, respectively. The relationship model of the numbers per unit area and the average height of seedlings were y=2.0147x-30.9568(50≤x≤70). The relationship model of the numbers per unit area and the average diameter of seedlings were y=156.3578—169.1596x (0.4     5. The researches of photosynthetic physiology were showed that light saturation point, the compensation point and apparent quantum efficiency of Taiwan alder were1177.8μmol·m-2·s-1,20.0μmol·m-2·s-1,0.0345, respectively. It illustrated Taiwan alder could enough used low light.
     6. The impact of Nitrogen, phosphorus, potash fertilizer on photosynthetic characteristics of Taiwan alder was observed. Photosynthesis of Taiwan alder treated with N12P12K9fertilizer was strongest in25kinds of fertilizer treatment. The Photosynthetic rate was positively related with transpiration rate, photosynthetic active radiation, air temperature and leaf temperature, respectively. Intercellular CO2concentration was negatively with photosynthetic rate and transpiration rate, respectively. Leaf water pressure deficit was influenced by air relative humidity. Air relative humidity obviously affected by temperature, light intensity, and was significantly negatively correlated with transpiration rate.
     7. Bred four excellent growth traits alder clones:4clones varieties of Taiwan alder were selected as excellent growth traits. They were F02, F07, F12and F21.
     8. The range of basic wood density from the clones tested were0.4747g.cm-30.3032g.cm-3. the3clones varieties of the larger basic wood density were selected, they were F02、F12and F15.
     9. The range of wood cellulose content from the clones tested were45%to55%, the3clones varieties of the larger cellulose content were selected, they were F02, F11, F12and F15.
     10. The wood fiber length of Taiwan alder belonged to intermediate length. Fiber length-width ratio were greater than35, and the range of fiber length-width ratio were mainly between37~50. The difference of the fiber length, width and length-width ratio were small in arithmetic groups. The difference of them was not significant between the clones.
     11. Density variation of9years old Taiwan alder belonged to the model which was slowly increased from the pith outward curve, and no significant difference of density was observed between annual ring segments. Cellulose contents of5clones of Taiwan alder tested were different at annual ring segments. Radial variation of fiber length was still an upward trend, fiber width were different largely between annual ring segments. The ratio of fiber length to width increased with increasing in the growth rings, the ratio in4-6years of growth rings increased by5.49%over1-3years of growth rings, the ratio in7-9years of growth rings increased by3.21%over4-6years of growth rings.
     12. Using breeding model in which the growth was made as the main program of clones selection and the improvement of wood properties were made as the sub program of clones selection, multiple traits of Taiwan alder clones were selected.3clones of Taiwan alder which the best in the growth and wood property were firstly selected, they were F02, F07, F12.
     13. Seed grain weights of10clones were largely different. The seed grain weight of clones F05which were up to1.09g was maximum, the seed grain weight of clones F05which were up to0.42g was minimum. The coefficient of variation (CV) of single fruit seed rate ranged from25%to37.42%. There were significant difference of the cone length, width and fresh weight between the clones tested. A comprehensive analysis were done that the clones F05was the best in the seed traits among all of the clones tested in our study.
引文
[1]西南林学院.云南省林业厅.云南树木图志[M].昆明:云南科学技术出版社,1990.
    [2]薛纪如,姜汉桥.云南森林[M].昆明:云南科技山版杜,1988.
    [3]云南省林业科学研究所.云南主要树种造林技术[M].昆明:云南人民出版社,1985.
    [4]郑万均.中国树木志[M].北京:中国林业出版社,1985.
    [5]王金锡,朱万泽.台湾桤木生态生物学特性及引种推广前景[J].四川林业科技,2000,21(4):16-19.
    [6]邹高顺.台湾桤木引种造林及其培肥能力的研究[J].福建林学院学报,1995,15(2):112-117.
    [7]黄家彬,李志真,杨林聪等.台湾桤木结瘤固氮的研究[J].福建林业科技,1991,18(4):25-28.
    [8]熊大国,王海琼,梁红梅,等.元坝区台湾桤木年生长节律与生物量研究[J].四川林业科技,2006,27(6):55-58.
    [9]吴际友,程勇.台湾桤木11个无性系苗期生长表现[J].湖南林业科技,2006,33(5):5-6.
    [10]罗丹,湖南省气象灾害城市预警管理体系研究[D].长沙:国防科学科技大学,2009.
    [11]杨小建.台湾桤木播种育苗技术体系研究[D].雅安:四川农业大学,2007.
    [12]王松永,张志仁.台湾上要经济树种材质之基础研究(XlV)[M].林产工业.1991,10(3):1-18.
    [13]J B Zwolinski, D G M Donalol. et al. Characteristics and wood properties of Alnus fonnosana(Burk) Makino Successfully introduced into South Africa. South Africna Forestry Journal.1992,163:31-35.
    [14]朱万泽,王金锡,薛律辉.台湾桤木引种气候生态适生区分析[J].热带亚热带植物学报,2005,13(1):59-64.
    [15]任保青.中国桤木属植物的细胞学研究[D].雅安:四川农业大学,2005
    [16]饶红欣,蒋利媛,彭信海,等.台湾桤木的组织培养[J].湖南林业利技,2008,35(3):1-3.
    [17]蔡丹,刘军,陈红,等.辽东桤木的组织培养和快繁技术研究[J].安徽农业科学,2006,34(7):1309-1310,1323.
    [18]吴火和.四川桤木上胚轴的离体培养与植株再生[J].福建林业科技,2003,30(3):15-18.
    [18]蒋胜铎,吴际友,许红艳等.台湾桤木优树选择技术[J].湖南林业科技.2009,36(2):13-15
    [20]黄春莺.日本林木育种研究与最近的成果---以日本林木育种中心为主[J].福建林业科技,2004(2):132-135.
    [21]罗建勋.英国林业和林木育种研究现状及对我国林木改良的启示[J].四川林业科技,1997(2):64-69.
    [22]沈相荣,关文彬.南朝鲜林木育种动向[J].国外林业,1989(2):3-5.
    [23]阮梓材.澳大利亚和新西兰林木育种概况[J].广东林业科技,1987(6):11-14.
    [24]翁月霞.瑞典的林木育种战略系列研究[J].世界林业研究,1989(4):39-44.
    [25]酒井宽一,叶玉钧.从林木育种看到的自然保护[J].湖南林业科技,1979(S1):28-31.
    [26]陈幸良.林木育种及其成果产业化研究[D].南京:南京林业大学,2008.
    [27]栾慎强.林木育种中的基因变异与选择[J].世界林业研究,1993(1):86-89.
    [28]许翠华,何福基,徐尔娜.林木育种研究文献分析[J].浙江林学院学报,1996,13(1):112-115.
    [29]沈熙环.林木育种的今昔和展望[J].北京林业大学学报,1988(10):66-68.
    [30]吴乘宜.我国林木无性系育种工作的新开端[J].林业科技通讯,1990(3):2.
    [31]马常耕,杉木的无性系育种[J].福建林业科技,1984(2):22-28,30.
    [32]宁明世,李奇,侯春艳.以无性系育种与等位酶技术对沙柳优良无性系的选择研究[J].内 蒙古农业大学学报(自然科学版),2004(3):24-29.
    [33]朱之悌,树木的无性繁殖与无性系育种[J].林业科学,1986(3):58-68.
    [34]龙光生.油茶无性系育种方略[J].经济林研究,2002(3):60-61.
    [35]董健.4个国外引进树种扦插试验初报[J].辽宁林业科技,1999(4):5-7,10.
    [36]吴际友,陈明皋,程勇.等.桤木采穗圃无性系树体管理试验研究[J].林业科技开发,2005,19(6):25-26.
    [37]陈明皋,陈建华,吴际友,等.桤木不同无性系结实量与种实性状变异[J].林业科学,2008,44(6):153-156.
    [38]李秀媛.美国海滨桤木和薄叶桤木水分生理和光合特性比较[D].西北农林科技学,2010.
    [39]朱万泽,王金锡,薛建辉.引种台湾桤木的水分生理特性[J].武汉植物学研究,2004,22(6):539-545.
    [40]朱万泽,薛建辉,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170-173.
    [41]朱万泽,王金锡,薛建辉.台湾桤木和四川桤木种源苗木对水分胁迫的生理响应[J].西北植物学报,2005,25(10):1969-1975.
    [42]张杰,文仕知,胡孔飞,等.对四川桤木和台湾桤木人工林枯落物持水特性研究[J].现代农业科学,2009,16(3):104-106.
    [43]胡锦祥,林信辉.台湾赤杨与山盐青对扰动地主要环境应力之反应[J].中华水土保持学报,1996,27(3):223-234.
    [44]廖德志,台湾桤木采穗圃建立于苗木快繁技术的研究[D].长沙:中南林业科技大学,2011.
    [45]林建群,张忠泽,苏风岩,等.Frankia菌在非豆科放线结瘤植物根际内的存活与分布[J].应用生态学报,1996,7(4):391-395.
    [46]Smolander A. FrankIa populations in soils under different tree species with special emphasis on soils under Belula pendula[J]. Plant and Soil,1990,121:1-10.
    [47](Beson D R, Silvester W B. Biology of Frankia strains actionmycete symbionts of actinorhizal plants[J]. Microbiol Rev,1993,57:293-319.
    [48]Van Dijk C, A Sluimer-Stolk.An ineffective strain type of Frankia in the soil of natural stands of Alnus glutinosa(L.)Gaertner[J]. Plant and Soil,1990,127:107-121.
    [49]Lechevalier M P, J S Ruan. Physiology and chemical diversity of Frankia spp. Isolated from nodules of Comptonia peregrina(L) Coult. and Ceanothus americanus L[J]. Plant and Soil, 1984,78:15-22.;
    [50]王元贞.放线菌与非豆科植物共生固氮的生态研究[J].生态农业研究,1996,4(4):21-25.
    [51]吕梅.红桤木生理生态、固氮活性及根瘤放线菌的研究[D].南京:南京林业大学,2008.
    [52]丁鉴.Frankia菌与放线菌结瘤植物共生固氮研究[M].《固氮之光》,洪国藩,宋鸿遇主编,湖南科学技术山版社,1997,134-169.)
    [53]唐盛林.台湾赤杨共生固氮放线菌及外生菌根菌之分离及其效应[D].国立台湾大学森林学研究所,1998.
    [54]吴晓丽.浙北夏季干旱对不同土壤上桤木生长和结瘤固氮的影响[J].林业科学研究,1992(2):101-106.
    [55]邓廷秀,刘国凡.桤木人工林结瘤固氮的时空变化及其对后续植物的效应(Ⅱ)[J].山地研究,1996(S1):32-37.
    [56]刘国凡,邓廷秀.土壤条件与桤木结瘤固氮的关系[J].土壤学报,1985(3):45-51.
    [57]韩斌;巩合德;孔继君;等.哀牢山桤木次生林根瘤固氮能力研究[J].安徽农业科学,2009(17):474-475,485.
    [58]黄家彬,李志真,杨林聪,等.台湾恺木结瘤固氮的研究[[J].福建林业科技,1991,18(4):25-28.
    [59]王军辉,顾万春,夏良放,等.恺木种源(家系)苗期根瘤固氮能力的遗传变异[J].南京林业大学学报(自然科学版),2004,28(4):68-72.
    [60]缪启愉校释.《齐民要术》[M].(贾思勰(后魏)原著).中国农业出版社,1982.
    [61]Binkley D. Mixtures of nitrogen- fixing and non-nitrogen-fixing tree species. in"the Eco logy of Mixed-species Stands of trees"[M]. Oxford:Black well Scientific publications.1992, 99-123.
    [62]Bartlett A G. A reviewof community forestry advances in Nepal[J]. Common Wealth Forestry Review,1992,71:95-100.
    [63]Chaudhry S, Singh S P, Singh J S. Performance of seedlings of various life forms on landslide-damaged forest sites in Central Himalaya[J]. Journal of Applied Ecology, 1996,33:109-117;
    [64]Dhyani S K, Tripathi R S. Tree growth and crop yield under agrisilvicultural practices in north-east India[J].Agroforestry Systems.1999,44:1-12.
    [65]Guo H J, Xia Y M, Padoch C. Alnus nepalensis-based agroforestry systems in Yunnan, Southwest China[C]. In:Cairms MFed. Indigenous strategies for intensification of shifting cultivation in Asia-Pacific. Proceedings of a regional conference held in Bogor, Indonesia on June,23-27,1997. International Centre for Research in Agroforestry, Chiang Mai, Thailand, 1997.
    [66]Guo H J, Padoch C. Patterns and management of agroforestry systems in Yunnan,an approach to upland rural development[J].Global Environmental Change,1995,5(4):273-279.
    [67]郭辉军.云南省保山西区混农林系统调查研究[M].昆明:云南大学出版社,1993,59-69.
    [68]赵磊.速生优良树种-旱冬瓜[J].云南林业调查归划,1991(2):57-60.
    [69]韩斌,巩合德,孔继君,等.哀牢山桤木次生林根瘤固氮能力研究[J].安徽农业科学,2009,37(17):8272-8273,8283.)
    [70]Binkley D. Interaction of site fertility and red alder on ecosystem production in Douglas-fir plantation [J]. Forest Ecology and Management,1983,5:215-227.
    [71]Binkley D, P Sollins, R Bell,et al. Biogeochemistry of adjacent conifer and conifer- alder stands[J]. Ecology,1992,73(6):2022-2033.
    [72]朱万泽,薛建辉,王全锡,等.台湾桤木林分生物量与营养元素的分布[J].南京林业大学学报(自然科学版),2002,26(2):15-20.
    [73]张新华.恺木叶肥对紫色土壤水肥特性的影响[J].农田水利,1998,(2):54-55.
    [74]廖利平,高洪,于小军,等.人工混交林中杉木、桤木和刺楸细根养分迁移的初步研究[J].应用生态学报.2000,11(2):161-164.
    [75]颜绍馗,汪思龙,于小军,等.桤木混交对杉木人工林大型-土壤动物群落的影响[J].应用与环境生物学报,2004,10(4):462-466.
    [76]张小平,赵本虎,何平儒,等.恺拍混交林的效益探讨[J].四川林业科技,1994,15(3):21-29.
    [77]Akkennans A D L, Van D C. Non-leguminous root-nodule symbioses with actinomycetes and Rhizobium[M]//BROUGHTON WJ.Nitrogen fixation[M]. London:Oxford University Press,1981:57-103.
    [78]Alegre J C, Cassel D K. Dynamics of soil physical properties under alternative systems to slash-and-bum[J].Agriculture,Ecosystem and Environment,1996,58:39-48.
    [79]Atta-krah A N.Alley farming with Leucaena:effect of short grazed fallow on soil fertility and crop vields[J]. Experimental Agriculture,1996,261:1-10.
    [80]Baker R.Protecting the environment against the poor[J].Ecologist,1984,14:53-60.
    [81]Binkley D. Interaction of site fertility and red alder on ecosystem production in Douglasfir plantation [J]. Forest Ecology and Management,1983,5:215-227.
    [82]Bormann F H. Pattern and process in a forested ecosystem[M]. New York: Springer-Verlag, 1979.
    [83]Fastie C L. Causes and ecosystem consequences of multiple pathways of pri-marysuccession at Glacier Bay,Alaska[J].Ecology,1995,76:1899-1916.
    [84]Vitousek P M, Walker L R, Whiteaker L D. Biological invasion by Myrica faya alters ecosystem development in Hawaii[J].Science,1987,238:802-804.
    [85]石培礼,杨修.恺柏混交林的氮素积祟与生物循环[J].生态学杂志,1997,16(5):14-18.
    [86]朱万泽,王金锡.台湾桤木引种气候生态适生区分析[J].热带亚热带植物学报.2005,13(1):59-64.
    [87]Wang Hsiu Hwa, Lin Sheau Hong,Wang H H, Lin S H.The fine structure of Alnus Formosa[J].Chinese Forestry,1993,26(1):77-92.
    [88]新品种介绍-台湾桤木优良种质资源[J].林业实用技术.2004,(11):41.
    [89]Feng-yi Chang, Ming-Horng Duh, A fundamental study of the composition of majou woodsgrown in Taiwan(VI)-Variation within a species, Chinese Forestry.1993,26(1):77-92.
    [90]Zwolinski J B. Three-year results from provenance trails of Alnus fonnosana, A.rubra, Calocedrus formosana, Cunninghamia lunceolata and Taiwctiila ciyptomerioides[J]. South African Forestry Journal,1998,146:34-37.
    [91]王金锡,朱万泽,余长春.台湾恺木生物生态学特性及引种栽培技术[J].四川林业科技,2004,25(1):36-41.
    [92]王军辉,顾万春,夏良放,等.桤木人工林木材性质的径向变异模式研究[J].河南农业大学学报,2004,38(4):400-413.
    [93]王秀华,林晓洪.台湾赤杨水材超微结构的研究[[J].中华林学季刊,1993,26(1):77-92.
    [94]林亚立.实木弯曲性指标系数的探讨[D].国立台湾大学,1986.
    [95]廖天赐,翁仁宁.温度对不同种源台湾赤杨之光合作用的影响[J].林业科学研究季刊,2001,23(3):81-90.
    [96]江涛,龚政敏.木荷、泡桐、赤杨及山黄麻开花习性之研究(R).台大实验林研究报告第88号,1971.
    [97]李长流.四川桤木半同胞授粉子代苗期性状变异的研究[J].河南林业科技,2006,26(1):6-7.
    [98]文卫华,吴际友,程勇.四川桤木半同胞授粉子代苗期性状变异的研究[J].湖北林业科技,2006,26(1):8-10.
    [99]陈明皋,陈建华,吴际友,等.恺木不同无性系结实量与种实性变异[J].林业科技,2008,44(6):153-156.
    [100]洪云英,本省主要造林树种简介[J].台湾林业,1976.2(6):39-41.
    [101]钟永立,张乃航.台湾重要林木种子技术要览[J].行政院农业委员会台湾省林业试验所林业丛刊35号,1990,21-22.
    [102]陈振东.台湾赤杨种子的贮藏试验[J].台湾森林,1959,4(12):1-5.
    [103]周以哲.团粒处理对四种林木种子发芽的影响[D].台湾:国立台湾大学,1991.
    [104]张乃航.光照效应对台湾赤杨、山黄麻及构树种子发芽的影响[J].台湾林业科学,1996,11(2):195-199.
    [105]吕梅.方炎明.高捍东.PEG处理对两种桤木种子发芽的影响[J].林业科技开发,2006.20(3):33-35.
    [106]杨世杰.植物生理学[M].北京:科学出版社,2003.
    [107]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    [108]姜武.水蜜桃品种不同季节的光合特性研究田[M].南京:南京农业大学,2007.
    [109]卓仁英,陈益泰.五种桤木属植物的光和特性初步研究[J].浙江林业科技,2004,24(6):1-4.
    [110]朱万泽,王金锡,薛建辉.台湾桤木引种的光合生理特性研究[J].西北植物学报,2004,24(11):2012-2019.
    [111]朱万泽,王金锡,薛建辉.台湾桤木和四川桤木种源苗木对水分胁迫的生理响应[J].西北植物学报2005,25(10):1969-1975.
    [112]朱万泽,薛建辉,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170-174.
    [113]王金锡,朱万泽,余长春.台湾恺木生物生态学特性及引种栽培技术[J].四川林业科技,2004,25(1):36-41.
    [114]冯岑,陈建华,吴际友,等.4个台湾桤木无性系光合特性研究[J].中国农学通报,2009,25(12):75-78.
    [115]周小玲,徐清乾,许忠坤,等.4个四川桤木品系的光合生理特性研究[J].湖南林业科技,2007,34(4):1-5.
    [116]DeBell D S, Turpin T C. Control of red alder by cutting[J].USDA For.Serv.,Rerv.,Res.Pap. 1989.PNW-414.
    [117]DeBell S, M A Radwan, D L Reukerma, et al. Increasing the productivity of biomass plantations of alder and cottonwood in the Pacific Northwest[J].Annual technical report submitted to the U.S.Dept.of Energy,Woody Crops Program.1989.
    [118]Berry J, O Bjorkman. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu. Rev. Plant Physiol.,1980,31:491-543.
    [119]王迪生.华北落叶松人工林密度最优控制的研究[J].北京林业大学学报,1995,17(2):47-50.
    [120]Radwan M A, et al. Soft wood cuttings for propagation of red alder[J].New Forests,1989, 3(1):21-30.
    [121]Perinet P, F M Tremblay. Commercial micropropagation of actinorhizal alder [J]. New Forests,1987, 1(3):225-230.
    [122]Garton S, Hosier M A, Read P E, et al. In vitro propagation of Alnus glutinosa Gaertn[J]. Hortscience,1981,16(6):758-759.
    [123]Briggs, D G, Debell W A. Atkinson(Compilers).Utilization and management of Alder[D]. USDA Forest Services Genetic Technology Report. PNR-70,1978,379pp.
    [124]Stettler R F. Biological aspects of red alder pertinent to potential breeding program. In: Utilization and management of Alder[R].USDA Forest Services Genetic Technology Report. PNW-70,1978, pp209-222.
    [125]Borghetti M, Cocco S, Lambardi M, et al. Response to water stress of Italian alder seedlings from diverse geographic origins[J]. Canadian Journal of Forest research,1989,19(8): 1071-1076.
    [126]Hennessey T C, Lorenzi E M, McNew R W. Stomatal conductance and growth of five Alnus glutinosa clones in response to controlled water stress[J].Canadian Journal of Forest research, 1988,18 (4):421-426.
    [127]Cannell M G R, Mubbry M B, Sheppare L J. Frost hardiness of red alder(Alnus rubra) provenances in Britain[J]. Forestry,1987,60(1):57-67.
    [128]Dewaldm L E, Steiner K C. Phonology, height increment and cold tolerance of Alnus glutinosa population in a common environment. Silvae Genetica[J].1986,35 (5/6):205-211.
    [129]贾黎明.固氮树种与非固氮树种混交林研究现状[J].世界林业研究,1998,1:20-26.
    [130]Suharjo U K J, Tjepkema J D. Occurrence of hemoglobin in the nitrogen-fixing root nodules of Alnus glutinosa[J]. Physiologia Plantarum,1995,95:247-252.
    [131]Murillo O, Hattemer H H. Inheritance of Isozyme variants of Alnus acuminata ssp. arguta(Schlectendal) Furlow[J]. Silvae Genetica,1997,46(1):51-55.
    [132]罗成秀,英德凯.钾素的营养作用[M].中国南方农业中的钾,北京:北京农业大学出版社,1993:148-179.
    [133]朱根海,张莱铣.叶片含氮量与光合作用[J].植物生理学通讯,1985(2):9-12.
    [134]王琪贞.肥料学[M].北京:北京农业大学出版社,1993,134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700