用户名: 密码: 验证码:
云南元谋干热河谷膏桐天然更新种群及其群落特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膏桐(Jatropha curcas Linn.)属大戟科麻疯树属落叶灌木或小乔木。在我国主要分布于南方部分省份,其中以云南省干热河谷地区较为多见。是云南干热河谷地区保持水土、促进植被恢复的树种之一。近年来以其种子油经过加工可制成清洁环保的生物柴油而倍受关注。
     本研究以云南元谋干热河谷受人为干扰相对较小的膏桐天然更新种群及其群落为研究对象,在野外调查的基础之上,主要采用数量生态学方法,研究了膏桐种群结构、主要种群分布格局、物种多样性、主要物种生态位、主要物种种间关系、基于群落中主要木本植物的群落排序与聚类。目的在于从种群统计角度分析该种群在此生境下的生存现状及生态对策,推测其生命周期中相对敏感的阶段,分析影响该种群动态的重要因素;揭示该群落物种组成及其数量特征以及主要影响因素、膏桐在群落中的地位及其与主要伴生物种之间的相互关系、主要种群对资源的利用状况、此群落中主要种群的分布特点及其主要影响因子。主要结果和结论如下:
     1.总体而言,膏桐种群径级结构呈金字塔形,属于增长型种群。静态生命表分析显示其种群死亡率高峰出现在幼年阶段及中老年过渡阶段。其存活曲线趋于DeeveyⅢ型。生存分析显示该种群的生存状况总体上呈现出前期变化幅度较大、后期变化幅度较小的特点。谱分析显示各周期所起作用随周期的减小而减小。
     2.不同大小级及总体膏桐种群均呈集群分布。群落主要木本植物和主要草本植物也大多呈集群分布。各样地的膏桐种群皆呈集群分布。不同样地的不同发育阶段种群的分布格局不尽相同。随着年龄增长,大体上表现为由集群分布向随机分布转变,且这种转变主要发生在中树以及大树这两个阶段。经Greig-Smith格局分析显示不同样地膏桐种群的分布格局规模不尽相同,本研究揭示出的斑块规模出现在50m2和100m2左右,以100m2左右居多。
     3.膏桐和扭黄茅分别是此群落木本植物和草本植物的优势种。总体而言,该群落草本植物的物种丰富度指数、多样性指数、均匀度指数高于木本植物与之对应的指数。群落物种丰富度指数、木本植物物种丰富度指数与坡向显著负相关。草本植物的Shannon-Wiener多样性指数与群落郁闭度显著负相关,与土壤pH显著正相关。
     4.在群落木本植物中,膏桐、车桑子、戟叶酸模、沙针、华西小石积和帚枝鼠李在群落内分布幅度大,资源利用能力强,竞争能力强;对资源利用的相似性程度较大。而群落中大多数木本种群生态位相似比例值不高、生态位重叠较小,表明该群落的多数木本种群对环境的需求有较大差异。在群落草本植物中,扭黄茅、羽芒菊、芸香草、旱茅、黄细心、蔓草虫豆、假苜蓿的资源利用能力强、对资源利用的相似程度较大。而群落中大多数草本种群生态位相似比例值不高、生态位重叠较小,表明该群落草本植物的多数种群对环境的需求也有较大差异。可见,此群落物种间竞争不强烈,能较为和谐地共存,是该群落处于相对稳定状态的重要原因之一。
     5.膏桐群落主要木本种群之间、主要草本种群之间总体上都表现出显著的正关联。Spearman相关分析结果表明,主要木本植物种对和主要草本植物种对中都是少数种对的相关性达到显著或极显著水平。主要木本植物种对中显著正相关、极显著正相关、显著负相关、极显著负相关的种对个数依次为8、5、6、5;主要草本植物种对则依次为2,4,3,3。大多数木本植物种对和大多数草本植物种对的相关都未达到显著水平,种间独立性相对较强,种间关系较为松散。主要木本植物种对和主要草本植物种对中都是全部正相关个数少于全部负相关个数。说明多数物种间的竞争相对较弱,这是群落相对稳定的重要原因之一。
     膏桐与多数木本物种负相关,其中与山合欢和毛叶柿之间的负相关达到极显著水平,与车桑子、帚枝鼠李、裸实、千斤拔、野丁香、仙人掌之间正相关,但未达到显著水平。优势草本植物扭黄茅与13种草本物种负相关,其中,扭黄茅与旱茅间显著负相关;与地瓜榕及与鹿藿达到极显著负相关;与其余6种草本植物有微弱的正相关,皆没达到显著水平。
     6.CCA分析表明:环境因子与群落分布的相关性由大至小依次为岩石裸露度、坡度、海拔、郁闭度、坡向。多数样地和物种分布于海拔较高、坡度较大、郁闭度较大的地段。建群种膏桐出现于排序轴交叉点附近区域,有较强的适应性。20种主要木本植物与样地的双向聚类分析结果与CCA结果相似。
Jatropha curcas, deciduous shrub or small tree, is classified as Jatropha in Euphobiaceae. In China, it is distributed mainly over some southern provinces. It often grows in Dry Hot Valley of Yuanmou in Yunnan province among those areas. It is one of the good plant species for soil and water conservation, as well as vegetation restoration in Dry Hot Valley in Yunnan. In recent years it has received much attention for its seeds, which can be processed to produce a environment-friendly clean biodiesel fuel.
     The natural regeneration population of Jatropha curcas and its community without severe anthropogenic disturbance was studied in Dry Hot Valley of Yuanmou in Yunnan. The population structure, distribution pattern of important species, species diversity, niche of important species, species correlation of important species and the ordination and cluster analysis based on the main woody plant in the community were analyzed by means of mathematic ecology on the basis of the field study. The objectives were to analyze the current survival status and ecological strategy of the population in respect of demography, to infer the comparatively vulnerable demographic stages of the population, to analyze the important factors affecting the population dynamics, to discover the member and the mathematic characteristics of the community as well as their main relevent factors, to discover the status of Jatropha curcas and the relationship between Jatropha curcas and the other important species in the community, to discover the resource utilization characteristic of the important spieces, and to discover the distribution characteristics of the main plant in the community and their main factors. The main results are as follows:
     1. The diameter structure diagram of the natural regeneration population of Jatropha curcas belonged to expansive type population pyramid. The static life table analysis indicated that the mortality was high both at the juvenile stage and in the transitional stage from the middle to the old. The shape of the survivorship curve was similar to that of Deevey type III curve. Survival analysis indicated that the survival condition of the population changed considerably in the earlier stage, and relatively slight in the later stage. The spectral analysis showed that the effect of the period was weak with the short of the period.
     2. In general, the total Jatropha curcas population followed clumped distribution pattern, so do each developmental stages in the study. Both most of important woody plants and most of important herb in the community followed clumped distribution pattern. Jatropha curcas population in each plot followed clumped distribution pattern. The distribution pattern differed in different developmental stages in different plot. The distribution pattern of the population generally transformed from aggregated distribution into random distribution with age, which often occurred at middle trees or old trees stage for the population. Pattern analysis by Greig-Smith method revealed that the scale of the spatial pattern varied among the populations from different plots, and the identified patch sizes were about50m2and100m2in this study.100m2or so was relatively frequent.
     3. Jatropha curcas and Heteropogon contortus was dominant species in woody plant and herb respectively. In general, species richness index, species diversity index and species evenness of the herb are higher than those of the woody plant respectively. There was a significantly negative correlation between species richness index of the community and slope aspect as well as between species richness index of the woody plant and slope aspect. There was a significantly negative correlation between Shannon-Wiener species diversity index of herb and the canopy cover of community. There was a significantly positive correlation between Shannon-Wiener species diversity index of herb and soil pH.
     4. In the woody plant of the community, Jatropha curcas, Dodonaea viscose, Rumex hastatus, Osyris wightiana, Osteomeles schwerinae and Rhamnus virgata were widely dispersed over the community. They had great ability to utilize resources and to compete. Any two species in the six woody species were very similar in resource utilization. The niche similarity indexes of the majority of the woody species were low, so were the niche overlap indexes. These indicated that the majority of the wood species differed greatly in the requirement for environment.
     In the herb of the community, Heteropogon contortus, Tridax procumbens, Cymbopogon distans, Eremopogon delavayi, Boerhavia diffusa, Atylosia scarabaeoides and Crotalaria medicaginea were widely dispersed over the community. They had great ability to utilize resources. Any two species in the seven herb species were very similar in resource utilization.. The niche similarity indexes of the majority of the herb species were low, so were the niche overlap indexes. These indicated that the majority of the herb species differed greatly in the requirement for environment. The interspecific competition in the community was not fierce. Most species could harmoniously coexist in the community relatively. This is one of the important reasons for the relatively persistence of the community.
     5. The overall interspecific correlation analysis showed that significant positive correlation exist both among the20woody species and among the20herb species. Spearman's rank correlation coefficient analysis showed that the minority of the total woody species pairs showed significant correlation or highly significant correlation, so do the total herb species pairs. In the woody plant of the community,8,5,6and8species pairs showed significant positive correlations, highly significant positive correlations, significant negative correlations, and highly significant negative correlations respectively. In the herb of the community,2,4,3and3species pairs showed significant positive correlations, highly significant positive correlations, significant negative correlations, and highly significant negative correlations respectively. Most of the total woody plant species pairs did not show significant correlation, so do the herb species pairs. Most species did not closely correlated with other species. The numbers of species pairs with negative correlation were more than those with positive correlation both in the woody plant and in the herb. This indicated that the interspecific competition in most species was relatively weak in the community, which was one of the important reasons for the relatively persistence of the community.
     Most of the woody plant species pairs including Jatropha curcas showed negative correlation. There was a highly significant negative correlation both between Jatropha curcas and Albizia kalkora as well as between Jatropha curcas and Diospyros mollifolia. A small number of woody plant species pairs including Jatropha curcas showed positive correlation, but none of the positive correlation was significant.
     Most of the herb species pairs including Heteropogon contortus showed negative correlation. There was a significant negative correlation between Heteropogon contortus and Eremopogon delavayi. There was a highly significant negative correlation both between Heteropogon contortus and Ficus tikoua as well as between Heteropogon contortus and Rhynchosia volubilis. A small number of herb species pairs including Heteropogon contortus showed weak positive correlation, none of the positive correlation was significant.
     6. The results of Canonical Correspondence Analysis indicated that the correlations order of the community distribution with the environmental factors were bareness degree of rock, slope gradient, altitude, canopy cover and slope aspect in large to small. The majority of the plots lay in the sites with high altitude, high slope gradient and high canopy cover, so were the main woody plant. Jatropha curcas Linn., the constructive species in the community, appeared in the region near to the intersection of the first two coordinate axes of the CCA ordination plot, which indicated that the species adapted well to the environment. The result of the Two-way Cluster Analysis of the20main woody plant in the community and the plots was similar to that of the Canonical Correspondence Analysis.
引文
毕晓丽,洪伟,吴承祯,等.黄山松种群统计分析[J].林业科学,2002,38(1):61-67.
    蔡飞,宋永昌.武夷山木荷种群结构和动态的研究[J].植物生态学报,1997,21(2):138-148.
    曹广侠,林璋德,张联敏.甘南地区紫果云杉、岷江冷杉生命表[J].生态学报,1991,11(3):286-288.
    陈利顶,王军,傅伯杰.我国西南干热河谷脆弱生态区可持续发展战略[J].中国软科学,2001,(6):95-99.
    陈小勇,张庆费,吴化前,等.黄山西坡青冈种群结构与分布格局研究[J].生态学报,1996,16(3):325-327.
    陈远征,马祥庆,冯丽贞,等.濒危植物沉水樟的种群生命表和谱分析[J].生态学报,2006,26(12):4267-4272.
    程伟,吴宁,罗鹏.岷江上游林线附近岷江冷杉种群的生存分析[J].植物生态学报,2005,29(3):349-353.
    崔书红.云南元谋干热河谷土地退化及其防治对策[J].地理研究,1995,14(1):66-71.
    戴凌峰.四种灌木树种的耐荫性研究[D].北京:北京林业大学.2007.I.
    冯士雍.生存分析(Ⅰ).数学的实践与认识[J].1982a,(3):72-80.
    冯士雍.生存分析(Ⅱ).数学的实践与认识[J].1982b,(4):64-74.
    冯士雍.生存分析(Ⅲ).数学的实践与认识[J].1983,(1):70-76.
    高洁,叶洪刚,杨荣喜.攀枝花干热河谷14个树种的耐早性研究[J].西南林学院学报,1996,16(3):135-139.
    苟圆,华坚.麻疯树资源的开发利用现状及前景[J].资源开发与市场,2007,23(6):519-522.
    郭承刚,王朝文,李建富,等.麻疯树物候期和花的发育动态观察[J].现代农业科技,2007,(1):12-13.
    郭卫军,闽恩泽.发展我国生物柴油的初探[J].石油学报,2003,19(2):1-6.
    郭永清.云南干热河谷膏桐人工林生态系统碳库特征[D].南京林业大学.2010.
    何操,尹丽,胡庭兴,等.干旱胁迫对麻疯树幼苗抗氧化代谢的影响[J].四川林业科技,2009,30(5):16-21.
    何承忠,钟玲,何汉凤,等.膏桐叶浸提液对其种子发芽的化感效应[J].种子,2009,28(6):5-8.
    洪伟,王新功,吴承祯,等.濒危植物南方红豆杉种群生命表及谱分析[J].应用生态学报,2004,15(6):1109-1112.
    胡旗辉.神奇的柴油树——麻疯树栽培技术[J].农村百事通,2007,(7):36-37.
    胡强,刘振环,罗红,等.云南生物能源作物资源概述[J].云南农业科技,2006,(3):59-63.
    胡小兵,于明坚.青冈常绿阔叶林中青冈种群结构与分布格局[J].浙江大学学报(理学版),2003,30(5):574-579.
    胡正华,吴芳芳,刘巧辉,等.古田山国家自然保护区马尾松林主要种群生态位研究[J].林业科学研究,2009,22(3):330-334.
    黄红英,窦新永,邓斌,等.不同次生种源麻疯树对高温胁迫的响应[J].林业科学,2009,45(7):150-155.
    简敏菲,刘琪璟,朱笃,等.九连山常绿阔叶林乔木优势种群的种间关联性分析[J].植物生态学报,2009,33(4):672-680.
    江洪.云杉种群生态学[M].北京:中国林业出版社,1992.8-40.
    姜汉侨,段昌群,杨树华,等.植物生态学[M].北京:高等教育出版,2004:157-159.
    金振洲,欧晓昆,周跃.云南干热河谷植被概况[J].植物生态学与地植物学学报.1987,11(4):308-317.
    金振洲,欧晓昆.滇川干热河谷植被布朗布朗喀群落分类单位的植物群落学分类[J].云南植物研究,1998,20(3):279~294.
    金振洲,欧晓昆.元江、怒江、金沙江、澜沧江干热河谷植被[M].昆明:云南大学出版社,云南科技出版社,2000:12.
    金振洲,杨永平,陶国达.华西南干热河谷种子植物区系的特征、性质和起源[J].云南植物研究,1995,17(2):129-143.
    康华靖,陈子林,刘鹏,等.大盘山自然保护区香果树种群结构与分布格局[J].生态学报.2007,27(1):389-396.
    康华靖,刘鹏,陈子林,等.不同生境香果树种群的径级结构与分布格局[J].林业科学,2007,43(12):22-27.
    兰生葵,陆文科,卢静颉,等.麻疯树及其栽培技术[J].广西农学报,2007,22(1):43-45.
    李旦,何承忠,熊华波,等.膏桐种子发芽预处理方法研究[J].江苏农业科学,2009,(1):158-160.
    李昆,尹伟伦,罗长维.小桐子繁育系统与传粉生态学研究[J].林业科学研究,2007,20(6):775-781
    李贤忠,朱存福,胥辉,等.4种不同种源小桐子种子发芽试验[J].林业调查规划,2010,35(4):133-135.
    李振华,郭予琦,麻德平,等.能源植物小桐子的研发现状及展望[J].河南农业科学,2007,(7):10-12.
    栗宏林,张志翔,张鑫.小桐子不同产地种子性状及苗期生长差异研究[J].干旱区资源与环境.2010,24(2):204-208.
    梁士楚.贵阳喀斯特山地云贵鹅耳枥种群结构和动态研究初探[J].植物生态学与地植物学报,1992,16(2):108-117.
    林娟,周选围,唐克轩,等.麻疯树植物资源研究概况[J].热带亚热带植物学报,2004,12(3):285-290.
    林晓辉.福建南安麻疯树引种试验初报[J].中南林业调查规划,2006,25(3):66-68.
    林勇明,洪滔,吴承祯,等.桂花野生种群生命表及生存分析[J].北京林业大学学报,2007,2007,29(3):185-188.
    刘春生,刘鹏,张志祥,等.九龙山濒危植物南方铁杉的生态位研究[J].武汉植物学研究,2009,27(1):55-61.
    刘金福,洪伟.格氏栲种群数量动态的谱分析研究[J].生物数学学报,2003,18(3):357-363.
    刘朔,何朝均,何绍彬,等.不同施肥处理对麻疯树幼林生长的影响[J].四川林业科技,2009,30(4):53-56.
    刘朔,余波,何朝均,等.不同施肥处理对膏桐幼林结实的影响[J].西南林学院学报2009,29(3):11-14.
    刘永红.小桐子的利用价值与栽培技术[J].经济林研究,2006,24(4):74-76.
    刘玉凤.麻疯树解剖结构及其与生态环境关系的研究[D].南宁:广西大学,2007.
    刘泽铭,苏光荣,杨清.云南省麻疯树资源调查分析[J].林业科技开发,2008,22(1):37-40.
    罗通,邓骛远,陈放.不同产地麻疯树的抗冷性研究[J].内蒙古大学学报(自然科学版),2006a,37(4):446-449.
    罗通,马丹炜,邓骛远,等.低温对麻疯树生理指标的影响[J].中国油料作物学报,2005,27(4):50-54.
    罗通.麻疯树的抗冷性和SAD基因的克隆及表达研究[D].四川大学博士学位论文.2006b:1-139.
    罗增斌,刁阳光,杨利民,等.凉山州金沙江干热河谷麻疯树群落结构[J].应用与环境生物学报,2009,15(3):432-436.
    罗长维,李昆,陈友,等.膏桐花粉活力与柱头可授性及其生殖特性研究[J].西北植物学报,2007,27(10):1994-2001.
    马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[A].见:中国科学院生物多样性委员会.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    马钦彦.负二项式分布及种群格局检验分析[J].北京林业大学学报,2009,31(3):1—5.
    马沅,陈放,王胜华,等.麻疯树水浸液对两种经济作物的化感作用研究[J].北方园艺,2009,(8):19-23.
    毛俊娟,王胜华,陈放.不同温度和铝浓度对麻疯树生理指标的影响及外源钙的作用[J].北京林业大学学报,2007,29(6):201-204.
    苗艳明,刘任涛,毕润成.山西霍山油松种群结构和动态研究[J].武汉植物学研究2008,26(3)288-293.
    莫丽芬,唐建维,刀祥生,等.林分密度对小桐子生物量及其产量的影响[J].中南林业科技大学学报,2010,30(4):61-68.
    欧光龙,董吉辉,马焕成,等.云南省双江县膏桐良繁基地近自然林业建设模式的初步研究[J].安徽农业科学,2008,36(34):14997-14999.
    欧晓昆.元谋干热河谷植物区系研究[J].云南植物研究,1988,10(1):11-18.
    邱扬,张金屯DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用[J].生态学报,2000,20(2):199-206.
    曲仲湘.植物生态学[M].北京:高等教育出版社,1982:102-118.
    戎芳,王胜华,赵小光,等.麻疯树外植体愈伤组织中毒蛋白的Western-blot鉴定[J].四川大学学报(自然科学版),2005,42(1):206-209.
    史作民,程瑞梅,刘世荣.宝天曼落叶阔叶林种群生态位特征[J].应用生态学报,1999,10(3):265-269.
    唐军荣,郭瑞超,胥辉,等.小桐子及其研究进展[J].林业调查规划,2007,32(2):36-39.
    唐敏.桂西南麻疯树生长、种仁含油率及其与环境的相关性研究[D].南宁:广西大学,2007.
    万泉,黄勇,肖祥希,等.麻疯树不同地理种源种子性状及苗期生长初报[J].福建林业科技,2006,33(4):13-16,30.
    王伯荪,李鸣光,彭少麟.植物种群学[M].广州:广东高等教育出版社,1995:132-148.
    王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    王岩,龙春林,程治英.能源植物小桐子的利用与研究进展[J].安徽农业科学,2007,35(2):426-427,429.
    魏琴,赖家业,周锦霞,等.干旱胁迫下麻疯树毒蛋白的Western杂交分析[J].北京林业大学学报,2004b,26(5):26-30.
    魏新增,黄汉东,江明喜,等.神农架地区河岸带中领春木种群数量特征与空间分布格局[J].植物生态学报,2008,32(4):825-837.
    吴承祯,洪伟,谢金寿,等.珍稀濒危植物长苞铁杉种群生命表分析[J].应用生态学报,2000,11(3):333-336.
    吴大荣,朱政德.福建省罗卜岩自然保护区闽楠种群结构和空间分布格局初步研究[J].林业科学,2003,39(1):23-30.
    吴国江,刘杰,娄治平,等.能源植物的研究现状及发展建议[J].中国科学院院刊,2006,21(1):53-57
    吴明作,刘玉萃.栓皮栎种群数量动态的谱分析与稳定性[J].生态学杂志,2000,19(4):23-26.
    伍业钢,薛进轩.阔叶红松林红松种群动态的谱分析[J].生态学杂志,1988,7(1):19-23.
    谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征[J].生态学报,1994,14(4):337-344.
    谢晋阳,陈灵芝.意大利威尼托大区刺叶栎林的生物多样性研究[J].植物学报,1995,37(5):386-393.
    徐刚,王定川.不同施肥处理对麻疯树雌雄花比例和挂果的影响[J].林业实用技术,2009,(11):10-11.
    徐嘉,费世民,何亚平,等.四川麻疯树种群数量特征和更新研究[J].四川林业科技,2008,29(1):1-6.
    闫淑君,洪伟,吴承祯,等.丝栗栲种群生命过程及谱分析[J].应用与环境生物学报,2002,8(4)351-355.
    杨持.生态学实验与实习[M].高等教育出版社.2003.56-58.
    杨凤翔,王顺庆,徐海根,等.生存分析理论及其在研究生命表中的应用[J].生态学报,1991,11(2):153-158.
    杨琳,徐莺,陈放.麻疯树种子萌发特性研究[J].种子,2007,26(5):88-89.
    杨清,彭代平,段柱标,等.小桐子传粉生物学研究[J].华南农业大学学报,2007,28(3):62-66.
    余世孝.鼎湖山厚壳桂群落优势种生态位宽度与重叠之研究[A].见:热带亚热带森林生态系统研究(3集)[M].北京:科学出版社.1985.32-41.
    袁理春,徐中志,武逵,等.麻疯树种植技术[J].云南农业科技.2006,(1):58.
    袁理春,赵琪,康平德,等.云南麻疯树(Jatropha curcas)资源生态地理分布及评价[J].西南农业学报,2007,20(6):1283-1286.
    云南森林编写委员会.云南森林[M].昆明:云南科技出版社,北京:中国林业出版社.1986:348-349.
    云南省林业厅.云南省膏桐资源调查报告[R].2007年10月,2.
    张峰,张金屯,韩广业.历山自然保护区猪尾沟森林群落树种种间关系及环境解释[J].植物生态学报,2002,26(增刊):52-56.
    张峰,上官铁梁.山西翅果油树群落种间关系的数量分析[J].植物生态学报,2000,24(3):351-355.
    张峰.生态位分析[A].见:付必谦.生态学实验原理与方法[M].北京:科学出版社,2006:242-254.
    张峰.种间关系数量分析[A].见:付必谦.生态学实验原理与方法[M].北京:科学出版社,2006:153-163.
    张建平,杨忠,庄泽.元谋干热河谷区水土流失现状及治理对策[J].云南地理环境研究,2001,13(2):22-27.
    张金屯.数量生态学[M].北京:科学出版社.2004,254-257.
    张金屯.数量生态学(第二版)[M].北京:科学出版社.2011:124,184.
    张明生,樊卫国,尹杰,等.麻疯树资源概况及其开发利用[J].贵州农业科学,2005,33(6):97-98.
    张庆费,陈小勇,吴化前,等.安徽黄山甜槠种群的结构与分布格局[J].植物资源与环境,1997,6(4):35-39.
    张诗莹,樊卫国.麻疯树的光合特性[J].种子,2005,24(8):13-15.
    张志祥,刘鹏,蔡妙珍,等.九龙山珍稀濒危植物南方铁杉种群数量动态[J].植物生态学报2008,32(5):1146-1156.
    张志祥,刘鹏,刘春生,等.珍稀濒危植物南方铁杉种群结构与空间分布格局研究[J].浙江林业科技,2009,29(1):7-14.
    张忠华,梁士楚,胡刚.桂林喀斯特石山阴香群落主要种群的种间关系[J].山地学报,2007,25(4):475-482.
    赵宗宝,华艳艳,刘波.中国如何突破生物柴油参与的原料瓶颈[J].中国生物工程杂志,2005,25(11):1-6.
    郑科,郎南军,张荣贵,等.云南红河州膏桐的资源分布及生长结实状况调查[J].西部林业科学,2007,36(2):101-104.
    郑玉龙,类延宝,李扬平,等.不同种群小桐子光合及形态特性的比较[J].生态学杂志,2009,28(6):1021-1027.
    中国科学院中国植物志编辑委员会.中国植物志(第四十四卷,第二分册)[M].北京:科学出版社,1996:148.
    中国树木志编辑委员会.中国树木志(第三卷)[M].北京:中国林业出版社,1997:2979.
    仲磊.小桐子引种栽培试验的初步研究[D].南京:南京林业大学.农业推广硕士专业学位论文.2007.
    周纪伦,郑师章,杨持.植物种群生态学[M].北京:高等教育出版社,1992:23-49.
    周云.前景看好的高价值树种——麻疯树[J].技术与市场,2007,(6):27.
    宗亦臣,郑勇奇,张川红,等.元谋干热河谷地区新银合欢天然更新的初步调查[J].生态学杂志,2007,26(1):135-138.
    Abugre S, Quashie-Sam SJ. Evaluating the Allelopathic Effect of Jatropha curcas Aqueous Extract on Germination, Radicle and Plumule Length of Crops[J]. International journal of agriculture and biology,2010,12(5):769-772.
    Avocevou-Ayisso C, Sinsin B, Adegbidi A, et al.. Sustainable use of non-timber forest products: Impact of fruit harvesting on Pentadesma butyracea regeneration and financial analysis of its products trade in Benin[J]. Forest Ecology and Management.2009,257:1930-1938.
    Bailis R, McCarthy H. Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil[J]. GCB Bioenergy,2011,3(2):449-460.
    Begon M, Mortimer M. Population ecology:a unified study of animals and plants[M]. OxfordMelbourne:Blackwell Scientific,1981.
    Braak CJF Ter. Canonical correspondence analysis:A new eigenvector method for multivariate direct gradient analysis[J]. Ecology,1986,67:1167-1179.
    Braak CJF Ter. The analysis of vegetation-environment relationships by canonical correspondence analysis[J]. Vegetatio,1987,69:69-77.
    Cassie R M. Microdistribution of Plankton[J]. Oceanogr. Mar. Biol. Ann. Rev.1963,1:223-252.
    Chapman JL, Reiss MJ. Ecology:principles and applications(Second Edition)[M]清华大学出版社,Cambirdge University Press,2001:27.
    Chaves LHG, de Mesquita EF, de Araujo DL, et al. Growth, distribution and content of copper and zinc in Jatropha curcas L. plants[J]. Revista ciencia agronomica,2010,41(2):167-176.
    Chien PD, Zuidema PA, Nghia NH. Conservation prospects for threatened Vietnamese tree species: results from a demographic study[J]. Popul Ecol,2008,50:227-237.
    Cox GW. Laboratory Manual of General Ecology[M]. W. C. Brown, Dubuque.1972.
    Creber GT. Tree rings:a natural data-storage system[J]. Biological reviews of the Cambridge Philosophical Society.1977.52:349-383.
    David FN, Moore PG. Notes on contagious distribution in plant population[J]. Annals of Botany.1954, 18:47-53.
    Deevey ES. Life tables for natural populations of animals[J]. The Quarterly Review of Biology,1947, 22(4):283-314.
    Desai S, Narayanaiah C, Kumari CK, et al.. Seed inoculation with Bacillus spp. improves seedling vigour in oil-seed plant Jatropha curcas L. [J]. Biology and fertility of soils,2007,44:229-234.
    Diaz S, Mercado C, Alvarez-Cardenas S. Structure and population dynamics of Pinus lagunae M.-F. Passini[J]. Forest Ecology and Management,2000,134:249-256.
    Foidl N, Foidl G, Sanchez M, et al.. Jatropha curcas L. as a source for the production of biofuel in Nicaragua[J]. Bioresour Technol,1996,58:77-82.
    Friedman SK, Reich PB, Frelich LE. Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest[J]. Journal of Ecology.2001,89,538-554.
    Gao S, Li Q, Chao OY, et al.. Lead toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. radicles[J]. Fresenius environmental bulletin,2009, 18(5B):811-815.
    Gao S, Yan R, Wu J, et al.. Growth and Antioxidant Responses in Jatropha curcas Cotyledons under Lead Stress[J]. Zeitschrift fur naturforschung section c-a journal of biosciences,2009,64(11-12): 859-863.
    Getzin S, Wiegand T, Wiegand K, et al. Heterogeneity influences spatial patterns and demographics in forest stands[J]. Journal of Ecology.2008,96,807-820.
    Gordon DR, Tancig KJ, Onderdonk DA, et al.. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment [J]. Biomass and Bioenergy,2011,35(1):74-79.
    Green RH. Measurement of non-randomness in spatial distributions[J]. Researches of Population Ecology,1966,8:1-7.
    Greig-smith P. The use of random and contiguous in the study of the structure of plant communities[J]. Ann. Bot.,1952,16(2):293-316.
    Grinnell J. The niche-relationships of the California Thrasher [J]. The Auk,1917,34(4):427-433.
    Guedje NM, Lejoly J, Nkongmeneck B-A, et al.. Population dynamics of Garcinia lucida (Clusiaceae) in Cameroonian Atlantic forests[J]. Forest Ecology and Management.2003,177:231-241.
    Gurevitch J, Scheiner SM, Fox GA. The ecology of plants(second edition) [M]. Sinauer Associates, Inc., Publishers Sunderland, Massachusetts U. S. A,2006.
    Harcombe PA. Tree life tables:Simple birth, growth, and death data encapsulate life histories and ecological roles [J]. Bioscience,1987,37(8):557-568.
    Hernandez-Apolinar M, Valverde T, Purata S. Demography of Bursera glabrifolia, a tropical tree used for folk woodcrafting in Southern Mexico:An evaluation of its management plan[J]. Forest Ecology and Management,2006,223:139-151.
    Hett J M, Loucks O L. Sugar maple (Acer saccharum Marsh.) seedling mortality[J]. Journal of Ecology. 1971a,59:507-520.
    Hett J M. A Dynamic Analysis of Age in Sugar Maple Seedlings[J]. Ecology,1971b,52(6):1071-1074.
    Hett JM, Loucks OL. Age Structure Models of Balsam Fir and Eastern Hemlock[J]. The Journal of Ecology,1976,64(3):1029-1044.
    Hutchinson GE. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology[C]. 1957,22:415-427.
    Jamil S, Abhilash PC, Singh N, et al. Jatropha curcas:A potential crop for phytoremediation of coal fly ash[J]. Journal of hazardous materials,2009,172(1):269-275.
    Jonsson B G, Moen J. Patterns in species associations in plant communities:the importance of scale[J]. Journal of Vegetation Science,1998,9:327-332.
    Juwarkar AA, Yadav SK, Kumar P, et al. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils[J]. Environmental monitoring and assessment, 2008,145(1-3):7-15.
    Kumar A, Sharma S, Mishra S. Influence of Arbuscular Mycorrhizal (AM) Fungi and Salinity on Seedling Growth, Solute Accumulation, and Mycorrhizal Dependency of Jatropha curcas L. [J]. Journal of plant growth regulation,2010,29(3):297-306.
    Kumar GP, Yadav SK, Thawale PR, et al.. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter-A greenhouse study[J]. Bioresource technology,2008,99(6):2078-2082.
    Kumar N, Anand KGV, Pamidimarri DVNS, et al.. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants[J]. Industrial crops and products,2010,32(1):41-47.
    Liu SY, Sporer F, Wink M, et al. Anthraquinones in Rheum palmatum and Rumex dentatus (polygonaceae), and phorbol esters in Jatropha curcas (Euphorbiaceae) with mollusicicida activity against the Schistosome Vector Snails oncomelania, Biomphalaria and Bulinus[J]. Trop Med Int Health,1997,2(2):179-188.
    Li JQ, Zhu N. Structure and process of Korean pine population in the natural forests[J]. Forest Ecology and Management,1991,43(1-2):125-135.
    Lin J, Yan F, Tang L, et al Antitumor effects of curcin from seeds of Jatropha curcas[J]. Acta Pharmacol Sin,2003,24 (3):241-246.
    Lloyd M. Mean crowding[J]. Journal of Animal Ecology.1967,36:1-30.
    Lowe V P W. Population dynamics of the red deer (Cervus elaphus L.) on Rhum[J]. Journal of Animal Ecology.1969,38:425-457.
    Ludwig JA, Reynolds JF. Statistical ecology:A primer on methods and computing[M]. John Wiley & Sons, New York.1988.
    McCune B, Mefford MJ. PC-ORD v5. Multivariate Analysis of Ecological Data[M]. MJM Software Design, Gleneden Beach, OR, USA.2006.
    Morisita M. Measuring of the dispersion of individuals and analysis of the distributional patterns [A]. In: Memoirs of the Faculty of Science, Kyushu University, Series E (Biology)[C], Fukuoka:Kyushu University,1959,2:215-235.
    Mponela P, Mwase WF, Jumbe CBL, et al.. Plant species diversity on marginal and degraded areas for Jatropha curcas L. cultivation in Malawi[J]. African journal of agricultural research,2010,5(12): 1497-1503.
    Peres CA, Baider C, Zuidema PA, et al.. Demographic threats to the sustainability of Brazil nut exploitation[J]. Science,2003,302:2112-2114.
    Pielou E C. An introduction to mathematical ecology[M]. Wiley-Interscience (New York).1969.
    Pompelli MF, Barata-Luis R, Vitorino HS, et al.. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass & bioenergy,2010,34(8): 1207-1215.
    Pompelli MF, Ferreira DTDG, Cavalcante PGD, et al.. Environmental influence on the physico-chemical and physiological properties of Jatropha curcas seeds[J]. Australian journal of botany,2010,58(6):421-427.
    Riginos C. Grass competition suppress savanna tree growth across multiple demographic stages[J]. Ecology,2009,90(2):335-340.
    Ruiz-Valdiviezo VM, Luna-Guido M, Galzy A, et al.. Greenhouse gas emissions and C and N mineralization in soils of Chiapas (Mexico) amended with leaves of Jatropha curcas L. [J]. Applied soil ecology,2010,46(1):17-25.
    Saxena AK, Singh JS. Tree population structure of certain Himalayan forest associations and implications concerning their future composition[J]. Plant Ecology,1984,58(2):61-69.
    Schulter D. A variance test for detecting species association with some example application[J]. Ecology, 1984,65:998-1005.
    Shah S, Sharma A, Gupta MN. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction[J]. Bioresource Technology,2005,96(1): 121-123.
    Silva EN, Ferreira-Silva SL, Fontenele AD, et al.. Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants[J]. Journal of plant physiology,2010,167(14):1157-1164.
    Silva EN, Ferreira-Silva SL, Viegas RA, et al.. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants[J]. Environmental and experimental botany, 2010,69(3):279-285.
    Silvertown J W,1982,著;祝宁,王义弘,陈文斌,译.植物种群生态学导论[M].哈尔滨:东北林业大学出版社,1987:74-94.
    Silvertown J W. Introduction to Plant Ecology[M]. Longmans, London,1982.
    Suzan-Azpiri H, Enriquez-Pena G, Malda-Barrera G. Population structure of the Mexican baldcypress (Taxodium mucronatum Ten.) in Queretaro, Mexico[J]. Forest Ecology and Management,2007, 242:243-249.
    Suzan-Azpiri H, Sanchez-Ra'mos G, Martinez-Avalos JG, et al.. Population structure of Pinus nelsoni Shaw, an endemic pinyon pine in Tamaulipas, Mexico[J]. Forest Ecology and Management,2002, 165:193-203.
    Ullmann R, Resende O, Sales JD, et al.. Seed quality of jatropha under different drying air conditions[J]. Revista ciencia agronomica,2010,41(3):442-447.
    Waters WE. A quantitative measure of aggregation in insects[J]. Journal of Economic Entomology, 1959,52:1180-1184.
    Wolf A. Fifty year record of change in tree spatial patterns within a mixed deciduous forest[J]. Forest Ecology and Management,2005,215:212-223.
    Wratten SD, Fry GLA. Field and laboratory exercises in ecology[M]. London:Edward Arnold,1980: 80-86.
    Yadav SK, Dhote M, Kumar P, et al.. Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress[J]. Journal of hazardous materials,2010,180(1-3):609-615.
    Yadav SK, Juwarkar AA, Kumar GP, et al.. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.:Impact of dairy sludge and biofertilizer[J]. Bioresource technology,2009,100(20):4616-4622.
    Yamada T, Zuidema PA, Itoh A, et al.. Strong habitat preference of a tropical rain forest tree does not imply large differences in population dynamics across habitats[J]. Journal of Ecology,2007,95: 332-342.
    Zahawi RA. Establishment and growth of living fence species:An overlooked tool for the restoration of degraded areas in the tropics[J]. Restoration ecology,2005,13(1):92-102.
    Zheng YL, Feng YL, Lei YB, et al.. Different photosynthetic responses to night chilling among twelve populations of Jatropha curcas[J]. Photosynthetica,2009,47(4):559-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700