用户名: 密码: 验证码:
纳米SiO_2改性环氧树脂及其复合材料低温力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于复合材料具有质轻、力学性能优异等一系列优点,使复合材料压力容器减重效果明显,因此在航天器的推进系统等重要领域有着广泛的应用前景。本文在已有树脂基体的基础上对复合材料树脂基体进行改性,并在常温和低温条件下研究了改性树脂对复合材料的界面、力学性能的影响。希望能制备出性能优异的复合材料单向板,为树脂基复合材料液氧贮箱的研究提供材料技术支持和储备。
     用差示扫描量热法研究了树脂基体的固化反应,并借助于傅立叶红外光谱初步探索了树脂基体固化反应的机理。通过对动态接触角、微脱粘、复合材料及树脂浇铸体力学性能测定及断口形貌表征分析,考察了纳米SiO_2改性树脂对复合材料常温和低温条件下基体、界面和复合材料力学性能的影响,以及低温环境对复合材料的基体、界面和力学性能影响。
     固化反应动力学分析验证了固化反应工艺的合理性,得到了树脂体系固化反应的表观活化能为90.58 kJ/mol,表观反应级数n为0.95。研究结果表明,质量分数为14%树脂体系可以达到常温复合材料单向板缠绕的要求,固化反应前80oC保持60min能够使树脂和纤维的相互浸润。另外,质量含量为1%纳米SiO_2改性树脂能够改善树脂的冲击强度、界面的剪切强度和复合材料单向板层间剪切强度,尤其是低温材料的性能显著改善。研究结果表明,低温条件下树脂的冲击强度降低,树脂复合材料界面剪切强度提高,纳米SiO_2改性树脂复合材料低温界面剪切性能降低。在常温条件下制备的复合材料单向板,其弯曲强度为1617.76MPa,弹性模量为108.45GPa,层间剪切强度为100.83MPa;在低温条件下,其弯曲强度为1752.95MPa,弹性模量为94.57GPa,层间剪切强度为134.33MPa。
Owing to their light, excellent mechanical properties and a series of other advantages, and obviously advantage of lightweight of polymer composite Liquid Oxygen (LOX) tank, composite materials have been critical and broadly studied in the development of the launch vehicles of next generation, especially in the propelling system. In this present research, prepared polymer matrix of composite was modified, and influence of composite materials interface and mechanical properties at room and low temperature was studied. We want to prepare composite with good properties and wish to the lay a good foundation of this area for the following researchers.
     Curing kinetics and mechanism of polymer matrix are exmined by means of TG-DSC and FTIR. Using the result of dynamic contact angle, micro-debonding and mechanical properties of composite materials and matrix, influence of modified with nano-silica resin to composite at room and low temperature, and low temperature to matrix, interface, mechanical properties of composite, are exmined.
     The results of curing kinetics show that curing process is reasonable. Apparent activation energy about 90.58 kJ/mol and apparent reaction order about 0.95 are calculated. The results show that resin system with 14wt% can meet requirements of composite slabs at room temperature and keeping 60min at 80oC before Curing reaction can make the interface between resin and fibers better. Impact strength of resin, shear strength of interface between resin and fibers, interlaminar shear strength of composite slabs can be improved after modifing with 1wt% nano-silica, especially at low temperature. Impact strength of resin is reduced at low temperature. Shear strength of interface between resin and fibers is increased. shear strength of interface between composite slabs is reduced. At room temperature, the bending strength of prepared composite slabs is about 1617.76MPa, modulus about 108.45GPa, interlaminar shear strength about 100.83MPa, while the bending strength of prepared composite slabs is about 1752.95MPa, modulus about 94.57GPa, interlaminar shear strength about 134.33MPa.
引文
[1] James Chang, Norman Newhouse. Fiber-Reinforced Polymer Matrix Composites: Pressure Vessels for Aerospace Applications[M]. Encyclopedia of Aearospace of Engineeting, 2010, 121-123
    [2]郑津洋,傅强,开方明等.轻质高压贮氢容器的现状及发展趋势[J].太阳能学报, 2004, (5): 576-581
    [3]池秀芬,刘志栋,王小永.复合材料缠绕压力容器的失效风险分析[J].真空与低温, 2006, 12(4): 226-230
    [4] Shaukat M, Andrew B, Mohammad N. Fiber Reinforced Composite Cylindrical Vessel with Lugs[J]. Composite Structure, 2001, 53: 143-151
    [5] Christos Chamis, Levon Minnetyan. Defect Damage to Lerance of Pressured Fiber Composite Shells[J]. Composite Structure, 2001, 51: 159-168
    [6]宋大君,王荣国,刘文博.航天用复合材料压力容器的应用与发展[J],宇航材料工艺, 2010, 11(6): 24-26
    [7]于建,晏飞.可重复使用运载器复合材料低温贮箱应用研究[J].火箭推进,2009,35(6):19-35
    [8] Daniel L, Tumino G., Henriksen T. Advanced Composite Technology in Reusable Launch Vehicle[C]. AIAA, Space 2004 Conference and Exhibit 28~30 September 2004, San Diego, California
    [9]冼杏娟,李端义.复合材料破坏分析及微观图谱[M].北京:科学出版社, 1993
    [10]贺福.碳纤维及其应用[M].北京:化学工业出版社,2004
    [11]柯泽豪,林菩著.碳纤维研究发展之现状与未来[J].高科技纤维与应用, 2000, 25(6): 1-9
    [12]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社, 2004
    [13]杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1): 1-12
    [14]汪家铭.碳纤维产业发展现状与市场前景[J].化工文摘,2009,(3): 17-24
    [15] Wilson B, Brandon C A. Liquid Oxygen and Organic Matrix Composites an Unusual Marriage Materials and Processing[J]. Technology-60 Years of SAMPE Progress. 2004, 3: 1-12
    [16] David C. Achary, Robert W. Biggs. Composite Development and Applications for Cryogenic Tankage[J]. AIAA Conference 18~21 April 2005, Austin, Texas, 2005-2160
    [17]王茂章.碳纤维及其复合材料[M].北京:科学出版社. 1997
    [18] John F T, Matthew S T. Matrix and Fiber Influence on the Cryogenic Microcracking of Carbon Fiber/epoxy Composites[J]. Composites, 2002, 33: 323~329
    [19] Hiltz R M, Fenton C M. Impact Sensitivity of Elast Meric Heat Shield Materials in a Liquid Oxygen Environment[J]. American Institute of Chemical Engineers, 1968, 18-21
    [20]初增泽,黄鹏程.环氧树脂的超低温增韧研究[J].热固性树脂, 2004, 19(3): 123-128
    [21] Callaghan M T. Use of Resin Composites for Cryogenic Tankage[J]. Cryogenic, 1991, 31(6): 282-287
    [22] Kevin H R. Cyclic Cryogenic Thermal-mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept[C]. NASA/TM-1999-209560
    [23] Elizabeth P. Kirn, Fort Worth, Neil A. Graf, et al. Lox-Campatible Composite Tank for Aerospace Applications[P]. United States Patent, US6837464 B1
    [24]尚呈元,王翔,王钧等.柔性侧链改性环氧树脂的低温增韧研究[J].武汉理工大学报, 2009, 31: 41-44
    [25]白雪莲,宁荣昌,郭延强.钝化2-乙基-4-甲基咪唑/环氧树脂低温固化体系研究[J].中国胶粘剂, 2010, 19(6): 11-13
    [26] M. F. Uddin. SunEffect of Nanoparticle Dispersion on Mechanical Behavior of Polymer Nanocomposites[C]. 50th AIAA/ASME/ASCE/AHS/ASC Structures, 2009
    [27]白春礼.纳米科学与技术[M].昆明:云南科学技术出版社, 1995
    [28] Bergna H, Roberts E. Colloidal Silica: Fundamentals and Applications[J]. CRC Press, Boca Raton, USA, 2006
    [29] Yasmin A, Abot J L, Daniel I M. Processing of Clay/Epoxy Nanocomposites by Shear Mixing[J], Scripta Materialia, 2003, 49: 81-86
    [30] Shah R K, Paul D R. Nylon 6 Nanocomposites Prepared by A Melt Mixing Masterbatch Process[J]. Polymer, 2004, 45: 2991-3000
    [31] Rodgers R M, Mahfuz H, Rangari V K, et al. Infusion of SiC Nanoparticlesinto SC-15 Epoxy: An Investigation of Thermal and Mechanical Response[J]. Macromolecular Materials and Engineering, 2005, 290: 423-429
    [32] Adebhar T, Roscher C, Adam J. Reinforcing Nanoparticles in Reactive Resins[J], European Coatings Journal, 2001, 4: 144-149
    [33]张淑慧,严密林,崔红等.纳米SiO_2改性EP对基体力学性能和芳纶纤维/EP复合材料界面性能的影响[J].塑料工业, 2011, 38(9): 64-70
    [34] Yong V, Hahn H T. Processing and Properties of SiC/Vinyl Ester Nanocomposites[J]. Nanotechnology, 2004, 15: 1338-1343
    [35] Haggenmueller R, Fischer J E, Winey K I. Interfacial in Polymerization of Single Wall Carbon Nanotube/nylon 6,6 Nanocomposites[J]. Polymer, 2006, 47: 2381-2388
    [36] Zilg C, Thomman T, Finter J, et al. The Influence of Silicate Modification and Compatibilizers on Mechanical Properties and Morphology of Anhydride-Cured Epoxy Nanocomposites[J]. Material Engineering, 2000, 280: 41-48
    [37] Guo Z, Liang X, Pereira T, et al. CuO Nanoparticle Filled Vinyl-ester Resin Nanocomposites: Fabrication Characterization and Property Analysis[J]. Composite Science and Technology, 2007, 67: 2036-2044
    [38] Gowthaman S, Mohammad H. Mechanical Characterization of Nanosilica/Epoxy Nanocomposites[C]. AIAA. 2010, 26: 43-49
    [39] Huang C J, Fu S Y, Zhang Y H, et al. Cryogenic Properties of SiO_2/epoxy Nano-composites[J]. Cryogenics, 2005, 45: 450-454
    [40] Zhang Y H. Cryogenie Properties of SiO_2/epoxy Nanocomposites[J]. Cryogenies, 2005, 45: 450-454
    [41]刘竞超,李晓兵,张华林.纳米SiO_2/环氧树脂复合材料的制备与性能[J].湘潭大学自然科学学报, 1999, 21(3): 36-39
    [42]胡福增.材料表面与界面[M].上海:华东理工出版社, 2008:200-205
    [43] Yu Fu, Russell Maguire, Hang Liu. Wetting Behavior of a Graphitic Nanofiber-modified Epoxy Generalized for Rough Textured Fabric Surfaces[J]. Colloid Polymer Science, 2011, 289: 141-148.
    [44]李敏,张佐光,孙志杰等.炭纤维的环氧树脂浸润特性[J].新型炭材料, 2006, 21(1): 75-80
    [45]侯静强,张冠,解廷秀.碳纤维复合材料的界面改性技术[J].工程塑料应用, 2010, 38(9): 13-16
    [46] Nuria Garia, Julio Guzman. Surfsce Modification of Sepiolte in Aqueous Gels by Using Methoxysilanes and Its Impactonthe Nanofiber Dispersion Ability[J]. Langmuir, 2011, 27: 3952-3959
    [47]陈平,陆春,王静等.连续纤维增强含二氮杂萘酮联苯结构聚芳醚砜酮树脂基复合材料的界面[J].高分子通报, 2011, 1(1): 38-48
    [48] Xiang X J, Choy C L. The Interlaminar Fracture Behaviour and Toughening Mechanisms of New Carbon Fibre-rein-forced Bismaleimide Composites[J]. Composites, 1995, 26: 33-38
    [49]张学忠,黄玉东,王天玉. CF表面低聚倍半硅氧烷涂层对复合材料界面性能[J].复合材料学报, 2006, 23(1): 105-111
    [50]彭公秋,杨进军,曹正华等. T700S/QY8911复合材料界面匹配研究[J].宇航材料学报, 2011, 31(2): 43-47
    [51] Mauro Z, Paul H M, et al. Revsaling the Interface in Polymer Nanocomposites[J]. Acsnano, 2011, 3: 26-29
    [52]陈振坤.纳米填料改性环氧树脂低温力学性能研究[D].北京:中国科学院理化技术研究所, 2009
    [53] Sandi G. Miller, Micheal A. Meador. Polymer-Layered Silicate Nanocomposites for Cryotank Applications[C], Structural Dynamics and Materials Conference, 2007,12: 23-26
    [54]于敏,武玉,刘华军等.低温高强度复合材料绝缘子的研制和性能测试[J].低温技术, 2010, 38(9): 13~16
    [55]杨长春,潘皖江. EAST复合材料轴向绝缘子性能测试[J].低温工程, 2009, 170(4): 23-27
    [56] Yasuhide S, Tomo T, Fumio N, et al. Interlaminar Shear Properties of Composite Insulation Systems for Fusion Magnetsat Cryogenic Temperatures[J]. Cryogenics, 2010, 50: 36-42
    [57] Masaya M, Yasuhide S, Tomo T, et al. Effect of Damage on the Interlaminar Shear Properties of Hybrid Composite Laminates at Cryogenic Temperatures[J]. Composite Structures, 2010, 6: 124-131
    [58]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004
    [59] Kevin G, Mitsuto S, Masaaki K, et al. Adhesion Behavior of Polymeric Acid Cured epoxy[J]. Polymer, 1997, 38: 4413-4415
    [60]张小华,徐伟箭.无机纳米粒子在环氧树脂增韧改性中的应用[J].高分子通报, 2005, (6): 100-104
    [61]沈兴.差热-热重分析与非等温固相反应动力学[M].北京:冶金工业出版社, 1955
    [62]王浩,郑亚萍,张娇霞.氰酸酯/环氧树脂固化反应动力学研究[J].玻璃钢/复合材料, 2008, (5): 3-5
    [63] Bauer M, Bauer J. Networks from Cyanic Acid Esters and Glycidyl Ethers[J]. Macromol Chemical Sympolymer, 1989, 30: 1-10
    [64]周宏福,刘润山.氰酸酯树脂的改性研究[J].纤维复合材料, 2009, 1: 3~14
    [65]李艳亮,唐邦铭,梁子青等.苯并嗯嗪/环氧树脂共聚固化过程研究[J].热固性树脂, 2008, 23(2): 15-18
    [66]王恩清.无溶剂环氧聚氨酯涂料的研制[J].涂料工业, 2004, 34(4): 28-31
    [67]李朝阳,邱大健.纳米Si02增韧改性环氧树脂的研究[J].材料保护, 2008, (4): 21-27
    [68]何节玉,柳一鸣,欧阳健明.电子显微分析在表征纳米晶体化学组分中的应用[J].人工晶体学报, 2009, 38(5): 47-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700