用户名: 密码: 验证码:
六盘山香水河小流域典型植被生长固碳及耗水特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为在定量了解西北干旱缺水地区森林植被的生长固碳与耗水关系的基础上准确评估森林植被的固碳功能,并为科学指导森林植被与水资源的综合管理提供理论与技术支持,于2009年生长季在宁夏六盘山南部的香水河小流域,采用树干解析、样地植被与土壤调查、树木年轮分析、热扩散探针测定树干液流、树干径向变化记录仪测定径向生长等方法,开展了相关测定和研究。主要结论如下:
     1.典型植被类型的群落生物量
     建立了华北落叶松、桦木各器官(干、枝、皮、叶、根)的生物量与其胸径、树高的统计关系;建立了种类混合的灌木各器官(枝干、叶和根)生物量与地径的统计关系。各植被类型的平均生物量(t/hm~2)为:森林(78.37)>灌丛(20.77)>草甸(2.29)>草地(1.07)。其中森林的生物量依次为华山松林(102.70)>桦木林(84.42)>山杨林(79.97)>华北落叶松人工林(58.37)>稀疏次生林(44.91),乔木层、灌木层和草本层的生物量比例分别为91.04、8.09和0.87%;各器官生物量比例(%)对乔木层为:干(54.06)>枝(21.04)>根(16.92)>皮(5.34)>叶(2.65),对灌木层为枝干(62.68)>根(30.55)>叶(6.77),对草本层为地上茎叶(58.82)>根(41.18)。各类森林的枯落物现存量(t/hm~2)平均为12.56,大小依次为华北落叶松人工林(18.21)>华山松林(11.99)>桦木林(10.90)>山杨林(7.67)>稀疏次生林(7.06),均远大于灌木林(3.13)、草甸(0.82)和草地(0.49)的枯落物量。
     2.植被含碳率
     乔木全株平均含碳率为52.22%,各树种含碳率(%)为:华山松(55.51)>华北落叶松(53.60)>白桦(51.13)>山杨(50.30)>红桦(49.92)。乔木的器官含碳率为:叶(53.89)>干≈枝(52.6)>皮(52.1)>根(50.69)。灌木全株平均含碳率为47.81%,不同种的含碳率(%)依次为忍冬(48.30)>峨嵋蔷薇≈野李子(48.2)>荀子(46.65),各器官含碳率(%)依次为:枝干(50.34)>根≈叶(47.1)。草本植物含碳率(%)平均为36.92,其中地上茎叶含碳率(44.22)高于根系(29.63)。
     3.典型植被类型的碳储量
     森林的植被碳密度(t/hm~2)平均为37.65,其中乔木层、灌木层和草本层分别为33.42、3.97和0.26。各种林分依次为:华山松林(56.69)>山杨林(43.43)>桦木林(42.99)>华北落叶松人工林(30.37)>稀疏次生林(22.67),均大于灌木林(10.16)。乔木层碳储量占总量的比例(%)依次为华山松林(98.85)>华北落叶松人工林(92.40)>桦木林(89.36)>山杨林(87.61)>稀疏次生林(65.44)。
     4.典型植被类型的土壤碳储量
     几种植被类型的枯落物平均含碳率(%)为38.15,其中未分解层、半分解层和已分解层分别为:44.87、35.69和30.07。不同植被类型枯落物平均碳密度(t/hm-2)为4.94,各类型依次为:华北落叶松人工林(6.53)>华山松林(5.35)>桦木林(4.29)>山杨林(3.17)>稀疏次生林(2.59)>灌木林(1.03)>草甸(0.28)>草地(0.17)。0-45cm的矿质土壤有机碳含量(%)为2.32-7.32,平均为4.42。矿质土壤有机碳含量及其样地间波动均随土壤加深而减小;矿质土壤有机碳密度(t/hm~2)在94.10-335.09,平均为186.91;各植被类型土壤碳密度依次为华北落叶松人工林(197.66)>天然次生林(191.74)>亚高山草甸(163.11)>草地(160.74)>灌木林(140.06)。
     5.土壤碳库对造林时间和干扰程度的响应
     不论任何坡向,土壤有机碳含量在造林后均先下降后上升,对造林干扰的敏感程度随土层加深而减弱。土壤有机碳密度(t/hm~2)在阳坡半阳坡为幼龄林(96.33)<灌丛(122.12)<中龄林(189.27),即土壤有机碳库在造林20年时和灌丛对照相比已得到恢复;在阴坡半阴坡为幼龄林(192.37)<中龄林(222.03)<次生林(256.64),即造林20年后土壤碳库与次生林对照相比仍未恢复。阴坡土壤碳库在任何林龄阶段都高于阳坡,说明阴坡森林土壤碳储存能力更大。
     对不同林龄样地土壤碳含量的统计分析表明,相对阳坡灌丛的土壤碳含量(32.13 g/kg),阳坡半阳坡林地的土壤有机碳含量在造林后第8年时降至最低,降幅为3.72 g/kg,恢复需16年。相对阴坡次生林土壤碳含量(66.30g/kg),造林后第16年土壤有机碳含量降至最低,降幅为22.77 g/kg,恢复需32年。
     在造林10年后,0-45cm土层的有机碳含量(g/kg)为灌丛(35.55)>灌丛稀植造林地(31.05)>常规密度及全面整地造林地(23.17),说明减少造林整地干扰利于维持森林土壤的碳库功能。
     6.主要树种优势木年际生长固碳特征
     林木单株年固碳量和累积固碳量与树龄均有很好的二次函数关系,确定系数均在0.99以上。基于树木年轮分析得到的各树种10-20龄间的优势木单株年固碳量(kg/a)依次为:华北落叶松(4.06)>红桦(2.03)>华山松(1.80)>糙皮桦(1.52)>山杨(0.82)>白桦(0.65)>少脉椴(0.35)。
     基于树干径向变化记录仪测定得到的林分标准木的单株年固碳量(kg/a)平均值依次为白桦(3.74)>华北落叶松(3.28)>华山松(1.93)>红桦(0.86)。基于标准木计算的华北落叶松人工林和华山松-桦木次生林年固碳量分别为2.1和1.05 t/hm~2,且分别有75%和73.7%是在6-7月份积累的。
     7.森林耗水量及固碳水分利用效率
     林分标准木的单株生长季(5-9月)总耗水量(kg)对华北落叶松人工林为972.9,次生林中的白桦和华山松为2272.9和1860.4。折合的生长季耗水深度对华北落叶松人工林为426.4 mm,华山松-桦木天然次生林为343.0mm,分别是降水量的97%和78%。林分标准木的单株水分固碳利用效率(tC/万tH_2O)为:华北落叶松(47)>白桦(16)>华山松(11)。华北落叶松人工林与次生林的植被固碳增长水分利用效率分别为4.9和3.0 (tC/万tH_2O);维持生态系统碳库的水分利用效率分别为947和1851(tC/万tH_2O)。两种林分的固碳增长耗水成本分别为2030.3和40607 tH_2O/tC;碳维持耗水成本分别为10.6和5.4 tH_2O/tC。人工林的碳库功能维持的耗水成本是次生林的1.95倍。
     8.结论
     总体来看,落叶松人工林虽有较好的生产力和生长固碳功能,但其碳库维持的耗水成本接近次生林的2倍,且耗水量接近同期降水量会导致流域产流能力下降。同时,人工造林整地和抚育会造成土壤碳库储量大幅下降,且恢复周期长,需20-30年才能达到造林前的土壤碳库水平。基于本文阶段研究成果可以认为,要尽量减少对现有森林的过度干扰,不要进行皆伐后造林和大面积整地造林,而是要合理利用林木天然更新实现森林的持久覆盖和面积增长,要合理限制耗水较多的华北落叶松人工林,采用近自然经营的途径将其逐渐转化为乡土树种组成的森林,从而既能维持和提高森林固碳功能,又能保证流域的产水功能。
In order to evaluate the carbon sequestration function of vegetation accurately, on the base of quantitate understand of the relationship of vegetation growth and carbon sequestration with its water consumption. and to provide the theoretic basis and the technical support for accurate assessment and prediction carbon storage of Liupan mountains and similar area, and to guide the vegetation recovery and management, Base on the survey of vegetation and soil and tree ring analysis, and measure of tree transpiration and radial growth based on the sap flow and dendrometer, the studeies were carried out in 2009 growth season in small watershed of Xiangshuihe, Liupan Mountains of Ningxia.
     1.Biomass of typical vegetation types
     The regression relationships between each organ biomass with DBH and H of Larix principis-rupprechtii and Betula spp. were established. The relationships of shrub organ biomass and basal diameter were builded.
     The order of mean biomass of each vegetaiton type is as Pinus armandii forest (102.70)> Betula forest (84.42)> Populus davidiana forest (79.97)> Larix principis-rupprechtii plantation (58.37)>open forest(44.91). The biomass proportion of tree and shrub and herb layer is 90.04, 8.09 and 0.87%. The order of organ biomass ratio (%) of tree layer is as thunk(54.06)>branch(21.04)>root(16.92)>bark(5.34)>leaf(2.65), and for the shrub layer, it is followed branch and thrunk (62.68)>root(30.55)>leaf (6.77), and is above-groud (58.82)>root (41.18).
     Average litter biomass of varios forest is 12.56 t/hm~2.Its order is as Larix principis-rupprechtii plantation (18.21)> Pinus armandii forest(102.70)> Betula forest (10.90)>. Populus davidiana forest (7.67)>open forest (7.06), and higher than litter biomass of shrub (3.13),meadows (0.82) and grass land(0.49).
     2. Vegetation carbon content
     The whole plant mean carbon content is 52.22%. The order of carbon content of each tree species is as Pinus armandii (55.51%) > Larix principis-rupprechtii (53.60%) > Betula platyphlla (51.13%) > Populus davidiana (50.30%) > Betula albosinensis (49.92%). The carbon content of tree organ is leaf (53.89%) > trunk≈branch (52.6%) > bark(52.1%) > root (50.7%), the root is minimum (50.7%). The shrub whole plant carbon content is 47.81%. The order of carbon content of each shrub species is as L.rupicola var.(48.30%) > Rosa meiensis (48.24%) > Prunus salicina (48.23%) > Cotongaster acutifolius (46.65%). Different organ carbon content (%) decreased in the order of trunk andbranch (50.34)>root≈leaf (47.1). The average carbon content of herbaceous plant is 36.92%, which of stem and leaf (44.22%) is higher than which of root (29.63%).
     3. Vegetation carbon content and carbon sequestration of typical forest vegetation stand
     The average vegetation carbon density is 37.65 t/hm~2. which is 33.42 and 3.97 and 0.26 t/hm~2 of tree and shrub and herb layers. The order of carbon density of each vegetation type is Pinus armandii forest (56.69) > Populus davidiana forest (43.43) > Betula forest (42.99) > Larix principis-rupprechtii plantation 30.37) > open forest (22.67), all of which is larger than its of shrub land (10.16). The order of the carbon storage proportion of tree layer is Pinus armandii (98.85%) > Larix principis-rupprechtii plantation (92.40%)> Betula spp. forestation (89.36) > Populus davidiana (87.61%) > sparse secondary forest (65.44%).
     4. The soil organic carbon storage of typical vegetation types
     The average litter carbon content of different vegetation types was 38.15%. which of undecomposed and half-decomposed and decomposed were 44.87 and 35.69 and 30.07% respectivly. The average litter carbon density of different vegetation types decreased in the order of Larix principis-rupprechtii plantation(4.06) > Pinus armandii (2.03) > > Betula utilis (1.52)> Populus davidiana (0.82)>Betula platyphlla (0.65) > Tilia paucicostata (0.35).
     5. The respond of soil carbon pool for plant year and disturb degree
     In every slope aspect, the SOC presented a trend of firstly decreasing after tree-planting and then recovering with tree age; The sensitivity of SOC response to the tree-panting disturbance declined with increasing soil depth. The difference of stand condition and recoved years of soil organic desity recover to the level of before afforestation indicated that: young plantation (96.33) in sunny and semi-sunny slope < shrub land (122.12) < middle-aged plantation (189.27); for the shady and semi-shady slopes, the order of SOC density is as young plantation (192.37) < middle-aged plantation (222.03) < secondary forestation (256.64), showing that the SOC have been recovered after forestation for 20 years. The soil carbon orgnic carbon density of shady slope is higher than which in sunny slope at all stand age, suggested that the forest soil carbon pool of shady slope has strong ability for carbon sequestration than sunny slope.
     Based on the statistical analysis of the investigated data, the SOC content will decrease to its lowest point after 8 years forestation on the sunny/semi-sunny slopes, with a decrease of 3.72 g/kg compared to the control of shrub land (32.13g/kg) on sunny slope, and the fully recovering of SOC to the pre-forestation level will appear after 16 years of forestation. On the shady/semi-shady slopes, the SOC content will decrease to its lowest point after 16 years forestation, with a decrease of 22.77 g/kg compared to the control of secondary forests (66.30g/kg), and the fully recovering of SOC to the pre-forestation level will appear after 32 years forestation.
     The absolute values of SOC pool on the shady slopes were always higher than that on the sunny slopes at any forest age, suggesting that the capacity of carbon sequestration of shady slopes is bigger than that of sunny slopes. 5)The types of planting disturbance can affect the variation of SOC pool. The mean SOC content of the 0-45 cm soil layer on sunny/semi-sunny slope was 31.05 g/kg after 10 years plantation if the trees were planted with sparse spacing, still lower than that of the control of shrub land (35.55 g/kg), but higher than that if planted with the normal density (23.17g/kg). This indicated that looking for the rational techniques in tree planting and forest management is an effective approach to reduce the SOC loss for young or middle-aged plantation to enhance their carbon sequestration function. In summary, the influence of plantation age, site condition and tree-planting disturbance on SOC should be considered for a more precise evaluation and prediction of the carbon sequestration of plantation.
     6. The characteristics of growth and carbon sequestration of dominent tree of main tree species
     All of annual carbon sequestration increment and cumulative carbon sequestration have quadratic correlation, with r2 higher than 0.99. The order of annual carbon sequestration between 10-20 tree age is as Larix principis-rupprechtii (4.06) > Pinus armandii forest (5.35) > Betula utili. (4.29) > Populus davidiana (3.17) > spares secondary forest (2.59)> shrubbery (1.03)> meadow (0.28)> grass land (0.17). And 75% and 73.7% of that were accumulated in June to July.
     Mean annual carbon sequestration of single tree decreased in the order of Betula platyphlla (3.74)>Larix principis-rupprechtii (3.28) > Pinus armandii (1.80) > Betula albosinensis (0.86). the annual carbon sequestration increment of stand woods of Larix principis-rupprechtii plantation and Pinus armandii-Betula forestation were 2.1 and 1.05 t/hm~2 respectivly, and
     The average of vegetation carbon storage of several forest types is 37.65t/hm~2, in order Pinus armandii forest (56.69) > Populus davidiana forest (43.43) > Betula forest (42.99) > Larix principis-rupprechtii plantation 30.37) > open forest (22.67), all of which is larger than shrub land (10.16) The carbon content of mineral soil is 2.32-7.32%. the average is 4.42%. The mineral soil carbon content and its fluctuation between different stand is decreased with increase of soil depth. Mineral soil organic carbon density is 94.10-335.09 t/hm~2. The average is 186.91. The order of soil carbon density of different vegetation types is as Larix principis-rupprechtii plantation (197.66)>natural forest (191.74t > meadow (163.11)>grass land (160.74)>shrubbery (140.06).
     7.Forest water consumption and water use efficeient on carbon sequestration
     Total water consumption in growth season of Larix principis-rupprechtii stand wood is 972.9kg.The transpiration of stand wood of secondary forestation were 2272.9 kg of Betula albosinensis2279.and 1860.4 kg of Pinus armandii. The total water consumption of growth season of Larix principis-rupprechtii plantation was 426.4mm, and 343.0 mm of Pinus armandii-Betula spp. secondary forestation. those were 97% and 78% of precipitation respectively.
     The order of water use efficiency (t C/ 104 t H_2O) for carbon sequestration of single plant was Larix principis-rupprechtii (47) > Betula platyphlla (16) > Pinus armandii (11). The water use efficiency on carbon sequestration of plantation and secondary forest were 4.9 and 3.0 (t C/ 104 t H_2O). The water use efficiency for holding of carbon pool of ecologysystem were 947 and 1851 (t C/ 104 t H_2O). corresponding water consumption cost of carbon storage increment were 10.6 and 5.4 t H_2O/ t C. which of plantation is 1.95 times to that of secondary forestation. 8. Conclusion
     Overall, biomass, vegetation carbon reserves of Larix principis-rupprechtii plantation was higher than secondary forestation, and has good productivity and growth of carbon sequestration functions. With water-consumption approached preciptation, wter consumption of plantation would lead to the decrease of water-yield of watershed. Artificial afforestation measure would lead to the decrease of soil carbon storage. and restore cycle is long, which need 20-30 years to reach the level of soil carbon stock before afforestation. Most importantly, the cost of water consumption of plantations carbon sequestration of soil and vegetation is as much as 1.95 times to secondary forest. When the whole basin from while simultaneously maintaining solid carbon function andwater production function to consider the stage, based on this research results, can think, want to reduce excessive interference of existing forests, do not carry all after thinning afforestation, don't, but large soil preparation afforestation trees natural regeneration ability reasonable utilization of realizing forest area maintenance and growth, be reasonable limit consumption more Larix principis-rupprechtii plantation were, the near natural operation way gradually transformed into the forest of local growth, can not only maintain and enhance the watershed forest fixing carbon and function, and can guarantee the watershed water production function.
引文
[1]王效科,冯宗炜.森林生态系统生物量和碳储存量的研究历史[A].见:王如松,方精云,高林等.现代生态学的热点问题研究[C].北京:中国科学技术出版社,1996.335~347
    [2] R. K. Dixon,A. M. Solomon,S. Brown,et al.Carbon Pools and Flux of Global Forest Ecosystems.Science.1994,263(5144):185-190
    [3]冯宗炜欧阳志云王效科.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报.2001(01)
    [4]王效科,冯宗炜,等.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报.2001,12(1):13-16
    [5]傅伯杰刘国华,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报.2000,20(05):733-740
    [6]赵文智,程国栋.生态水文研究前沿问题及生态水文观测试验.地球科学进展.2008,23(7):671-674
    [7]赵文智,程国栋.生态水文学—揭示生态格局和生态过程水文学机制的科学.2007
    [8] Ecohydroloty Programme.2008
    [9]夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展.2006,21(3):256-261
    [10]赵士洞.美国长期生态研究计划:背景,进展和前景.地球科学进展.2004,19(005):840-844
    [11] J.E. Hobbie,S.R. Carpenter,N.B. Grimm,et al.The US long term ecological research program.BioScience.2003,53(1):21-32
    [12] W.M. Post,W.R. Emanuel,P.J. Zinke,et al.Soil carbon pools and world life zones.1982
    [13] S. Solomon.Climate change 2007: the physical science basis.Cambridge University Press Cambridge,2007
    [14] D. Schimel,IG Enting,M. Heimann,et al.CO2 and the carbon cycle.Climate Change.1994,94:38–71
    [15]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报.2001,25(5):594-602
    [16] R.T. Watson,I.R. Noble,B. Bolin,et al.Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change.Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change.2000
    [17] Michael A. Bashkin,Dan Binkley.CHANGES IN SOIL CARBON FOLLOWING AFFORESTATION IN HAWAII.Ecology.1998,79(3):828-833
    [18]潘维俦,李利村,高正衡,et al.杉木人工林生态系统中的生物产量及其生产力的研究.中南林业科技.1978,2:2-14
    [19]冯宗炜,陈楚莹,张家武,et al.湖南会同地区马尾松林生物量的测定.林业科学.1982,18(2):127-134
    [20]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究.森林生态系统研究.1981,2(34):22
    [21] Jingyun Fang,Anping Chen,Changhui Peng,et al.Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998.Science.2001,292(5525):2320-2322
    [22]李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报.1998,9(4):365-370
    [23]查同刚.北京大兴杨树人工林生态系统碳平衡的研究.2007[24]常天军,王建林,李鹏,et al.藏北高寒草地植被的碳密度与碳贮量.生态科学.2007,26(5):437-442
    [25]胡会峰,王志恒,刘国华,et al.中国主要灌丛植被碳储量.植物生态学报.2006,30(4):539-544
    [26]马文红,韩梅,林鑫,et al.内蒙古温带草地植被的碳储量.干旱区资源与环境.2006(03)
    [27]陈明皋,田育新,周小玲,et al.湖南低丘区不同植被类型组成、结构及碳贮量评价研究.中南林业科技大学学报:自然科学版.2008,28(2):13-18
    [28]方精云,郭兆迪,朴世龙,et al.1981~2000年中国陆地植被碳汇的估算.中国科学d辑:(地球科学).2007(06)
    [29]方精云,刘国华,朱彪,et al.北京东灵山三种温带森林生态系统的碳循环.中国科学(D辑:地球科学).2006(06)
    [30]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布.林业科学.2008,44(3):34-39
    [31]袁渭阳,李贤伟,张健,et al.不同年龄巨枝人工林枯落物和细根碳储量研究.林业科学研究.2009,22(3):385-389
    [32]张国斌.岷江上游森林碳储量特征及动态分析.2008
    [33]张国庆,黄从德,郭恒,et al.不同密度马尾松人工林生态系统碳储量空间分布格局.浙江林业科技.2007,27(6):10-14
    [34] BH Braswell,DS Schimel,E. Linder,et al.The response of global terrestrial ecosystems to interannual temperature variability.Science.1997,278(5339):870
    [35]张军辉,于贵瑞,韩士杰,et al.长白山阔叶红松林CO_2通量季节和年际变化特征及控制机制.中国科学.D辑:地球科学.2006(S1):60-69
    [36]周广胜赵敏.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学.2004(01)
    [37]常宗强,冯起,司建华,et al.祁连山不同植被类型土壤碳贮量和碳通量.生态学杂志.2008,27(5):681-688
    [38] M. Reichstein Ph. Ciais, N. Viovy, .Europe-wide reduction in primary productivity caused by the heat and drought in 2003.nature.2005,437:529-533
    [39] Rambal.Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy.Global Change Biology.2003,9:1813-1824
    [40] Markus reichstein,John D. Tenhunen,Olivier Roupsard,et al.Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?.Global Change Biology.2002,8:999-1017
    [41]陈新芳,居为民,陈镜明,et al.陆地生态系统碳水循环的相互作用及其模拟.生态学杂志.2009(08)
    [42] J. Major.Biomass accumulation in successions.Handb. Veget. Sci.1974,8:195-204
    [43]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展.2007,26(6):1-10
    [44] Wilfred M. Post,William R. Emanuel,Paul J. Zinke,et al.Soil carbon pools and world life zones.Nature.1982,298(5870):156-159
    [45]杨洪晓,吴波,张金屯,et al.森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报:自然科学版.2005,41(002):172-177
    [46]薛萐,刘国彬,戴全厚,et al.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变.应用生态学报.2008(03)
    [47]李玉强,赵哈林,陈银萍.陆地生态系统碳源与碳汇及其影响机制研究进展.生态学杂志.2005,24(1):37-42
    [48]李甜甜,季宏兵,孙媛媛,et al.我国土壤有机碳储量及影响因素研究进展.首都师范大学学报:自然科学版.2007,28(1):93-97
    [49] E Berg H Eswaran, P Reich.Organic carbon in soils of the world.Soil Sei.Soe.A m.J.1993,57:3
    [50]林培松,高全洲.韩江流域典型区几种森林土壤有机碳储量和养分库分析.热带地理.2009,29(4):329-334
    [51]方运霆,莫江明,SandraBrown,et al.鼎湖山自然保护区土壤有机碳贮量和分配特征.生态学报.2004,24(1):135-142
    [52]党亚爱,李世清,王国栋,et al.黄土高原典型土壤有机碳和微生物碳分布特征的研究.自然资源学报.2007,22(6):936-945
    [53]金峰,杨浩.土壤有机碳储量及影响因素研究进展.土壤.2000,32(1):11-17
    [54] L. K. Spackman,L. C. Munn.Genesis and Morphology of Soils Associated with Formation of Laramie Basin (Mima-Like) Mounds in Wyoming.Soil Sci Soc Am J.1984,48(6):1384-1392
    [55] A. Ayanaba,D. S. Jenkinson.Decomposition of Carbon-14 Labeled Ryegrass and Maize under Tropical Conditions.Soil Sci Soc Am J.1990,54(1):112-115
    [56]王彦辉,熊伟,于澎涛,et al.干旱缺水地区森林植被蒸散耗水研究.中国水土保持科学.2006,4(4):19-25,32
    [57]程国栋,赵传燕.西北干旱区生态需水研究.地球科学进展.2006,21(11):1101-1108
    [58]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展.干旱区资源与环境.2004,18(6):152-158
    [59] B. K stner,A. Granier,J. Cermák.Sapflow measurements in forest stands: methods and uncertainties,1998:13-27
    [60]常学向,赵文智.黑河中游沙枣树干液流的动态变化及其与林木个体生长的关系.中国沙漠.2004,24(004):473-478
    [61] DM Smith,SJ Allen.Measurement of sap flow in plant stems.Journal of Experimental Botany.1996,47(12):1833
    [62] A. Granier.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements.Tree Physiology.1987,3(4):309
    [63] HN Le Houerou.Rain use efficiency: A unifying concept in arid-land ecology.Journal of Arid Environments.1984,3:35
    [64] U. Seibt,A. Rajabi,H. Griffiths,et al.Carbon isotopes and water use efficiency: sense and sensitivity.Oecologia.2008,155(3):441-454
    [65]石井正典,郭百平.山地森林生长对蒸发散量的影响.山西水土保持科技.1995(2):36-38
    [66]陈祥伟,王文波,夏祥友.小流域水源涵养林优化配置.应用生态学报.2007,18(2):267-271
    [67]毕华兴,李笑吟,李俊,et al.黄土区基于土壤水平衡的林草覆被率研究.林业科学.2007,43(4):17-23
    [68]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积.气象出版社,2003
    [69]曲建升,孙成权,张志强,et al.全球变化科学中的碳循环研究进展与趋向.地球科学进展.2003,18(6):980-987
    [70] H. Lieth.Modeling the primary productivity of the world.Primary productivity of the biosphere.1975,14:237-263
    [71] L.R. Holdridge.Life zone ecology.Life zone ecology..1967((rev. ed.))
    [72]赵敏.中国主要森林生态系统碳储量和碳收支评估.2004
    [73]何英.森林固碳估算方法综述.世界林业研究.2005,18(1):22-27
    [74]王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究.1999,18(4):349-356
    [75]王香亭.六盘山自然保护区科学考察.银川宁夏人民出版社.1988,189:224
    [76]韩景军,肖文发,罗菊春.长白山北部林区云冷杉林地上部分生物量的研究.内蒙古林学院学报.1999,3
    [77]刘刚,陆元昌,李晓慧,et al.六盘山地区气候因子对树木年轮生长的影响.东北林业大学学报.2009(004):1-4
    [78]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报.2004,15(004):593-599
    [79] EG Jobbágy,RB Jackson.The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications.2000,10(2):423-436
    [80]林业行业标准,森林土壤有机质的测定及碳氮比的计算. LY/T 1237-1999,1999
    [81]马克明,傅伯杰.北京东灵山地区森林的物种多样性和景观格局多样性研究.生态学报.1999,19(001):1-7
    [82]程堂仁,马钦彦,冯仲科,et al.甘肃小陇山森林生物量研究.北京林业大学学报.2007(01)
    [83]罗云建,张小全,王效科,et al.华北落叶松人工林生物量及其分配模式.北京林业大学学报.2009(01)
    [84]方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报.2000,24(5):635-638
    [85]李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力.热带地理.2004(04)
    [86]方精云,徐嵩龄.我国森林植被的生物量和净生产量.生态学报.1996,16(5):497-508
    [87]李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力.热带地理.2004,24(04):306-310
    [88]樊后保,李燕燕,苏兵强,林德喜,刘春华,蒋宗垲.马尾松.阔叶树混交异龄林生物量与生产力分配格局.生态学报.2006,26(8):2463-2473
    [89]方运霆,莫江明,彭少麟,et al.森林演替在南亚热带森林生态系统碳吸存中的作用.生态学报.2003,23(9):1685-1694
    [90]方宗辉.福建省杉木人工林生物量及其分配研究.福建林业科技.2005(03)
    [91]吴建国,张小全,徐德应,et al.六盘山林区几种土地利用方式植被活体生物量C贮量的研究.林业科学研究.2006(03)
    [92] I Müller,B Schmid,J Weiner.The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants.Perspectives in Plant Ecology, Evolution and Systematics.2 000,3(2):115-127
    [93]肖兴威.中国森林生物量与生产力的研究.2005
    [94]马钦彦,陈遐林,等.华北主要森林类型建群种的含碳率分析.北京林业大学学报.2002,24(5):96-100
    [95]程堂仁,冯菁,马钦彦,et al.甘肃小陇山森林植被碳库及其分配特征.生态学报.2008,28(001):33-44
    [96]吴建国,张小全,徐德应,et al.六盘山林区几种土地利用方式植被活体生物量C贮量的研究.林业科学研究.2006,19(003):277-283
    [97] Angelika Thuille,Nina Buchmann,Ernst-Detlef Schulze.Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy.Tree Physiology.2000,20(13):849-857
    [98] R.A. Sedjo.The carbon cycle and global forest ecosystem.Water, Air, & Soil Pollution.1993,70(1):295-307
    [99] K. I. Paul,P. J. Polglase,J. G. Nyakuengama,et al.Change in soil carbon following afforestation.Forest Ecology and Management.2002,168(1-3):241-257
    [100]王春梅,刘艳红,邵彬,et al.量化退耕还林后土壤碳变化.北京林业大学学报.2007(03):112-119
    [101]张新厚,范志平,孙学凯,et al.半干旱区土地利用方式变化对生态系统碳储量的影响.生态学杂志.2009(12):2424-2430
    [102]栾军伟.宽坝林区三种森林类型土壤碳形态比较研究.2007
    [103]吴志祥,谢贵水,陶忠良,周兆德,王旭.海南儋州不同林龄橡胶林土壤碳和全氮特征.生态环境学报.2009,18(4):1484-1491
    [104]吴建国,张小全,王彦辉,徐德应.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学.2002,33(4)
    [105]盛炜彤.杉木人工林水土流失及养分损耗研究.林业科学研究.2000(06):589-597
    [106]张秀玲,李君剑,石福臣.速生杨人工林对土壤碳氮含量及微生物生物量的影响.生态与农村环境学报.2008,24(2)
    [107] Robert Jandl,Marcus Lindner,Lars Vesterdal,et al.How strongly can forest management influence soil carbon sequestration?.Geoderma.2007,137(3-4):253-268
    [108]戴全厚,刘国彬,薛莛,余娜,张超,兰雪.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响.水土保持研究.2008,15:61-64
    [109]张国庆.不同经营措施对马尾松人工林生态系统碳储量的影响.2008
    [110]赵溪,李君剑,李洪建.关帝山不同植被恢复类型对土壤碳、氮含量及微生物数量的影响.生态学杂志.2010,29(11):2102-2110
    [111]闫宗平,仝川.外来植物入侵对陆地生态系统地下碳循环及碳库的影响.生态学报.2008,28(9):4440-4450
    [112]熊伟,王彦辉,于澎涛,et al.六盘山南坡华北落叶松(Larix principis-rupprechtii)树干直径生长及其对气象因子的响应.生态学报.2007(02)
    [113]时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响.2006
    [114]于振良赵士洞周玉荣.我国主要森林生态系统碳贮量和碳平衡.植物生态学报.2000(05)
    [115]李跃林,胡成志,张云,et al.几种人工林土壤碳储量研究.福建林业科技.2004,31(4):4-7
    [116] C.T. Garten.Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA.Biomass & bioenergy.2002,23(2):93-102
    [117] D.F. Grigal,W.E. Berguson.Soil carbon changes associated with short-rotation systems.Biomass and Bioenergy.1998,14(4):371-377
    [118] J. Romanya,J. Cortina,P. Falloon,et al.Modelling changes in soil organic matter after planting fast‐growing Pinus radiata on Mediterranean agricultural soils.European Journal of Soil Science.2000,51(4):627-641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700