用户名: 密码: 验证码:
超低温用环氧树脂及其碳纤维织物增强复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超导低温技术的发展以及航空航天领域的需求,复合材料的低温应用越来越广泛。低温用结构、支撑等元件对其低温力学性能有着各种特殊的要求,低温下材料性能会发生较大变化,这使得研究材料的低温力学性能很有必要。
     纤维复合材料单层板在纤维方向的强度和刚度较高,而在垂直纤维方向上却很低,而工程实际应用往往以层合板形式出现,细观力学分析因结构的复杂显得较为困难。研究织物复合材料的力学性能是一复杂而具有实际意义的工作。当前,正交铺层复合材料的低温性能研究文献报道较少。论文采用试验方法研究了碳纤维织物增强环氧树脂复合材料的室温和低温力学性能。
     本论文开展了如下几方面的研究:
     1.从低温环氧树脂体系的工艺性能研究入手,通过DSC热分析、凝胶时间、固化度的分析,确立了配方的固化制度为100℃2h/+130℃/4h+150℃/4h;
     2.通过RTM模具设计和工艺参数的分析,确立了适合本配方体系的成型工艺:室温灌注,真空度:-0.08~-0.09MPa,注射压力:0.02-0.03MPa;
     3.通过树脂浇注体性能测试得到,新选用的低温用环氧树脂体系浇注体性能较好,室温下拉伸强度99MPa,杨氏模量2.6GPa。
     4.通过力学实验研究及分析得到,缝编织物增强复合材料的强度与非经编织物增强的复合材料相比或多或少有所降低,拉伸强度降低达41%,弯曲强度降低达18%;纤维排布方向对复合材料弯曲性能有明显的影响,0/90纤维铺层可以提高材料的弯曲性能(室温下由167MPa增加至530MPa);碳纤维的表面状态影响界面结合强弱和材料的力学性能,T300环氧复合材料的拉伸强度583.1MPa,弯曲强度505MPa,冲击韧性为95.4KJ/m2。T700复合材料的拉伸强度693.14MPa,弯曲强度530MPa,冲击韧性为281KJ/m2.
     5.与室温相比,低温下复合材料的拉伸强度增加,增幅达20%左右。弯曲强度也有所提高。其中,T700单向布正交铺层纤维增强复合材料和方格布增强材料的低温强度较大,分别为1157.80MPa和1168.60MPa。冲击韧性随着温度的降低而下降。本文研究发现,缝编±45°纤维复合材料冲击韧性最佳,室温和低温下分别为347KJ/m2和151.61KJ/m2。通过SEM分析得低温下复合材料的破坏比较严重,且界面脱胶面积大。
     6.最后探讨了低温增韧机理,并采用微裂纹理论对界面断裂性能进行研究,利用有限元方法分析,为复合材料的性能预测提供了数据。
With the development of the technology of low temperature superconducting and the demand of aerospace field, composite materials are more and more widely used in low temperature areas. There are all specific requirements for the structure and support about its low temperature mechanical properties. The performance of materials will been quite changed in low temperature, this makes that it is necessary to research on the low temperature mechanical properties.
     Unidirectional fiber composite intensity and rigidity is higher in fiber direction, and is very lower in vertical to fiber direction. It is appeared in the form of the laminated plates in the practical application. But there is more complex, changeable and difficult on the analysis of micromechanics structure. Researching on fabric composite material mechanics performance will be a complex and the practical significance job. At present, research on the performance of orthogonal layer of the composite material is still rare in low temperature. The paper will study on mechanical properties of the carbon fiber fabric enhanced epoxy resin composite material in room temperature and low temperature.
     Therefore, this paper will carry on the following aspects research:
     1. First, research on the process performance of the low temperature epoxy resin system; Second, studying on DSC thermal analysis, gel time, curing degree analysis, we have established the formula for curing system:100℃2h/+130℃/4h+150℃/4h;
     2. Analyzing of the RTM mold design and the process parameters, establish the formula of the molding process:Room temperature perfusion, Vacuum degree:0.08-0.09MPa, Injection pressure:0.02-0.03MPa;
     3. From the test of resin casting body performance, the novel epoxy resin casting body system has good performances. Tensile strength at room temperature is99MPa, bending strength is2.6GPa;
     4. By researching and analyzing the mechanics experimental, we found that the strength of stitched fabric reinforced composites has more or less reduced by comparing with others, the tensile strength has reduced41%, bending strength18%; Fiber arrangement of composite has a significant impact on bending strength,0/90fiber layer can improve the strength of the materials (at room temperature from167MPa to530MPa); Carbon fiber surface bonding strength state have influenced the mechanical properties of materials, the tensile strength of T300epoxy composites is583.1MPa, bending strength is505MPa, Impact toughness is95.4KJ/m. The tensile strength of T700epoxy composites is693.14MPa, bending strength530MPa.T700composites is281KJ/m2.
     5. Compared with room temperature, tensile strength at low temperature has increased and the growth rate is about20%. Bending strength has also improved. Among of all, the strength of ChanXiangBu orthogonal layer fiber reinforced materials and T700pane cloth reinforced materials at low temperature is bigger, respectively for1157.80MPa and1168.60MPa. Impact toughness as the temperature decrease. Based on this topic found that (±45°seam fiber composite material impact toughness at room temperature and low temperature is best, respectively for347KJ/m2and151.61KJ/m2. we have also found that composite material damage is severe at low temperature, and interface unglued area is bigger by the SEM images.
     6. Finally, the low temperature toughening mechanism is discussed. Micro cracks theory have been adopt to research the interface fracture performance.2D finite element method is used to analysis in order to forecast the performance of composites.
引文
[1]Ahlborn, K.:Cryogenics,1991,31:252-256.
    [2]R.S.戴夫,A.C.卢斯.高分子复合材料的加工工程[M].方征平,沈烈.北京,化学工业出版社,2004:53-54.
    [3]尚呈元.柔性侧链环氧树脂及其复合材料低温性能研究[D].武汉,武汉理工大学,2009.
    [4]初增泽,黄鹏程.环氧树脂的超低温增韧研究[J].热固性树脂,2004,19(4):1-4
    [5]Guo Yang, Shao-Yun Fu and Jiao-Ping Yang. Preparation and mechanical properties of modified epoxy resins with flexible diamines [J]. Polymer,2007,48:302-310.
    [6]R. P. Reed and M. Golda. Cryogenic composite supports:a review of strap and strut properties [J]. Cryogenics,1997,37 (5):233-250.
    [7]Reed, R.P. and Golda, M., Cryogenic properties of unidirectional composites [J]. Cryogenic, 1994,34(11):909-928.
    [8]Myung-Gon Kim, Sang-Guk Kang, Chun-Gon Kim, Cheol-Won Kong. Tensile response of graphite/epoxy composites at low temperatures [J]. Composite Structures xxx(2005)xxx-xxx.
    [9]Lee Jialu, Yan Jianhua, Xiao lihua. Several Textile Forming Technologies of textile Composite Preforms[J]. Journal of Textile Research.1994,11:34-37.
    [10]H.Benson Dexter, Gregory H.Hasko. Mechanical properties and damage tolerance of multiaxial warp-knit composites[J].Composites Science and Technology,1996,5:367-380.
    [11]Lomov S.V., Vepoest I.,Barburski M.,et al. Carbon composites based on multiaxial multiply stitched performs. Part 2:KES-F characterization of the deformability of the performs at low loads[J]. Composites, Part A,2003,34:359-370.
    [12]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[J].科学出版社.2006,1:213-230.
    [13]邱睛睛,段跃新,梁志勇.RTM工艺参数对树脂充模过程影响的模拟与实验研究[J].复合材料学报.2004,6(21):70-74.
    [14]Bebbie Stover. RTM work rakes shape in advanced composites. Advanced Composites, 1992,7(2):39-43.
    [15]El-Tayeb N.S.,Gadalrab R.M..Friction and wear properties of E-Glass fiber reinforced epoxy composite under different sliding conditions[J],Wear,1996,(192):112-117.
    [16]下贤锋.复合材料低温力学行为的研究[D].合肥:中国科学技术大学,2001.
    [17]J. B. Schutz, Properties of composite materials for cryogenic applications[J]. Cryogenics, 1998, VOl 38:3-12.
    [18]赵福,祥魏蔚,刘康等.纤维复合材料在低温容器内支撑结构中的应用[J].低温工程,2005,3:23-34.
    [19]顾祥红,孟繁炯.凝华结霜霜层导热系数理论分析[J].工程热物理学报,2000,21(3):354-357.
    [20]Callaghan M T. Use of resin composites for cryogenic tankage. Cryogenics,1991,31: 282-287.
    [21]张天平.空间应用复合材料压力容器研制技术.上海航天,2002,(1):54-58.
    [22]于建,晏飞.可重复使用运载器复合材料低温贮箱应用研究[J].火箭推进,2009,35(6):20-22.
    [23]Brian W Grimsley, Roberto J Cano, Norman J Johnston. Hybrid composites for LH2 fuel tank structure. NASA,2001.
    [24]郑津洋,傅强,开方明等.轻质高压贮氢容器的现状及发展趋势.太阳能学报,2004,25(5):576-581.
    [25]李雨康,张世荣.深冷绝热材料的探讨.中国海洋平台,2001,16(3):31-34.
    [26]G. Hartwig. Status and future of fiber composites.Advances in Cryogenic Engineering Materials,1994, VOl.40B:961-975, Plenum Press. New York
    [27]夏顺德.重复使用运载器贮箱的研制现状.导弹与航天运载技术,2001,(2):12-18.
    [28]赵颖.新型复合材料液氧贮箱试验成功.导弹与航天运载技术,2001,(6):14.
    [29]Jones H,Hickman A L. Insulation and impregnation procedures used in magnet technology. IEEE Transactions on Applied Superconductivity,2000,10(1):1345.
    [30]陈国邦.低温工程材料.杭州:浙江大学出版社,1998:154-163.
    [31]吴培熙,沈健.特种性能树脂基复合材料[M].北京:化学工业出版社.2003.
    [32]H. Bansemjr, O. Haider.Fibre composite structures for space applications — recent and future developments. Cryogenics,1998,V01.38:51-59.
    [33]G. Hartwig. Status and future of fiber composites.Advances in Cryogenic Engjneering (Materials),1994, VOl.40B:961-975, Plenum Press. New York
    [34]赵伟栋,张宗强,耿东兵等.低温聚合物基复合材料研究进展[J].宇航材料工艺.2003,5:21-25.
    [35]王贤峰,赵建华,姜洪源等.玻纤和碳纤在低温下的强度统计特性[J].无机材料学报,2003,18(1):45-49.
    [36]Fitzer, E., Weiss, R. Processing and uses of carbon fibre reinforced plastics VDI-Verlag. Dusseldorf,1981,45.
    [37]才满瑞.重复使用运载器的近期发展.导弹与航天运载技术,1999;(2):56-62.
    [38]赵伟栋,张宗强,耿东兵等.低温聚合物基复合材料研究进展[J].宇航材料工艺.2003,5:21-25.
    [39]张明,安学锋,唐邦铭,益小苏.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报,2006,1:17-25.
    [40]俞计华,盘毅,胡芸等.低粘度液态双酚F型环氧树脂的性能研究[J].热固性树脂,2001:16(4):1-5.
    [41]尹昌平,刘钧,曾竟成.RTM工艺用双酚F型环氧树脂体系研究[J].玻璃钢/复合材料,2006,(2):27-31.
    [42]方哲.高性能环氧树脂及其纳米复合材料的研究[D].广州:中山大学,2006.
    [43]张国利,李嘉禄,杨彩云等.RFI工艺用环氧基树脂膜的研制[J].固体火箭技术,2006,29(2):142-145.
    [44]Lee C L, Wei K H. Resin transfer moulding (RTM) process of a high performance epoxy resin,Ⅱ:effects of process variables on the physical, static and dynamic mechanical behaviour[J]. Polymer Engineering and Science,2000,40(4):935-943.
    [45]艾伦·哈珀.树脂传递模塑技术[M].董雨达.哈尔滨:哈尔滨工业大学出版社,2003:88-94.
    [46]尹吕平,刘钧,曾竞成.RTM工艺用双酚F型环氧树脂体系研究[J].玻璃钢/复合材料,2006,(2):27-31.
    [47]Becker D W. Tooling for resin transfer moulding[M].Wichita:Wichita State University.
    [48]A C Loos, G S Springer. Curing of epoxy matrix composites[J].Journal of composite materials,1983,17(3):135-167.
    [49]张杰等.碳纤维增强环氧树脂基复合材料的性能研究[J].中国胶黏剂,2009,18(3),21-25.
    [50]闰刚,樊晓斌,张笑梅等.RTM成刑工艺对复合材料制品性能的影响[J].材料开发与应用,2008,23(2):27-30.
    [51]龙威.离子增韧RTM复合材料的研究[D].浙江大学硕士学位论文,2004.
    [52]邱桂杰.树脂传递模塑工艺中工艺参数对树脂一纤维界而的影响[J].玻璃钢/复合材料,2002(2):24-27.
    [53]黄家康.复合材料成型技术.化学工出版社.
    [54]Spoerre J, Zhang C, Wang B, et al. Integrated product and process design for resin transfer moulded parts[J]. Journal of Composite Materials,1998,32(13):1244-1271.
    [55]Lee C L, Wei K H. Resin transfer moulding (RTM) process of a high performance epoxy resin, Ⅱ:effects of process variables on the physical, static and dynamic mechanical behaviour[J]. Polymer Engineering and Science,2000,40(4):935-943.
    [56]Cevdet K Y. Onur effects of injection pressure in resin transfer moulding(RTM)of woven carbon fibre/Epoxy composites[J]. Polymer and Polymer Composites,2006,14(1):55-64.
    [57]Tomohiro Yokozekia. Effects of layup angle and ply thickness on matrix crack interactionin contiguous plies of composite laminates.Composites,2005,36:1229-1235.
    [58]赵俊亮,付涛,憨勇等.碳纤维增强羟基磷灰石环氧树脂复合材料的制备与力学性能[J].材料科学与工程学报,2003,21(5):640-643.
    [59]韩帅,段跃新,李超等.不同针织结构经编碳纤维复合材料弯曲性能
    [60]王贤锋.复合材料低温力学行为的研究[D].合肥:中国科学技术大学,2001.
    [61]尹志娟,王丽雪,姜珊.玻璃纤维增强环氧树脂基复合材料的低温性能研究[J].黑龙江工程学院学报(自然科学版),2010,24(3):51-52.
    [62]王嵘,郝春功,陈振坤等.混合型固化剂对环氧树脂室温和低温力学性能的影响[J].复合材料学报,2008,25(4):7-12.
    [63]David Mattsson, Roberts Joffe, Janis Varna. Methodology for characterization of internal structure parameters governing performance in NCF composites[J]. Composites:Part B, 2007,38:44-57.
    [64]Loendersloot R., Lomov S. V., Akkerman R., etal. Carbon composites based on multiaxial multiply stitched performs. Part 5:geometry of sheared biaxial fabrics[J]. Composites:Part A,2006,37:103-113.
    [65]Lomov S. V., Belov E. B., Bischoff T., et al.Carbon composites based on multiaxial multiply stitched performs. Part 1:Geometry of the perform[J]. Composites:Part A,2002, 33:1171-1183.
    [66]刘海燕.耐低温玻纤布/环氧树脂复合材料的制备及表征[D].哈尔滨:哈尔滨工程大学,2007.
    [67]Ghoirse S R. Effect of voids content on the mechanical properties of carbon/epoxy laminates[J]. SAMPE Quarterly,1993,24(2):54-59.
    [68]曾庆敦编著.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
    [69]郭慧玲,仲伟虹,张佐光等.几种碳纤维的表面状态表征与分析[J].复合材料学报,2001,18(3):38-42.
    [70]李斌,张长瑞,曹峰等.两种碳纤维增强Cf/BN2Si3 N4复合材料性能对比
    [71]王贤锋复合材料低温力学行为的研究[学位论文]博士2001
    [72曾庆敦.邹波单向复合材料在低温下的应力集中及强度[期刊论文]-航空材料学报2005(1)
    [73]KASEN M B Mechanical and thermal properties of filamentary-reinforced structural component at cryogenic temperature:l,glass-reinforced composites 1975.
    [74]陈国邦编著《低温工程材料》:浙江大学出版社10-11.
    [75]Gosnell R B, Levine H H. Some effects of structure on a polymer's performance as a cryogenic adhesive [J]. J Macromo Sci Chem,1969, A3(7):1381-1393.
    [76]Lin M L, Chang K H, Chang F C, et al. The epoxy-polycarbonnate blends cured with aliphatic amine-II thermal and mechanical properties mechanisms [J]. J Polym Sci:Prat B, 1997,35(13):2183-2191.
    [77]Nishijima S, Honda Y, Okada T. Application of the positron annihilation method for evaluation of organic materials for cryogenic use [J]. Cryogenic,1995,35(11):779-781.
    [77]张军,陈旭,粘接界面本构模型研究进展[J),利·技导报,2007,25:75-79。
    [78]MI Y, CRISFIELD M A, DA VIES G A O. Progressive delamination using interface elements[J], Journal composite materials,1998,32:1246-1272.
    [79]杜希岩,李炜,纤维增强复合材料在体育器材上的应用[J],纤维复合材料,2007,1:14-17.
    [80]粱志勇,张佐光,宋焕成,单一纤维和混杂纤维复合材料拉性能统计分析及计算模型[J],航空学报,1993,14:330-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700