用户名: 密码: 验证码:
纳米填料改性环氧树脂低温力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天,应用超导技术和大型低温工程(ITER)等高科技的迅猛发展,环氧树脂在低温下的应用愈来愈广泛,如可作为浸渍料,胶黏剂和先进复合材料的基体。但纯环氧树脂固化体系在常温下存在抗裂性差,在低温下更脆,因此很难满足在低温下这一极端温度的要求,应用受到很大的限制。本论文分别选择了纳米橡胶(VP-501)颗粒,多壁碳纳米管(MWCNTs)/正丁基缩水甘油醚(BGE)和MWCNTs/聚醚砜(PES),然后加入固化剂二乙基甲苯二胺(DETD)固化,来改性双酚F(DGEBF)型环氧树脂以提高体系的低温力学性能尤其是在低温下的韧性性能。研究了改性剂的含量、种类和微观结构对环氧体系在室温(RT)和低温(77 K)下的拉伸性能和断裂韧性性能的影响,并探讨了各种改性剂对体系低温下的增韧机理。另外,由于实际应用中对环氧树脂耐热性也有一定的要求,因此本论文也研究了各种改性剂对环氧树脂体系玻璃化转变温度的影响。最后,根据碳纳米管剩余长度对聚合物基复合材料力学性能的影响非常大,本论文基于修正混合准则的简化和近似方法,估算了MWCNTs强度和它与聚合物间的界面强度。
     研究结果表明:在DGEBF/DETD体系中加入5 phr的VP-501能够有效地增强体系在RT和77 K下的力学性能。随着VP-501含量的增加,体系在RT和77 K下的断裂韧性增加了,然而其拉伸模量降低了。在DGEBF/BGE/DETD体系中通过超声波分散技术引入0.5 phr的MWCNTs后,体系在77 K下的拉伸强度、Young’s模量、失效应变和冲击强度都提高了。在DGEBF/PES/DETD体系中通过三辊研磨机高速剪切的分散方法引入0.5 phr的MWCNTs后,体系在77 K的拉伸强度、Young’s模量、失效应变和断裂韧性均提高了。
     对所有的同种体系而言,改性体系在77 K下的拉伸强度和Young’s模量均高于在RT下的拉伸强度和Young’s模量,然而其失效应变和断裂韧性则出现相反的结果。
     差示扫描量热仪结果表明VP-501引入固化体系后,体系的玻璃化转变温度相对纯环氧树脂的玻璃化转变温度没有明显地降低,而MWCNTs引入固化体系后,体系的玻璃化转变温度相对纯环氧树脂的玻璃化转变温度均提高了。
     本论文针对环氧树脂的低温改性研究为实现环氧树脂在低温环境中的应用提供了重要的理论研究资料。
With the rapid developments in spacecraft and superconducting cable technologies, and large cryogenic engineering projects such as the International Thermonuclear Experimental Reactor (ITER) etc., epoxy resins have been increasingly employed in cryogenic engineering applications as impregnating materials, adhesives and matrices for advanced composites. However, pure epoxy resins normally have poor crack resistance at room temperature and could be more brittle at cryogenic temperatures, which makes them unsuitable for some cryogenic engineering applications that demand epoxy resins to have high cryogenic mechanical properties. Therefore, nitrile -butadiene nano-rubber (VP-501), multiwall carbon nanotubes (MWCNTs)/n-butyl glycidyl ether (BGE) and MWCNTs/poly(ethersulfone) (PES) were employed in this dissertation to modify the DGEBF epoxy resin in improving the cryogenic mechanical properties especially cryogenic fracture toughness. The effects of modifier content, type and microstructure on the tensile and fracture toughness properties at room temperature (RT) and liquid nitrogen temperature (77 K) have been studied. The toughening mechanisms at cryogenic temperature through various modifiers were discussed. Moreover, since good thermal properties of modified systems are required in practical applications, studies on the effects of modifier type and content on the glass transition temperature (Tg) were also conducted. Finaly, the residual MWCNTs length plays a critical role in determining the mechanical properties of polymer nanocomposites and is thus regarded as the main reason responsible for the unexpected low mechanical properties. A simple but appropriate methodology based on the modified rule of mixtures is proposed to simultaneously determine the MWCNTs strength and the MWCNTs-polymer interfacial strength.
     The results have shown that the addition of 5 phr VP-501 can strengthen DGEBF/DETD system at both RT and 77 K. With VP-501 content increasing, the fracture toughness was increased, while the tensile modulus was decreased at both RT and 77 K. The addition of 0.5 phr MWCNTs to diglycidyl ether of bisphenol-F epoxy with BGE via the ultrasonic technique can enhance the cryogenic tensile strength, Young’s modulus, failure strain and impact strength at 77 K. Moreover, synthetic sequence leads to selective dispersion of MWCNTs in the brittle primary phase but not in the soft second phase in the two-phase epoxy matrix. The addition of 0.5 phr MWCNTs to diglycidyl ether of bisphenol-F epoxy with thermoplastic PES using the three-roll calandering method can enhance the cryogenic tensile strength, Young’s modulus, failure strain and fracture toughness at both RT and 77 K. Moreover, the tensile strength and Young’s modulus at 77 K were higher than those at RT at the same composition while failure strain and fracture toughness showed the opposite results.
     Differential scanning calorimetry (DSC) analysis shows that Tg of the selected systems does not obviously change with increasing the VP-501 content. On the other hand, Tg of the epoxy resins is increased by the addition of MWCNTs.
     The research work on modification of cryogenic epoxy resins in this dissertation provides the basic knowledge and data for application of modified DGEBF epoxy resins in cryogenic temperature environment.
引文
[1]白春礼.纳米科学与技术[M].昆明:云南科学技术出版社,1995.
    [2] Chikara H. Physics Today, Decenber 1987, 4451.
    [3] Qiao J, Wei G, Zhang X, Zhang S,Gao J, Zhang W, Liu Y, Li J, Zhang F, Zhai R, Shao J, Yan K, Yin H. Fully vulcanized powdery rubber having a controllable particle size, preparation and use thereof [P]. U.S. Pat. 6,423,760 (23 July 2002).
    [4] Dai XH, Peng J, Zhai M.L, Qiao JL, Wei GS. Preparation and characterization of transparent HIPS through gamma radiation polymerization [J]. Acta Polym Sin, 2005,3: 403–407.
    [5] Liu, YQ, Fan, ZQ, Ma, HY, et al. Application of nano powdered rubber in friction materials [J]. WEAR, 2006, 261(2): 225-229.
    [6] Liu YQ, Zhang XH, Wei GS, Gao JM, Huang F, Zhang ML, Guo MF, Qiao JL. Special effect of ultra-fine rubber particles on plastic toughening [J]. Chin J Polym Sci, 2002, 20 (2), 93–98.
    [7] Zhang XH, Wei GS, Liu YQ, Gao JM, Zhu YC, Song ZH, Huang F, Zhang ML and Qiao JL. Study on new route to make fully cured thermoplastic elastomer with plastics and ultrafine powdered rubber [J]. Macromol Symp, 2003, 193:261–276.
    [8] Huang F, Liu YQ, Zhang XH, et al. Effect of elastomeric nanoparticles on toughness and heat resistance of epoxy resins [J]. Macromol Rapid Commun, 2002, 23(13): 786-790.
    [9] Ma HY, Wei GS, Liu YQ, et al. Effect of elastomeric nanoparticles on properties of phenolic resin [J]. Polymer, 2005, 46(23): 10568-10573
    [10] Jiann-Wen Huang.Effect of nanoscale fully vulcanized acrylic rubber powders on crystallization of poly(butylene terephthalate): Nonisothermal crystallization[J]. Eur Polym J, 2007, 43: 4188–4196.
    [11] Zhang ML, Liu YQ, Zhang XH, Gao JM, Huang F, Song ZH, Wei GS, Qiao JL. The Effect of elastomeric nano-particles on the mechanical properties and crystallization behavior of polypropylene [J]. Polymer, 2002, 43: 5133–5138.
    [12] Liu YQ, Zhang XH, Gao JM, Huang F, Tan BH, Wei GS, Qiao JL. Toughening of polypropylene by combined rubber system of ultrafine full-vulcanized powdered rubber and SBR [J]. Polymer, 2004, 45:275–286.
    [13] Zhang XH, Liu YQ, Gao JL, Huang F, Song ZH, Wei GS, Qiao JL. Crystallization behavior of nylon-6 confined among ultra-fine full-vulcanized rubber particles [J]. Polymer, 2004, 45: 6959–6965.
    [14] Peng J, Zhang XH, Qiao JL, Wei GS. Radiation preparation of ultrafine carboxylated styrene–butadiene rubber powders and application for nylon6 as an impact modifier [J]. J Appl Polym Sci, 2002, 86: 3040–3046.
    [15] Ramsteiner F, Heckmann W, McKee GE, Breulmann M. Influence of void formation on impact toughness in rubber modified styrenic-polymers [J]. Polymer, 2002, 43, 5995–6003.
    [16] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56.
    [17] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363:603-605.
    [18] Bethune DS, Kiang CH, de vries MS, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls [J]. Nature, 1993,363:605
    [19] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381:678
    [20] Tans SJ, Devoret MH, Dai H, et al. Individual single-wall carbon nanotubes as quantum wires [J]. Nature,1997,386:474
    [21] De Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source [J]. Science,1995,270:1179
    [22] Ebbesen TW.Carbon nanotubes.Phys Today[J],1996,49:26-32
    [23]周庆祥,肖军平,汪卫东等.碳纳米管应用研究进展[J].化工进展,2006,7:750-753.
    [24]朱艳娟,邓淑华,易双萍等.水热法合成氧化镶-二氧化硅催化剂及其用于碳纳米管的制备[J].无机材料学报,2003,18:1267-1271.
    [25]钟小华,冯建民,瞧小花等.化学气相反应合成单分散性碳纳米管研究[J].材料工程,2007,10:55-59
    [26]卢怡,朱珍平,刘振宇.催化剂对爆炸法合成碳纳米管的影响[J].新型碳材料。2004,1:1-5.
    [27]姜靖雯,彭峰.碳纳米管应用研究现状与进展[J].材料科学与工程学报,2003,3:464-467.
    [28]董树荣,徐江平,王春生等.催化热分解制备碳纳米管的研究[J].炭素,1998,3:28-33.
    [29]朴玲钰,周兴政,陈久岭等.A120,气凝胶负载钴催化剂催化甲烷裂解制备碳纳米管[J].四川大学学报(工程科学版),2002, 5:42-46.
    [30]黄德超,黄德欢.碳纳米管材料及应用[J].物理学进, 2004(3):274-287.
    [31]王敏炜,李凤仪,彭年才.合成碳纳米管的镶基催化剂中镧的作用[J].南昌大学学报(理科版),2002, 7:381-384.
    [32]朱绍文,贾志杰.碳纳米管及其应用的研究现状[J].功能材料,2004,2:1 19-120.
    [33] Winems I, Konya Z,Colomer GF,et a1.Control of the outer diameter of thin carbo nanotubes synthesized by catalytic decom-positionof hydrocarbons [J].Chem Phys Lett,2000,317:71-76.
    [34]卢锦花,阎鑫.碳纳米管制备技术的最新进展[J].炭素技术,2003,5:34-37.
    [35] Carrol DL, Blase X, Charlier JC, et al. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes [J]. Phys Rev Lett,1998, 81:2332.
    [36] Rao AM, Eklund PC, Bandow S, et al. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering [J]. Nature,1997, 388:257.
    [37] Dresselhaus MS. Nanotechnology: New Tricks with Nanotubes [J]. Nature, 1998, 391:19.
    [38] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: Graphitic microtubules [J]. Phys Rev Lett, 1992, 68:1579.
    [39] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules [J]. Appl Phys Lett, 1992, 60:2204.
    [40] de Heer WA, Bacsa WS, ChetelainA, et al. Aligned carbon nanotubes films: production and optical and electronic properties[J]. Science, 1995, 268:845.
    [41] Niu CM, Sichel EK, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Appl Phys Lett. 1997, 70:1480.
    [42] Che G, Lakshmi BB, Fisher ER, et al. Carbon nanotubule membranes for electrochemical energy storage and production [J]. Nature. 1998,393:346.
    [43] Dai HJ. Carbon nanotubes: opportunities and challenges [J]. Surf Sci, 2002, 500:218.
    [44] Choi WB, Chung DS, Kang JH, et al. Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Appl Phys Lett,1999,75:3129.
    [45] Wagner HD, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J]. Appl Phys Lett, 1998, 72:2093.
    [46] Cheng HM, Yang QH, Liu C, et al. Hydrogen storage in carbon nanotubes [J]. Carbon 2001, 39: 1447.
    [47] Planeix JM, Coustel N, et al. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. J Am Chem Soc. 1994, 116:7936.
    [48]陈平,王德中.环氧树脂及其应用[M].北京,化学工业出版社, 2004: 1-2.
    [49]王德中,环氧树脂生产与应用.北京,化学工业出版社, 2004: 2-3.
    [50]胡志鹏.我国环氧树脂市场发展综述[J].江苏氯碱, 2008,(02):16-20
    [51]刘竞超等.纳米SiO2/环氧树脂复合材料的制备与性能[J].湘潭大学自然科学学报,1999, 21(3): 36-39.
    [52] Cao YM, Sun J, Yu DM. Proceedings of the 6th international conference on properties and applications of dielectric materials [J]. 2000, (1-2): 903-904.
    [53] Ng CB, Schadler LS, et a1. Synthesis and mechanical properties of TiO2-epoxy nanocomposites [J]. Nanostruct Mater, 1999, 12: 507-510.
    [54]李蕾,陈建峰,邹海魁,王国全.纳米碳酸钙作为环氧树脂增韧材料的研究[J].北京化工大学学报:自然科学版, 2005, 32(2): 1-4.
    [55] Huang CJ, Fu SY, Zhang YH, Lauke B, Li LF, Ye L. Cryogenic properties of SiO2/epoxy nanocomposites [J]. Cryogenics, 2005, 45: 450–454.
    [56] Singh RP, Zhang M, Chan D. Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction [J]. J Mater Sci, 2002, 37: 781-788.
    [57] David N, Richard ER. Rigid-particle toughening of glassy polymers [J]. Polymer, 2003, 44: 2351-2362.
    [58] Makoto, et al. Fracture toughness of spherical silica-filled epoxy adhesives [J]. Int J Adhes Adhes, 2001, 21(55):389-396.
    [59]张小华,徐伟箭.无机纳米粒子在环氧树脂增韧改性中的应用[J].高分子通报. 2005 (6): 100-104,112.
    [60] Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16): 5194.
    [61] Chen L, Pang XJ, Qu MZ, et al. Fabrication and characterization of polycarbonate/carbon nanotubes composites[J]. Composites Part A, 2006, 37 (9): 1485.
    [62] Zhu BK, Xie SH, Xu ZK, et al. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites[J]. Compos Sci Technol, 2006, 66(3-4): 548.
    [63] Zhang ZN, Zhang J, Chen P, et al. Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing[J]. Carbon, 2006,44 (4): 692.
    [64] Ray SS, Vaudreuil S, Maazouz A, et al. Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix[J]. J Nanosci Nanotechnol, 2006, 6(7): 2191.
    [65] Li X, Huang YD, Li J. Study on Synthesis and Dispersion Characteristics of MWNTs/PBO Composites Prepared by In-situ Polymerization[J]. Iranian Polym J, 2006, 15(4): 317.
    [66] Showkat AM, Lee KP, Gopalan AI , et al. Characterization and preparation of new multiwall carbon nanotube/conducting polymer composites by in situ polymerization[J]. J Appl Polym Sci, 2006, 101(6): 3721.
    [67] Ajayan PM, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265: 1212.
    [68] Coleman JN, Khan U, Gunpko YK. Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv Mater, 2006, 18: 689.
    [69] Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites[J]. Appl Phys Lett, 1998, 73(26): 3842.
    [70] Breton Y, Desarmot G, Salvetat JP, et al. Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology[J]. Carbon, 2004, 42(5-6): 1027.
    [71] Bai J. Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix[J]. Carbon, 2003, 41(6): 1325.
    [72] Zhuang GS, Sui GX, Sun ZS, et al. Pseudoreinforcement effect of multiwalled carbon nanotubes in epoxy matrix composites[J]. J Appl Polym Sci, 2006, 102(4): 3664.
    [73] Moniruzzaman M, Du FM, Romero N, et al. Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method[J]. Polymer, 2006, 47(1): 293.
    [74] Kim JA, Seong DG, Kang TJ, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites[J]. Carbon, 2006, 44 (10): 1898.
    [75] Zhu J, Kim JD, Peng HQ, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Let, 2003, 3(8): 1107.
    [76]汪华锋,李振华,王新庆等.纳米碳管/环氧树脂复合材料的制备及力学性能[J].复合材料学报, 2004 , 21(5): 48.
    [77]郑亚萍,陈青华,陈立新等.纳米碳管/环氧树脂纳米复合材料的研究[J].高分子材料与工程, 2006, 22(4): 216.
    [78] Xie X L, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review[J]. Mater Sci Eng R, 2005, 49(4): 89.
    [79]李贞,段跃新,梁志勇.纳米碳管的分散对其增强环氧树脂强度的影响[J].玻璃钢/复合材料, 2005, (4): 20.
    [80] Gong XY, Liu J , Baskaran S, et al. Load transfer and deformation mechanisms in carbon nanotubes-polystyrene composites[J]. Chem Mater, 2000, 12(4): 1049.
    [81] Wang JG, Fang ZP, Gu AJ, et al. Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix[J]. J Appl Polym Sci, 2006, 100(1): 97.
    [82] Gojny FH, Schulte K. Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites[J]. Compos Sci Technol, 2004, 64(15): 2303.
    [83]刘建德,路梅,梁天培.溶剂对碳纳米管/环氧树脂复合材料力热性能的影响[J].机械设计与研究, 2005, 21(4): 81.
    [84] Biercuk MJ, Llaguno MC, Radosavljevic M, et al. Carbon nanotube composites for thermal management[J]. Appl Phys Lett, 2002, 80(15): 2767.
    [85] Choi ES, Brooks JS, Eaton DL, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing[J]. J App Phys, 2003, 94(9): 6034.
    [86] Du FM, Guthy C, Kashiwagi T, et al. An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity[J]. J Polym Sci, Part B: Polym Phys, 2006, 44(10): 1513.
    [87] Bryning MB, Islam MF, Kikkawa JM, et al. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites[J]. Adv Mater, 2005, 17(9): 1186.
    [88] Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation[J]. Composites Part A, 2003, 34(8): 689.
    [89] Li N, Huang Y, Du F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Lett, 2006, 6(6): 1141.
    [90] Moisala A, Li Q , Kinloch IA, et al. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites[J]. Compos Sci Technol, 2006, 66(10): 1285.
    [91] Sandler J KW, Kirk JE , Kinloch IA , et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44 (19): 5893。
    [92] Song YS, Youn JR. Properties of epoxy nanocomposites filled with carbon nanomaterials[J]. e-Polymer, 2004, 080: 1.
    [93]夏顺德.重复使用运载器贮箱的研制现状[J].导弹与航天运载技术, 2001 (2): 12-18.
    [94] Reed PR, et a1. Shear/compressive fatigue of insulation systems at low temperature [J]. Cryogenics, 1995, 35(11): 685-688.
    [95] Baynham DE, et a1. Low temperature tensile and shear/tension properties of composites materials with electrically insulating barrier films [J]. Adv Cryo Eng, 1998, 44: 197-204.
    [96] Hartwig G. Status and future of fiber composities [J]. Adv Cryo Eng, 1994. 40: 961-975.
    [97] Hartwig G. Low-temperature properties of epoxy resins and composities [J]. Adv Cryo Eng 1978, 24: 17-36.
    [98] Reed RP, Walsh RP. Tensile properties of resins at low temperatures [J]. Adv Cryo Eng, 1994, 40: 1129-1136.
    [99] Sawa F, Nishijima S l, Ohtani Y, et al. Fracture toughness and relaxation of epoxy resins at cryogenic temperatures [J]. Adv Cryo Eng, 1994, 40: 1113-1119.
    [100] Reed RP, Schramm RE, Clark AF. Mechanical, thermal, and electrical properties of selected polymers [J]. Cryogenics, 1973: (2): 67-82.
    [101] Baymham DE, Evans D, Gamage SJ, et a1. Transverse mechanical properties of glass reinforced composite materials at 4 K [J]. Cryogenics, 1998, 38(1): 61-64.
    [102] Reed RP, Golda M. Cryogenic properties of unidirectional composites [J]. Cryogenics, 1994, 34 (11): 909-928.
    [103] Nishijimal S, Okada T, Honda Y. Evaluation of epoxy resin by positron annihilation for cryogenic use [J]. Adv Cryo Eng, 1994, 40: 1137-1144.
    [104] Hartwig G, Endres K, Haider O. Support elements with negative thermal expansion [J]. Adv Cryo Eng, 1994, 40: 1107-1112.
    [105] Pannkoke K. Static and fatigue properties of UD carbon fibre composities at 77 K. [J]. Adv Cryo Eng, 1994, 40: 1025-1034.
    [106] Anashkin OP, Keilin VE, Patrikeev VM. Cryogenic vacuum tight adhesive [J]. Cryogenics, 1999, 39(9): 795-798.
    [107] Ashworth T, Rechowicz M. Properties of materials—I. application of adhesives [J]. Cryogenics, 1968, 8(6): 361-363.
    [108] Kilik R, Davies R. Mechanical properties of adhesive filled with metal powders [J]. Int J Adhes Adhes, 1989, 9(4): 224-228.
    [109]天津市合成材料工业研究所.环氧树脂与环氧化物[M].天津人民出版社, 1974.
    [110]李桂林.环氧树脂与环氧涂料[M].化学工业出版社. 2003.
    [111] Ueki T, Nishijima S, Izumi Y. Designing of epoxy resin systems for cryogenic use [J]. Cryogenics 2005, 45 (2): 141-148.
    [112]俞计华.盘毅,胡芸等.低粘度液态双酚F型环氧树脂性能研究[J].热固性树脂, 2001, 16 (4): 1-2.
    [113] Finn SR, et al. J Soc Chem Ind, London, 1950, 69(2): S49.
    [114]世界精细化工产品手册续编.化工部科技情报研究所[M], 1986:5.
    [115]中国化工产品大会上卷.化学工业出版社[M],北京, 1994:7.
    [116] Zhang Z, Evans D. Investigation of fracture properties of epoxy at low temperatures [J]. Polym Eng Sci, 2003, 43 (5): 1071-1080.
    [117] Evans D, Canfer SJ. A new resin system for the impregnation and bonding of large magnet coils[R]. Rutherford Laboratory Internal Report, 1999.
    [118] Evans D, Canfer SJ. A new resin system for impregnation and bonding of large magnet coils [J]. Proceeding of the 17th International Cryogenic Engineering Conference, 1998.
    [119] Evans D, Zhang Z. The work of fracture of epoxy resins at temperatures to 4K [J]. Adv Cryog Eng, 2000, 46: 235-242.
    [1] Ueki T, Nishijima S, Izumi Y. Designing of epoxy resin systems for cryogenic use [J]. Cryogenics, 2005, 45 (2): 141-148.
    [2]张楷亮,王立新等.有机蒙脱石增强环氧树脂纳米复合材料的研究[M].塑料工业, 2001, 29(3): 27-28.
    [3]惠雪梅,张炜,王晓洁.环氧树脂纳米复合材料研究进展[J].合成树脂及塑料, 2003, 20(6): 62-65.
    [4]吴培熙,张留城编著.聚合物共混改性[M].北京:中国轻工业出版社, 1996: 311-335.
    [5] Yee AF, Pearson RA. Toughening mechanisms in elastomer-modified epoxies [J]. J Mater Sci, 1986, 21: 2462-2474.
    [6] Pearson RA, Yee AF. Toughening mechanisms in elastomer-modified epoxies [J]. J Mater Sci, 1986, 21: 2475-2488.
    [7] Pearson RA, Yee AF. Toughening mechanisms in elastomer-modified epoxies [J]. J Mater Sci, 1989, 24: 2571-2580.
    [8] McGarry FJ. Effect of rubber particle size on deformation mechanisms in glassy epoxy [J]. Polym Eng Sci, 1973, 13(1): 29-34
    [9] Peng J, Zhang XH, Qiao JL , et al. Radiation preparation of ultrafine carboxylated styrene-butadiene rubber powders and application for nylon 6 as an impact modifier[J]. J Appl Polym Sci, 2002, 86(12): 3040-3046
    [10] Zhang ML, Liu YQ, Zhang XH, et al. The effect of elastomeric nano-particles on the mechanical properties and crystallization behavior of polypropylene [J]. Polymer, 2002, 43(19): 5133-5138.
    [11] Gao JM, Lu YJ, Wei GS, et al. Effect of radiation on the crosslinking and branching of polypropylene [J]. J Appl Polym Sci, 2002, 85(8): 1758-1764.
    [12] Liu YQ, Zhang XH , Wei GS, et al. Special effect of ultra-fine rubber particleson plastic toughening[J]. Chin J Polym Sci, 2002, 20( 2): 93-98.
    [13] Liu YQ, Zhang XH, Gao HM, et al. Toughening of polypropylene by combined rubber system of ultrafine full-vulcanized powdered rubber and SBS [J]. Polymer, 2004, 45(1): 275-286.
    [14] Liu YQ, Zhang ML, Zhang XH, et al. Toughening polypropylene with nanoscale rubber particles[J]. Macromol Symp, 2003, 193: 81-84.
    [15] Zhang XH, Wei GS, Liu YQ, et al. Study of a new route by which to make fully cured thermoplastic elastomers with plastics and ultrafine powdered rubber [J]. Macromol Symp,2003, 193: 261-276.
    [16] Huang F, Liu YQ, Zhang XH, et al. Effect of elastomeric nanoparticles on toughness and heat resistance of epoxy resins [J]. Macromol Rap Commun, 2002, 23(13): 786-790.
    [17] Wang QG, Zhang XH, Qiao JL. Exfoliated sodium-montmorillonite in nitrile butadiene rubber nanocomposites with good properties [J]. Chin Sci Bull, 2009, 54(5): 877-879.
    [18] Gui H, Zhang XH, Dong WF, et al. Effect of rubbers on the flame retardancy of EVA/ultrafine fully vulcanized powdered rubber/nanomagnesium hydroxide ternary composites [J]. Polym Compos,2007,28(4): 479-483.
    [19] Wang QG, Zhang XH, Dong WF, et al. Novel rigid poly(vinyl chloride) ternary nanocomposites containing ultrafine full-vulcanized powdered rubber and untreated nano-sized calcium carbonate[J]. Mater Lett, 2007, 61(4-5): 1174-1177.
    [20] Dong WF, Zhang XH, Liu YQ, et al. Effect of rubber on properties of nylon-6/unmodified clay/rubber nanocomposites [J]. Eur Polym J, 2006, 42(10): 2515-2522.
    [21] Wang QG, Zhang XH, Liu SY, et al. Ultrafine full-vulcanized powdered rubbers/PVC compounds with higher toughness and higher heat resistance [J]. Polymer, 2005, 46(24): 10614-10617.
    [22] Ma HY, Wei GS, Liu YQ, et al. Effect of elastomeric nanoparticles on properties of phenolic resin [J]. Polymer, 2005, 46(23): 10568-10573.
    [23] Dong WF, Liu YQ, Zhang XH, et al. Preparation of high barrier and exfoliated-type nylon-6/ultrafine full-vulcanized powdered rubber/clay nanocomposites [J]. Macromolecules, 2005, 38(11): 4551-4553.
    [24] Huang F, Liu YQ, Zhang XH, et al. Interface and properties of epoxy resin modified by elastomeric nano-particles[J]. Sci China Ser B-Chem, 2005, 48(2): 148-155.
    [25] Zhang XH, Liu YQ, Gao HM, et al. Crystallization behavior of nylon-6 confined among ultra-fine full-vulcanized rubber particles [J]. Polymer, 2004, 45(20): 6959-6965.
    [26] Su XQ, Hua YQ, Qiao JL, et al. The relationship between microstructure and properties in PP/rubber powder/nano-CaCO3 ternary blends [J]. Macromol Mater Eng, 2004, 289(3): 275-280.
    [27] Qiao J, Wei G, Zhang X, et al. US Patent, 6 423 760, 2002-07-23.
    [28] McGarry FJ. Rubber-Toughened Thermosets [M]. In: Charles B. Arends. Polymer Toughening. New York: Marcel Dekker Inc, 1999. 175-188.
    [29] Liu Y, Zhang X, Wei G, et al. Special effect of Ultra-fine rubber particles on plastic toughening[J]. Chinese J of Polym Sci, 2002, 20: 93-98.
    [30] Huang F, Liu Y, Zhang X, et al. Effect of elastomeric Nano-particles on toughness and heat resistance of epoxy resin [J]. Macromol Rapid Commun, 2002, 23: 786-790.
    [31] Zhang Z, D. Evans. Investigation of fracture properties of epoxy at low temperatures [J]. Polym Eng Sci, 2003, 43 (5): 1071-1080.
    [32] Gosnell RB, Levine HH. Some Effects of structure polymer's performance cryogenic adhesive [J]. J Macromol Sci, Chem, 1969, A3 (7): 1381-1393.
    [33] Liu YQ, Fan ZQ, Ma HY, et al. Application of nano powdered rubber in friction materials [J]. Wear, 2006, 261(2): 225-229.
    [34] YangJP, Chen ZK, Yang G, Fu SY, Ye L. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer [J]. Polymer, 2008, 49: 3168–3175.
    [35] Chen ZK, Yang G, Yang JP, Fu SY, Ye L, Huang YG. Simultaneously increasingcryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether [J]. Polymer, 2009, 50(5):1316-1323.
    [36] Benthem JP, Koiter WT (1975) In: Shih GC (ed) Mechanical fracture, vol 1. Methods of analysis and solutions of crack problems. Noordhoff International Publishing, Leyden, p 155.
    [37]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990.
    [38]姚献东,赵益汝,季根忠,孙旭东等.正电子淹没技术在聚合物中的应用[J].工程塑料应用,2003, 31(11):39.
    [39]树脂浇铸体拉伸性能试验方法[S].GB/T 2568-1995.
    [40] Fu SY, Pan QY, Huang CJ, Yang G, Liu XH, Ye L, Mai YW. A preliminary study on cryogenic mechanical properties of epoxy blend matrices and SiO2/epoxy nanocomposites [J]. Key Eng Mater, 2006, 312: 211.
    [41] Yang G, Fu SY, Yang JP. Preparation and mechanical properties of modified epoxy resins with flexible diamines [J]. Polymer, 2007, 48: 302.
    [42] Yang G, Zheng B, Yang JP, Xu GS, Fu SY. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone) [J]. J Polym Sci, Part A: Polym Chem, 2008, 46:612.
    [43] Zhang YH, Wu JT, Fu SY, Yang SY, Li Y, Fan L. Studies on characterization and cryogenic mechanical properties of polyimide-layered silicate nanocomposite films [J]. Polymer, 2004, 45: 7579.
    [44]殷敬华,莫志深主编.现代高分子物理学[M].北京:科学出版社, 2001, 222.
    [45] Azimi HR, Pearson RA, Hertzberg RW. Fatigue of rubber-modified epoxies: effect of particle size and volume fraction [J]. J Mater Sci, 1996, 31: 3777-3789.
    [46] Yamaoka H, Miyata K, Yanot O. Cryogenic properties of engineering plastic films [J]. Cryogenics, 1995, 35: 787.
    [47] Jose M, Parada R, Percec V. Interchain electron donor-acceptor complexes: A model to studay polymer-polymer miscibility [J]. Macromolecules, 1986, 19: 55-64.
    [48] Pearce EM, Kwei TK, Min BY. Polymer compatibilization through hydrogenbonding [J]. J Macromol Sci, Chem, 1984, A21:1181-1216.
    [49] Kwei TK. The Effect of hydrogen bonding on the glass transition temperatures of polymer mixtures [J]. J Polym Sci, Polym Lett Ed, 1984, 22:307-313.
    [1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56.
    [2] Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbonnanotubes and their composites through the use of Raman spectroscopy [J].Composites Part A, 2001, 32 (3-4): 401.
    [3] Gao GH, Cagin T, Goddard WA. Energetics, structure, mechanical andvibrational properties of single-walled carbon nanotubes [J]. Nanotechnology,1998,9(3): 184.
    [4] Meo M, Rossi M. Tensile failure prediction of single wall carbon nanotube [J].Eng Fract Mech, 2006, 73 (17): 2589.
    [5] Lau KT, Lu M, Liao K. Improved mechanical properties of coiled carbonnanotubes reinforced epoxy nanocomposites [J]. Composites Part A, 2006,37(10):1837.
    [6] Schulte K, Gojny FH, Wichmann MHG, et al. Polymer nanocomposites: chances,risks and potential to improve the mechanical and physical properties [J].Materialwiss Werkstofftech, 2006, 37(9): 698.
    [7] Zhang JL, Cui S. ProgChem, 2006, 18(10): 1313.
    [8] Chang TE, Kisliuk A, Rhodes SM, et al. Conductivity and mechanical propertiesof well-dispersed single-wall carbon nanotube/polystyrene composite [J].Polymer, 2006, 47(22): 7740.
    [9] Olek M, Kempa K, Giersig M. Multiwall carbon nanotubes-based composites -mechanical characterization using the nanoindentation technique [J]. Int J PolymMater, 2006, 97(9): 1235.
    [10] Ghose S, Watson KA, Sun KJ, et al. High temperature resin/carbon nanotubecomposite fabrication[J]. Compos Sci Technol, 2006, 66(13): 1995.
    [11] Uchida T, Kumar S. Single wall carbon nanotube dispersion and exfoliation inpolymers [J]. J Appl Polym Sci, 2005, 98: 985.
    [12] de Heer WA. Nanotubes and the pursuit of applications [J]. MRS Bull, 2004, 29(4): 281.
    [13] Ajayan PM, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formedby cutting a polymer resin-nanotube composite [J]. Science, 1994, 265: 1212.
    [14] Kint DPR, SeeleyG, GioBatta M, et al. Structure and properties of epoxy-basedlayered silicate nanocomposites [J]. J Macromol Sci, Phys, 2005, B44(6): 1021.
    [15] Miyagawa H, Misra M, Drzal LT, et al. Fracture toughness and impact strengthof anhydride-cured biobased epoxy [J]. Polym Eng Sci, 2005, 45(4): 487.
    [16] Unnikrishnan KP, Thachil ET. Toughening of epoxy resins [J]. Des MonomerPolym, 2006, 9(2): 129.
    [17] Seo KS, Kim DS. Curing behavior and structure of an epoxy/clay nanocompositesystem [J]. Polym Eng Sci, 2006, 46(9): 1318.
    [18] Penn LS, Wang H. Handbook of Composites [M], London: Chapman & Hall,1998.
    [19] Naous W, Yu XY, Zhang QX, et al. Morphology, tensile properties, and fracturetoughness of epoxy/Al2O3 nanocomposites [J]. J Polym Sci Part B: Polym Phys,2006,44(10): 1466
    [20] Pervin F, Zhou YX, Rangari VK, et al. Testing and evaluation on the thermal andmechanical properties of carbon nano fiber reinforced SC-15 epoxy [J]. MaterSci Eng A, 2005, 405(1-2): 246.
    [21] Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbonnanotubes [J]. Macromolecules, 2006, 39(16): 5194.
    [22] Chen L, Pang XJ, Qu MZ, et al. Fabrication and characterization ofpolycarbonate/carbon nanotubes composites[J]. Composites Part A, 2006, 37 (9):1485.
    [23] Zhu BK, Xie SH, Xu ZK, et al. Preparation and properties of thepolyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites [J].Compos Sci Technol, 2006, 66(3-4): 548.
    [24] Zhang ZN, Zhang J, Chen P, et al. Enhanced interactions between multi-walledcarbon nanotubes and polystyrene induced by melt mixing [J]. Carbon, 2006, 44(4): 692.
    [25] Ray SS, Vaudreuil S, Maazouz A, et al. Dispersion of multi-walled carbonnanotubes in biodegradable poly(butylene succinate) matrix[J]. J NanosciNanotechnol, 2006, 6(7): 2191.
    [26] Li X, Huang YD, Li J. Study on Synthesis and Dispersion Characteristics ofMWNTs/PBO Composites Prepared by In-situ Polymerization [J]. Iranian PolymJ, 2006, 15(4): 317.
    [27] Showkat AM, Lee KP, Gopalan Al, et al. Characterization and preparation ofnew multiwall carbon nanotube/conducting polymer composites by in situpolymerization [J]. J Appl Polym Sci, 2006, 101(6): 3721.
    [28] Coleman JN, Khan U, Gunpko YK. Mechanical reinforcement of polymers usingcarbon nanotubes [J]. Adv Mater, 2006, 18: 689.
    [29] Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxycomposites [J]. Appl Phys Lett, 1998, 73(26): 3842.
    [30] Zhuang GS, Sui GX, Sun ZS, et al. Pseudoreinforcement effect of multiwalledcarbon nanotubes in epoxy matrix composites [J]. J Appl Polym Sci, 2006,102(4): 3664.
    [31] Zhu J, Kim JD, Peng HQ, et al. Improving the dispersion and integration ofsingle-walled carbon nanotubes in epoxy composites through functionalization[J] Nano Lett, 2003, 3(8): 1107
    [32] Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes inpolymer matrix: a review [J]. Mater Sci Eng, R, 2005, 49(4): 89.
    [33]李贞,段跃新,梁志勇.纳米碳管的分散对其增强环氧树脂强度的影响[J].玻璃钢/复合材料, 2005, (4): 20.
    [34] Gojny FH, Schulte K. Functionalisation effect on the thermo-mechanicalbehaviour of multi-wall carbon nanotube/epoxy-composites [J]. Compos SciTechnol, 2004, 64(15): 2303
    [35] Du FM, Guthy C, Kashiwagi T, et al. An infiltration method for preparingsingle-wall nanotube/epoxy composites with improved thermal conductivity [J].J Polym Sci Part B: Polym Phys, 2006, 44(10): 1513.
    [36] Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on theimprovement efficiency of the mechanical and electrical properties ofnanocomposites—experimental investigation [J]. Composites Part A, 2003, 34(8):689.
    [37] Moisala A, Li Q, Kinloch IA, et al. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites [J]. Compos Sci Technol,2006,66(10): 1285.
    [38] Zhu J, Kim JD, Peng HQ, et al. Improving the dispersion and integration ofsingle-walled carbon nanotubes in epoxy composites through functionalization[J] Nano Lett, 2003, 3(8): 1107
    [39] Song YS, Youn JR. Properties of epoxy nanocomposites filled with carbonnanomaterials [J]. e-Polymer, 2004, 080: 1.
    [40] Zhang CS, Ni QQ, Fu SY, Kurashiki K. Electromagnetic interference shieldingeffect of nanocomposites with carbon nanotube and shape memory polymer[J].Compos Sci Technol, 2007, 67:2973-80.
    [41] Shen JF, Huang WS, Wu LP, Hu YH, Ye MX. Thermo-physical properties ofepoxy nanocomposites reinforced with amino-functionalized multi-walled carbonnanotubes[J]. Composites Part A, 2007, 38:1331-6.
    [42] Yang JP, Yang G, Xu G, Fu SY. Cryogenic mechanical behaviors ofMMT/epoxy nanocomposites. Compos Sci Technol, 2007, 67:2934-40.
    [43] Yang JP, Chen ZK, Yang G, Fu SY, Ye L. Simultaneous improvements in thecryogenic tensile strength, ductility and impact strength of epoxy resins by ahyperbranched polymer [J]. Polymer, 2008, 49:3168-75.
    [44] Basara C, Yilmazer U, Bayram G. Synthesis and Characterization of EpoxyBased Nanocomposites [J]. J Appl Polym Sci, 2005, 98:1081-6.
    [45] Huang CJ, Fu SY, Zhang YH, Lauke B, Li LF, Ye L. Cryogenic properties ofSiO2/epoxy nanocomposites[J]. Cryogenics, 2005, 45: 450-4.
    [46] Wu FY, Cheng HM. Structure and thermal expansion of multi-walled carbonnanotubes before and after high temperature treatment [J]. J Phys D: Appl Phys,2005, 38: 4302-7.
    [47] Rosso P, Friedrich K, Wollny A. Evaluation of the adhesion quality betweendifferently treated carbon fibers and an in-situ polymerized polyamide 12 system[J]. J Macromol Sci-Phys, 2002, 41:745-59.
    [48] Ueki T, Nishijima S, Izumi Y. Designing of epoxy resin systems for cryogenicuse [J]. Cryogenics, 2005, 45:141-8.
    [49] Yang G. Modification of cryogenic epoxy resins and development of cryogenicepoxy adhesives [D]. PhD Thesis. Tech Inst Phys Chem, Chin Acad Sci, Beijing,May 2007.
    [50] Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrixinterface adhesion and particle loading on mechanical properties ofparticulate-polymer composites [J]. Composites Part B, 2008, 39:933-61.
    [51] Fu SY, Lauke B. The elastic modulus of misaligned short-fiber-reinforcedpolymers [J]. Compos Sci Technol, 1998, 58:389-400.
    [52] Fu SY, Lauke B. An analytical characterization of the anisotropy of the elasticmodulus of misaligned short-fiber-reinforced polymers [J]. Compos Sci Technol,1998,58: 1961-72.
    [53] Dzenis Y. Materials science: Structural nanocomposites[J]. Science, 2008, 319:419-20.
    [54] Thostenson ET, Chou TW. Processing-structure-multi-functional propertyrelationship in carbon nanotube/epoxy composites [J]. Carbon, 2006, 44:3022-9.
    [55] Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K. Carbonnanotube-reinforced epoxy-composites: enhanced stiffness and fracturetoughness at low nanotube content [J]. Compos Sci Technol, 2004, 64:2363-71.
    [1] Kang BU, Jho JY, Kim J, Lee SS, Park M, Lim S, Choe CR. Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives [J]. J Appl Polym Sci, 2001, 79 (1): 38-48.
    [2] Arias ML, Frontini PM, Williams RJJ. Analysis of the damage zone around thecrack tip for two rubber-modified epoxy matrices exhibiting differenttoughenability [J]. Polymer, 2003, 44 (5): 1537-1546.
    [3] Hwang JF, Manson JA, Herztberg RW, Miller GA, Sperling LH.Structure-property relationships in rubber-toughened epoxies [J]. Polym Eng Sci,1989,29(20): 1466-1476.
    [4] Butta E, Levita G, Marchetti A, Lazeri A. Morphology and mechanicalproperties of amine-terminated butadiene-acrylonitrile/epoxy blends [J]. PolymEng Sci, 1986, 26(1): 63-73.
    [5] Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid(ATBN) rubber [J]. Eur Polym J, 2002, 38 (2): 251-264.
    [6] Kinloch AJ, Shaw SJ, Tod DA, Hunston DL. Deformation and fracturebehaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies[J]. Polymer 1983, 24 (10): 1341-1354.
    [7] Park SJ, Kim HC. Thermal stability and toughening of epoxy resin withpolysulfone resin [J]. J Polym Sci Part B: Polym Phys, 2001, 39(1): 121-128.
    [8] Kim HK, Char KH. Effect of phase separation on rheological properties duringthe isothermal curing of epoxy toughened with thermoplastic polymer [J]. IndEng Chem Res, 2000, 39 (4): 955-959.
    [9] Song XZ, Zheng SX, Huang JY, Zhu PP, Guo QP Miscibility and mechanicalproperties of tetrafunctional epoxy resin/phenolphthalein poly(ether ether ketone)blends [J] J Appl Polym Sci, 2001, 79 (4): 598-607
    [10] Oyanguren PA, Aizpurua B, Galante MJ, et al. Design of the ultimate behaviorof tetrafunctional epoxies modified with polysulfone by controllingmicrostructure development [J]. J Polym Sci Part B: Polym Phys, 1999, 37:2711-2752.
    [11] Blanco I, Cicala G, Faro CL, et al. Development of a toughened DGEBS/DDSsystem toward improved thermal and mechanical properties by the addition of atetrafunctional epoxy resin and a novel thermoplastic [J]. J Appl Polym Sci, 2003,89: 268-273.
    [12] Zhou XM, Jiang ZH. Sequence analysis of poly(ethersulfone) copolymers by13C NMR [J]. J Polym Sci Part B: Polym Phys, 2005, 43 (13): 1624-1630.
    [13] Yang G, Zheng B, Yang, JP, Xu GS, Fu SY. Preparation and cryogenicmechanical properties of epoxy resins modified by poly(ethersulfone). J PolymSci Part A: Polym Chem, 2008, 46(2): 612-624.
    [14] Takeda, T, Shindo, Y, Narita, F, et al. Tensile characterization of carbonnanotube-reinforced polymer composites at cryogenic temperatures: Experimensand multiscale simulations. Mater Trans, 2009, 50(3): 436-445.
    [15] Zhang CS, Ni QQ, Fu SY, Kurashiki K. Electromagnetic interference shieldingeffect of nanocomposites with carbon nanotube and shape memory polymer.Compos Sci Technol, 2007, 67:2973-80.
    [16] Thostenson, ET, Chou, TW. Processing-structure-multi-functional propertyrelationship in carbon nanotube/epoxy composites. Carbon, 2006, 44(14):3022-3029.
    [17] Benthem JP, Koiter WT (1975) In: Shih GC(ed) Mechanical fracture, vol 1.Methods of analysis and solutions of crack problems. Noordhoff InternationalPublishing, Leyden, p 155.
    [18] Sefton MS, McGrail PT, Peacock JA, Wilkinson SP, Crick RA, Davies M,Almen G. 19th Int SAMPE Tech Conf, 1987: 700.
    [19] Hill NE, Vaughan WE, Price AH, Davis M. Dielectric properties and molecularbehaviour [M]. van Nostrand Reinhold Co., New York, 1969.
    [20] Kumaraswamy GN, Ranganathaiah C, Deepa Urs MV, Ravikumar HB.Miscibility and phase separation in SAN/PMMA blends investigated by positronlifetime measurements [J]. Eur Polym J, 2006, 42: 2655-2666.
    [21] Li XG, Xiong Lei, Ma HY, Li HY, Yi XS. Toughness improvement ofPMR-type polyimide and laminated graphite systems by ex-situ concept [J]. JMater Sci, 2005, 40: 5067-5070.
    [22] Mimura K, Ito H, Fujioka H. Improvement of thermal and mechanical propertiesby control of morphologies in PES-modified epoxy resins [J]. Polymer 2000, 41(12), 4451-4459.
    [1] Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength,and toughness of nanorods and nanotubes [J]. Science, 1997, 277:1971.
    [2] Treacy MMJ, Ebessen TW, Gibsson JM. Exceptionally high Young's modulusobserved for individual carbon nanotubes[J]. Nature, 1996, 381:678.
    [3] Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, Clapp TG,DePaula RF, Liao XZ, Zhao YH, Zheng LX, Peterson DE, Zhu YT. Ultrastrong,stiff, and lightweight carbon-nanotube fibers[J]. Adv Mater, 2007, 19: 4198.
    [4] Yu MF, Lourie O, Dyer MJ, Kelly TF, Ruoff RS. Strength and breakingmechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000, 287: 637.
    [5] Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wallcarbon nanotubes and their mechanical properties [J]. Phys Rev Lett, 2000, 84:5552.
    [6] Calvert P. Nanotube composites: A recipe for strength. Nature, 1999, 399: 210.
    [7] Dzenis Y MATERIALS SCIENCE: structural nanocomposites [J]. Science, 2008,319:419.
    [8] Thostenson ET, Chou TW. Processing-structure-multi-functional propertyrelationship in carbon nanotube/epoxy composites [J]. Carbon, 2006, 44: 3022.
    [9] Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K. Carbonnanotube-reinforced epoxy-composites: enhanced stiffness and fracturetoughness at low nanotube content [J]. Compos Sci Technol, 2004, 64: 2363.
    [10] Seyhan AT, Gojny FH, Tanoglu M, Schulte K. Critical aspects related toprocessing of carbon nano tube/unsaturated thermoset polyester nanocomposites[J] Eur Polym J, 2007, 43 374
    [11] Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R. Propertiesof carbon nanotube-polymer composites aligned in a magnetic field [J]. Carbon,2007, 45: 2037.
    [12] Wardle BL, Saito DS, Garcia EJ, Hart AJ, de Villoria RG, Verploegen EA.Fabrication and characterization of ultra-high volume fraction aligned carbonnanotube polymer composites [J]. Adv Mater, 2008, 20 :2707.
    [13] Wang Z, Liang ZY, Wang B, Zhang C, Kramer L. Processing and propertyinvestigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resinmatrix nanocomposites[J]. Compos Part A, 2004, 35:1225.
    [14] Gou JH. Single-walled nanotube bucky paper and nanocomposite[J]. PolymIntern, 2006, 55:1283.
    [15] McCarthy B, Coleman JN, Czerw R, Dalton AB, Panhuis MI. A microscopic andspectroscopic study of interactions between carbon nanotubes and a conjugatedpolymer [J]. J Phys Chem B, 2002, 106 2210.
    [16] Wagner HD, Lourie O, Feldman Y, Tenne R. Stress-induced fragmentation ofmultiwall carbon nanotubes in a polymer matrix [J]. Appl Phys Lett, 1998, 72:188.
    [17] Cooper CA, Cohen SR, Barber AH, Wagner HD. Detachment of nanotubes froma polymer matrix [J]. Appl Phys Lett, 2002, 81: 3873.
    [18] Barber AH, Cohen SR, Wagner HD. Measurement of carbon nanotube-polymerinterfacial strength [J]. Appl Phys Lett, 2003, 82:4140.
    [19] Barber AH, Cohen SR, Kenig S, Wagner HD. Interfacial fracture energymeasurements for multi-walled carbon nanotubes pulled from a polymer matrix[J]. Compos Sci Technol,. 2004, 64:2283.
    [20] Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM. Continuous carbon nanotubereinforced composites[J]. Nano Lett, 2008, 8: 2762.
    [21] Buryachenko VA, Roy A. Effective elastic moduli of nanocomposites withprescribed random orientation of nanofibers [J]. Compos Part B, 2005, 36: 405.
    [22] Coleman JN, Cadek M, Ryan KP, Fonseca A, Nagy JB, Blau WJ, Ferreira MS.Reinforcement of polymers with carbon nanotubes. The role of an orderedpolymer interfacial region. Experiment and modeling [J]. Polymer, 2006, 47:8556.
    [23] Coleman JN, Khan U, Blau WJ, Gunko YK. Small but strong: A review of themechanical properties of carbon nanotube-polymer composites [J]. Carbon, 2006,44: 1624.
    [24] Ruoff RS, Lorents DC. Mechanical and thermal properties of carbonnanotubes[J]. Carbon, 1995, 33: 925.
    [25] Li F, Cheng HM, Bai S, Su G. Tensile strength of single-walled carbon nanotubesdirectly measured from their macroscopic ropes [J]. Appl Phys Lett, 2003,77: 3161.
    [26] Wei CY. Adhesion and reinforcement in carbon nanotube polymer composite [J].Appl Phys Lett, 2006, 88: 093108-1.
    [27] Fu SY, Lauke B. Effects of fiber length and fiber orientation distributions on thetensile strength of short fiber reinforced polymers(SFRP) [J]. Compos SciTechnol, 1996, 56: 1179.
    [28] Fu SY, Lauke B. The elastic modulus of misaligned short-fiber-reinforcedpolymers [J]. Compos Sci Technol,1998, 58: 389.
    [29] Fu SY, Lauke B. An analytical characterization of the anisotropy of the elasticmodulus of misaligned short-fiber-reinforced polymers [J]. Compos Sci Technol,1998,58:1961.
    [30] Lauke B, Fu SY. Strength anisotropy of misaligned short-fibre-reinforcedpolymers [J]. Compos Sci Technol, 1999,59: 699.
    [31] Fu SY, Lauke B, Mai YW. Science and engineering of short fibre reinforcedpolymers [M]; Woodhead: Abington Hall, Cambridge, 2009 (in press).
    [32] Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO.Direct mechanical measurement of the tensile strength and elastic modulus ofmultiwalled carbon nanotubes [J]. Mater Sci Eng A, 2002, 334:173.
    [33] Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, BurnhamNA, Forro L. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Phys Rev Lett, 1999, 82: 944.
    [34] Xie SS, Li W, Pan Z, Chang B, Sun L. Mechanical and physical properties oncarbon nanotube [J]. J Phys Chem Solids, 2000, 61:1153.
    [35] Chin W, Liu H, Lee Y. Effect of Fiber Length and Orientation Distribution on theelastic modulus of short fiber reinforced thermoplastics [J]. Polym Compos, 1988,9:27.
    [36] Fu SY, Lauke B, Zhang YH, Mai YW. On the post-mortem fracture surfacemorphology of short fiber reinforced thermoplastics [J]. Composites Part A, 2005,36: 987.
    [37] Fu SY, Lauke B, Li RKY, Mai YW. Effects of PA6,6/PP ratio on the mechanicalproperties of short glass fiber reinforced and rubber-toughened polyamide6,6/polypropylene blends[J]. Composites Part B, 2006, 37: 182.
    [38] Hull D. An Introduction to composite materials [M]; Cambridge: CambridgeUniversity Press, 1981, p. 57.
    [39] Piggott MR. Short fibre polymer composites: a fracture-based theory of fibrereinforcement [J]. J Compos Mater, 1994, 28:588.
    [40] Wagner HD. Nanotube-polymer adhesion: a mechanics approach [J]. Chem PhysLett, 2002, 361:57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700