用户名: 密码: 验证码:
α-单取代吡啶盐的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吡啶盐是一类重要的六元氮杂环有机芳香盐类化合物,在化学、材料及生物学领域具有广泛的应用前景。优异的光物理化学性能使其可以用作非线性光学材料、荧光材料、光敏材料、光引发剂等:而离子结构特性使其可以用作相转移催化剂、阳离子表面活性剂、离子液体等。近年来,吡啶盐在基因传送及超分子化学领域表现出的优异性能为其研究注入了新鲜活力。因此设计合成新型吡啶盐并研究其功能具有重要的理论意义和应用价值。
     在吡啶盐的几种合成方法中,吡喃盐与伯胺反应合成吡啶盐具有反应条件温和、产物易分离、产率高等优点,但到目前为止利用该方法合成口-单取代毗啶盐却未见报道。由于吡啶盐的性能与吡啶环上取代基的种类和位置有关,而a-单取代吡喃盐因其α-H的高反应活性,可能衍生出一系列新型吡啶盐,进而获得新性能。本课题组在前期工作中发现了由多取代环戊二烯合成α-单取代吡喃盐的新方法,可以得到不同结构的a-单取代吡喃盐,如2,4,5-三苯基吡喃盐和2,3,4,5-四苯基吡喃盐,研究表明这些a-单取代吡喃盐在一定条件下能与伯胺进行一步反应生成相应的a-单取代吡啶盐。这不仅实现了一系列新型吡啶盐的新方法合成,也突破了a-单取代毗啶盐不能由a-单取代毗喃盐直接制取的限制。以此为基础,本论文设计合成了一系列新型α-单取代吡啶盐,讨论了合成机理并研究了其在有机合成以及超分子化学领域的应用。具体的研究内容和结果如下:
     (1)a-单取代吡啶盐的合成。选取带有不同取代基的伯胺与2,4,5-三苯基吡喃盐和2,3,4,5-四苯基吡喃盐进行反应,探讨了反应的普遍性,研究了溶剂和取代基对反应的影响,利用核磁、质谱、红外、元素分析及单晶衍射等表征手段确定了产物结构。结果表明:a-单取代吡啶盐可以由a-单取代吡喃盐直接制取,吡喃环苯基取代基数量是反应能否发生的决定因素之一;
     (2)α-单取代吡啶盐的光环化反应。利用吡啶盐的光环化反应合成出菲啶盐类化合物,考察取代基对反应的影响,研究了菲啶盐的光谱性质和自组装性能。结果表明:当吡啶盐上带有强供电子基团时光环化反应不能发生;菲啶盐具有较好的荧光性质;在不同条件下菲啶盐可以形成具有不同形貌的微纳米结构;
     (3)α-单取代吡啶盐的阴离子识别研究。考察了带有氨基取代基的吡啶盐及具有钳形结构双吡啶盐在阴离子识别方面的应用,利用荧光、紫外光谱、核磁滴定及单晶表征研究了识别过程和识别机理。结果表明:1-(2-氨基苯)-2,4,5-三苯基吡啶盐是一种F-反应识别剂,具有很高的选择性,利用吡啶盐在F-作用下发生分子内环化反应生成1,3,4-三苯基吡啶[1,2-a]苯并咪唑实现对F-识别;1,1’-(1,3-亚苯基)-双-2,4,5-三苯基吡啶盐是一种NO3-识别剂,由于受体与阴离子间分子构型的匹配,利用氢键及电荷诱导效应使得双吡啶盐分子结构趋于平面化导致荧光增强从而达到识别目的;
     (4)α-单取代吡啶盐的分子内闭环反应研究。研究了在碱作用下(2-氨基苯)-吡啶盐发生分子内环化生成吡啶[1,2-a]苯并咪唑类化合物的反应,利用核磁、质谱和单晶衍射表征手段确定了产物的结构,讨论了溶剂、碱、反应温度、反应气氛及反应时间对反应的影响,确定了最优反应条件,并研究了这类化合物的荧光性质。结果表明:常温下,吡啶盐在氧气及碱作用下发生分子内环化反应生成吡啶[1,2-a]苯并咪唑:这类化合物具有较高荧光量子效率,硝基取代基的引入可以起到调变荧光的目的。
Pyridinium salts are a type of organic aromatic compounds with six-numbered N-heterocyclic cations and have wide applications in many fields covering chemistry, biology and materials science. Pyridinium salts can be used as non-linear optical materials, fluorescence materials, photosensitive materials, photoinitiators due to their excellent photophysical and photochemical properties. On the other hand, owing to their unique ionic structures, they can also be used as phase transfer catalysts, cationic surfactants, ionic liquids. In recent years, new applications expanded to gene transfer and supramolecular chemistry bring new energy to the pyridinium research. In this case, design and synthesis new pyridinum salts are of great significance.
     Among several synthetic approaches for pyridinium salts, the reaction of pyrylium salts with primary amines is a predominant method due to its mild reaction condition, easy separation of production and high yield. However, there is no report about the synthesis of a-monosubstituted pyridinium salts by using this method. The properties of pyridinium salts depend on the kind and the position of substituents on pyridinium rings. Due to the a-H of a-monosubstituted pyrydinium salts, it is possible to get a series of new pyridinium salts with novel functions. In our previous research, we found a new method to synthesize a-monosubstituted pyrylium salts from polysubstituted cyclopentadienes, such as2,4,5-triphenylpyrylium salt and2,3,4,5-tetraphenylpyrylium salt. We tried the reaction of them with various primary amines. It was found surprisingly that, in our case, a-monosubstituted pyridiniums were obtained directly from their a-monosubstituted pyrylium precursors. This result also proved the previous conclusion was wrong. This paper is aimed at the synthesis of new a-unsubstituted pyridinium salts, reaction mechanism discussion and applications in synthetic chemistry and supramolecular chemistry fields. The study consists of four parts as below:
     (1) Synthesis of a-unsubstituted pyridinium salts. Performed the reaction of2,4,5-triphenylpyrylium salt and2,3,4,5-tetraphenyl pyrylium salt with various primary amines. A series of a-monosubstituted pyridinium salts were synthesized and carefully characterized. It was found that a-monosubstituted pyridinium salts can be obtained directly from their a-monosubstituted pyrylium precursors, the number of the phenyl gourps is one of the key roles of this reaction;
     (2) The photocyclization of α-unsubstituted pyridinium salts. Phenanthridinium salts were synthesized by α-unsubstituted pyridinium salts photocyclization. It was found that the reaction did not occur when pyridinium salts with strong electron-donating substituents. And the spectra indicated that phenanthridinium salts have good fluorescence properties. Meanwhile, under different conditions phenanthridinium salts can form different crystal morphologies;
     (3) a-unsubstituted pyridinium salts as anions sensors. Pyridinium salts with amino substituent and dipodand bipyridinium salt were studied as anions sensors, the sensing and induce-fit process were examined by fluorescence spectra, UV-vis spectra, H NMR titration and single crystal. The results show that1-(2-aminophenyl)-2,4,5-triphenylpyridinium can be served as an efficient chemodosimeter for sensing fluoride ion, an intramolecular cyclization from pyridinium3q to pyrido[1,2-a]benzimidazole7a initiated by F-.1,1-(1,3-phenylene)bis-2,4,5-triphenylpyridinium could be served as an efficent NO3-sensor. Due to the match of moleculars' structures, hydrogen bond and the charge induction enhanced planarity of molecular5e. And the planarity of molecular induced the increasing of the fluorescence intensity;
     (4) Intramolecular cyclization of a-unsubstituted pyridinium salts. The intramolecular cyclizations from2-aminophenyl-pyridinium salts to pyrido[1,2-a]benzimidazole in the presence of base were studied. By studying reaction conditions, such as solvents, base, temperature, atmosphere, reaction time, the best reaction condition was confirmed. A series of pyrido[1,2-α]benzimidazoles were synthesized and carefully characterized. And the fluorescence spectra indicated that this kind of compounds with high quantum yield could be served as good fluorescence materials. The nitro substituent can modulate the fluorescence.
引文
[1]花文廷.杂环化学[M].北京:北京大学出版社,1991.
    [2]FENG X H, DUESLER E N,MARIANO P S. Pyridinium salts photochemistry in a concise route for synthesis of the trehazolin aminocyclitol,trehazolamine [J]. J. Org. Chem.,2005,70:5618-5623.
    [3]CHENG A C, CROFT L, ABDI M, et al. Synthetic entries to substituted bicyclic pyridones [J].Org. Lett.,2007,9:5175-5178.
    [4]YANG Y W, KUANG C X, JIN H,et al. Convenient synthesis of 2-aryl-1-haloindolizines from pyridinium salts and 2-aryl-1,1-dihaloalk-1-enes [J]. Synthesis,2011,21:3447-3452.
    [5]SOLDATENKOV A T, SOLDATOVA S A, SULEIMANOV R R, et al. Synthesis of pyrrolidine and tetrahydroazonine derivatives from N-[bis(ethoxycarbonyl)methyl]tetrahydro-pyridinium bromide and methyl acetylenedicarboxylate [J]. Russ. J. Org. Chem.,2011,47:1738-1741.
    [6]KEARNEY M, VANDERWAL C D. Synthesis of nitrogen heterocycles by the ring opening of pyridinium salts [J]. Angew. Chem. Int. Ed.,2006,45:7803-7806.
    [7]STEINHARDT S E, SILVERSTON J S, VANDERWAL C D. Stereocontrolled synthesis of z-dienes via an unexpected pericyclic cascade rearrangement of 5-amino-2,4-pentadienals [J]. J. Am. Chem. Soc,2008,130:7560-7561.
    [8]COR, B. J. Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups [J]. Ace. Chem. Res.,2006,39:383-393.
    [9]孟凡青,许东.有机吡啶盐分子在非线性光学领域中的应用[J].功能材料,2000,31:344-348.
    [10]BHOWMIK P K, HAN H, NEDELTCHEV A K. Synthesis and characterization of poly(pyridinium salt)s with organic counterions exhibiting both thermotropic liquid-crystalline and light-emitting properties [J]. J. Polym. Sci.,Part A:Polym. Chem.,2006,44:1028-1041.
    [11]PHILIPPE P L, SEBASTIANO C, FREDERIQUE L. Conformationally gated photoinduced processes within photosensitizer-acceptor dyads based on ruthenium(II) and osmium(Ⅱ) polypyridyl complexes with an appended pyridinium group [J]. Coor. Chem. Rev.,2008,252:2552-2571.
    [12]TAKAHASHI E, SANDA F, ENDO T. Novel Pyridinium salts as cationic thermal and photoinitiators and their photosensitization properties [J]. J. Polym. Sci.,Part A: Polym. Chem.,2002,40:1037-1046.
    [13]WANG D P, WANG M, WANG X N, et al. Influence of the built-in pyridinium salt on asymmetric epoxidation of substituted chromenes catalysed by chiral (pyrrolidine salen)Mn(III) complexes [J]. J. Mol. Catal. A:Chem.,2007,270:278-283.
    [14]NIRANJAN P S, SHUKLA R, UPADHYAY S K. Interactions of polyacrylamide with cationic surfactants:thermodynamic and surface parameters [J]. J. Surfact. Deterg.,2012,15:53-57.
    [15]MADAAN P, TYAGI V K. Quaternary pyridinium salts:a review [J]. J. Oleo. Sci., 2008,57:197-215.
    [16]GUENTHER S B, LIVI B, GERARD J F, et al. Preparation of epoxy/MCDEA networks modified with ionic liquids [J]. Polymer,2012,53:60-66.
    [17]CHANDRASHEKAR B N, KUMARA S, BAHADDURGHATTA E, et al. Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode:A voltammetric study [J]. J. Mol. Liq.,2012,165:168-172.'
    [18]CHENG Y F, WRIGHT S T, SIPES I G. Characterization of the inhibitory effects of N-butylpyridinium chloride and structurally related ionic liquids on organic cation transporters 1/2 and human toxic extrusion transporters 1/2-K in vitro and in vivo [J]. DrugMetab. Dispos.,2011,39:1755-1761.
    [19]DEBORAH C, NICHOLAS G. Biodegradation studies of ionic liquids [J]. Chem. Soc. Rev.,2010,39:600-637.
    [20]KELMAN D, KASHMAN Y, HILL R T, et al. Chemical warfare in the sea:the search for antibiotics from Red Sea corals and sponges [J]. Pure Appl. Chem.2009, 81:1113-1121.
    [21]TATSUO T. Antibacterial and bacterium adsorbing macromolecules [J]. Macromol. Mater. Eng.,2001,286:63-87.
    [22]PERNAK J, KALEWSKA J, KSYCIFISKA H, et al. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group [J]. Eur. J. Med. Chem.,2001,36:899-907.
    [23]KALASZ H, FUREZE J, TEKES K. Monitoring the pharmacokinetics of pyridinium aldoximes in the body [J]. Min-Rev. Med. Chem.,2009,9:596-610.
    [24]PERNAK J, ROGOZA J, MIRSKA I. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides [J]. Eur. J. Med. Chem.,2001,36: 313-320.
    [25]CHEN L J, BURKA L T. Chemical and enzymatic oxidation of furosemide: formation of pyridinium salts [J]. Chem. Res. Toxicol.,2007,20:1741-1744.
    [26]ZHU L, LU Y, MILLER D D, et al. Structural and formulation factors influencing pyridinium lipid-based gene transfer [J]. Bioconjugate Chem.,2008,19:2499-2512.
    [27]ABOUDERBALA L O, BELCHER W J, STEED J W, et al. Anion sensing'venus flytrap' host:a modular approach [J]. Chem. Commun.,2002,358-359.
    [28]WALLACE K J, BELCHER W J, STEED J W, et al. Slow anion exchange, conformational equilibria, and fluorescent sensing in venus flytrap aminopyridinium-based anion hosts [J]. J. Am. Chem. Soc,2003,125:9699-9715.
    [29]GONG W T, HIRATANI K. A novel amidepyridinium-based tripodal fluorescent chemo-sensor for phosphate ion via binding-induced excimer formation [J]. Tetrahedron Lett.,2008,49:5655-5657
    [30]WU D Q, ZHI, L J, BOD WELL G J, et al. Self-assembly of positively charged discotic PAHs:from nanofibers to nanotubes [J]. Angew. Chem. Int. Ed.,2007,46: 5417-5420.
    [31]WU D Q, FENG X L, TAKASE M, et al. Synthesis and self-assembly of dibenzo[jk,mn]naphtho[2,1,8-fgh]thebenidinium derivates [J]. Tetrahedron,2008,64: 11379-11386.
    [32]KATRITZKY A R, MARSON C M. Pyrylium mediated transformation of primary amino groups into other functional groups [J]. Angew. Chem. Int. Ed.,1984,23: 420-429.
    [33]KULL T, PETERS R. Ion pair directed lewis acid catalysis:asymmetric synthesis of trans-configured β-lactones [J]. Angew. Chem. Int. Ed.,2008,47:5461-5464.
    [34]VIEIRA R C, FALVEY D E. Solvent-mediated photoinduced electron transfer in a pyridinium ionic liquid [J]. J. Am. Chem. Soc,2008,130:1552-1553.
    [35]NI B K, ZHANG Q Y, HEADLEY A D. Design and synthesis of pyridinium chiral ionic liquids tethered to a urea functionality [J]. J. Org. Chem.,2006,71:9857-9860.
    [36]KATRITZKY A R, AWARTANI R. The preparation of a-unsubstituted pyridinium salts from primary amines [J]. Synthesis,1983,507-509.
    [37]KATRITZKY A R, CHERMPRAPAI A, PATEL R C, et al. Pyridinium ylides derived from pyryliums and amines and a novel rearrangement of 1-vinyl-1,2-dihydropyridines [J]. J. Org. Chem.,1982,47:492-497.
    [38]KATRITZKY A R, AWARTANI R, PATEL R C. Deethoxycarbonylation of 2-(ethoxycarbonyl)pyridinium salts with primary amines and competing SNANRORC reactions [J]. J. Org. Chem.,1982,47:498-502.
    [39]HUANG B Q, SANTOS S M, FELIX V, et al. Sulfate anion-templated assembly of a [2]catenane [J]. Chem. Commun.,2008,4610-4612.
    [40]GONG W T, BAO S, WANG F R, et al. Two-mode selective sensing of H2PO4 controlled by intramolecularhydrogen bonding as the valve [J]. Tetrahedron Lett.,2011,52:630-634.
    [41]NING G L, LI X C, MUNAKATA M, et al. Conversion of phenyl-substituted cyclopentadienes to pyrylium cations [J]. J. Org. Chem.,2004,69:1432-1434.
    [42]LI X C, NING G L, WU L P, et al. Silver(Ⅰ)-promoted oxidation and ring-enlargement reactions of unstrained hydrocarbons, polyphenyl-cyclopentadiene [J]. Chinese Chemical Letters,2002,13:1141-1142.
    [43]李新成,贡卫涛,宁桂玲,林源.三苯基环戊二烯的扩环反应[J].高等学校化学学报,2004,25:1282-1284.
    [44]GONG W T, NING G L, LI X C, et al. A facile oxidation and oxygen insertion of the cyclopentadien ring by molecular oxygen in solution [J]. J. Org. Chem,2005,70: 5768-5770.
    [45]GONG W T, LI X C, NING G L, et al. A novel synthesis of tri and tetra-phenypyrylium perchlorate from phenyl-substituted cyclopentadienes [J]J. Chem. Res(s).,2004,6:444-444.
    [46]贡卫涛,李新成,宁桂玲,林源.酸性条件下多苯基取代环戊二烯的氧化扩环反应[J].有机化学,2004,24:1475-1477.
    [47]GONG W T, XU T, LI X C, et al. A novel acid-assisted transformation of cyclopentadiene endoperoxides to pyrylium cations [J]. Letters in Organic Chemistry, 2006,3:600-603.
    [48]BALABAN A T, FISCHER G. Pyrylium salts:syntheses, reactions, and physical properties, advances in heterocyclic chemistry, supplement 2 [M].1982,114-115.
    [49]KATRITZKY A R, MANZO R H, LLOYD J M, et al. Mechanism of pyrylium/pyridinium ring interconversion. Mild preparative conditions for conversion of amines into pyrisinium ions [J]. Angew. Chem. Int. Ed. Engl.,1980,19:306-306.
    [50]KATRITZKY A R, BROWNLEE R T C, MUSAMARRA G. A C-13 study of the reaction of 2,4,6-triarylpyrylium cations with amines [J]. Tetrahedron,1980,36: 1643-1647.
    [51]SAMMES M P, YIP K L. The reaction between 4-methoxy-2,6-dimethylpyrylium perchlorate and amines. Isolation of both 4-iminiopyran salts and pyridinium salts in the reaction with primary amines [J]. J. C. S. Perkin I,1978,1373-1378.
    [52]CARO B, GUEN-ROBIN F L, SALMAIN M, et al.4-Benchrotrenyl pyrylium salts as protein organometallic labeling reagents [J]. Tetrahedron,2000,56:257-263.
    [53]BO YD G V. pseudoAzulenes.Part II.A tricyclic cyclopenta[b]-thiapyran and some nitrogen analogues [J]. J. Chem. Soc,1959,55-61.
    [54]PERNAK J, ROGOZA J. Synthesis of 3-substituted pyridinium salts [J]. Arkivoc, 2000,889-904.
    [55]YAMAGUCHI I, HIGASHI H, SHIGESUE S, et al. N-arylated pyridinium salts having reactive groups [J]. Tetrahedron Lett.,2007,48:7778-7781.
    [56]VIANA G H R, SANTOS I C, ALVES R B, et al. Microwave-promoted synthesis of chiral pyridinium salts [J]. Tetrahedron Lett.,2005,46:7773-7776.
    [57]KATRITZKY A R, ZAKARIA Z. Photocyclisation of 1,2-diarylpyridinium cations and the photobis-cyclisation of 1,2,6-triarylpyridinium cations.X-ray crystal structure of 9-phenyl-2,10b-diazadibenzo[fg,op]naphthacenium perchlorate [J]. J. C. S. Chem. Commun.,1979,268-269.
    [58]TYMYANSKII Y R, ALDOSHIN S M, KNYAZHANSKII M I, et al. Photocyclisation of 1,2,6-triarylpyridinium cations [J]. Izv. Akad. Nauk SSSR,Ser. Khim.,1982, (3):535-540.
    [59]KATRITZKY A R, KNYAZHANSKII M I, TYMYANSKII Y R, et al. Photocyclisation of 1,2-diaryl-and photocyclisation of 1,2,6-triarylpyridinium cations [J]. Khim.Geterotsiklicheskikh Soedinenii,1984, (11):1509-1518.
    [60]PEREZ-RUIZ T, ORTUNO J A, MOLINA P. Extraction-fluorimetric determination of microgram amounts of thallium with 2-phenylbenzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium perchlorate [J]. Microchemical Journal,1985,31:196-201.
    [61]PEREZ-RUIZ T, ORTUNO J A. Fluorimetric determination of trace amounts of gold as an ion-association complex with 2-phenylbenzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium perchlorate [J]. Analyst,1983,108:733-737.
    [62]PEREZ-RUIZ T, ORTUNO J A. Extraction-fluorimetric determination of mercury with 2-phenylbenzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium perchlorate [J]. Analyst,1984,109:1581-1583.
    [63]PIETRO M L D, PUNTORIERO F, TUYERAS F, et al. Photochemically driven intercalation of small molecules into DNA by in situ irradiation [J]. Chem.Commun., 2010,46:5169-269.
    [64]吴萍,蔡习美,颜朝国.吡啶季铵盐在有机合成中的应用[J].有机化学,2008,28:1899-1910.
    [65]KATRITZKY A R, MUSUMARRA G. New insights into aliphatic nucleopheilic substitution reactions from the use of pyridines as leaving groups [J]. Chem.Soc. Rev., 1984,47-68.
    [66]TSE-LOK H, Wong C M. Dehalogenation via pyridinium salts [J]. J.Org.Chem., 1974,39:562-562.
    [67]REUSS R H, SMITH N G, WINTERS L J. Cyano adducts of 1-substituted pyridinium salts [J]. J.Org.Chem.,1974,39:2027-2031.
    [68]MASHRAQUI S H, KELLOGG R M. Pyridinium salts structurally related to NAD(P)+as enolate transferring agents [J]. J.Am.Chem.Soc,1983,105:7792-7793.
    [69]GENISSON Y, MARAZANO C, DAS B C. A stereocontrolled alkylation of chiral pyridinium salts with Grignard reagents:synthesis of (+)-normetazocine and (+)-nordextrorphan [J]. J. Org. Chem.,1993,58:2052-2057.
    [70]WILLIAMS N A O, MASDEU C, DIAZ J L, et al. Isocyanide addition to pyridinium salts, efficient entry into substituted nicotinonitrile derivatives [J]. Org. Lett.,2006,8:5789-5792.
    [71]BENNASAR M L, JIMENEZ J M, SUFI B A, et al. Nucleophilic addition of 1-acetylindole enolates to pyridinium salts. Stereoselective formal synthesis of (±)-geissoschizine and (±)-akagerine via 1,4-dihydropyridines [J]. J. Org. Chem., 1999,64:9605-9612.
    [72]COMINS D L, S AHN J J. Synthesis and anion binding properties of 2,5-diamidothiophene polypyrrole schiff base macrocycles [J]. Org. Lett.,2005,7: 5227-5280.
    [73]YAMADA S, MORITA C. Face-selective addition to a cation-π complex of a pyridinium salt:synthesis of chiral 1,4-dihydropyridines [J]. J. Am. Chem. Soc.,2002, 124:8184-8185.
    [74]KATRITZKY A R, EWEISS N F, NIE P L. Heterocycles in organic synthesis. Part 16. The conversion of aliphatic, aromatic, and heteroaromatic primary amines into iodides [J]. J.Chem.Soc.JPerkin Trans.1,1979,433-435.
    [75]KATRITZKY A R, GRUNTZ U, KENNY D H, et al. Heterocycles in organic synthesis. Part 10. Conversion of amines into esters [J]. J.Chem.Soc.,Perkin Trans.1, 1979,430-432.
    [76]KATRITZKY A R, GRUNTZ U, MONGELLIN, et al. Heterocycles in organic synthesis. Part 22. The conversion of amines to thiocarbonate esters and thiocyanates [J]. J. Chem. Soc.,Perkin Trans.1,1979,1953-1956.
    [77]KATRITZKY A R, BAP AT J B, BLADE R J et al. Heterocycles in organic synthesis. Part 6. Nucleophilic displacements of primary amino-groups via 2,4,6-triphenylpyridinium salts [J]. J.Chem.Soc.,Perkin Trans.1,1979,418-425.
    [78]DRUTAII, ANDREI M A, GANJ C I, et al. Synthesis of indolizine derivatives by the reaction of 2-(2'-pyridyl)-pyridinium ylides with ethylenic dipolarophiles [J]. Tetrahedron,1999,55:13063-13070.
    [79]FURDUI B, DINICA R, DRUTAI I, et al. Improved synthesis of cationic pyridinium-substituted indolizines [J].Synthesis,2006, (16):2640-2642.
    [80]乐贵洲,黄乾明,邹平.中氮茚的合成研究进展[J].有机化学,2007,27(9):1060-1068.
    [81]DRUTA I I, DINAICA R M, BACU E, et al. Synthesis of 7,7'-bisindolizines by the reaction of 4,4'-bipyridinium-ylides with activated alkynes [J].Tetrahedron,1998,54: 10811-10818.
    [82]DINICA R M, DRUTA I I PETTINARI C. The synthesis of substituted 7,7'-bis-indolizines via 1,3-dipolar cycloaddition under microwave irradiation [J]. Synlett,2000, (7):1013-1015.
    [83]WEN X D, HU Y F, HU H W. A facile one-step synthesis of aromatic indolizines by 1,3-dipolar cycloaddition of pyridinium and related heteroaromatic ylides with alkenes in the presence of TPCD [Copy4HCrO4] [J]. J. Chem. Soc, Perkin Trans.1, 1993,2487-2489.
    [84]WANG B X, ZHANG X C, LI J, et al. Preparation of indolizine-3-carboxamides and indolizine-3-carbonitriles by 1,3-dipolar cycloaddition of N-(cyanomethyl)pyridinium ylides to alkenes in the presence of tetrakispyridinecobalt(II) dichromate or manganese(IV) oxide [J]. J. Chem. Soc, Perkin Trans.1,1999,1571-1576.
    [85]HU J X, JIANG X, HE T, et al. Novel synthetic routes to nitrogen-bridged tricyclic derivatives of pyrrolo[2,1,5-cd]indolizine and pyrrolo[2,1,5-de]quinolizine derived from 2-acyl-N-(acylmethyl)pyridinium halides [J]. J. Chem. Soc, Perkin Trans.1, 2001,1820-1825.
    [86]ZHANG L D, LIANG F, SUN L Z, et al. A novel and practical synthesis of 3-unsubstituted indolizines [J]. Synthesis,2000, (12):1733-1737.
    [87]WANG B X, LIU W W, HE T, et al. Oxidant promoted 1,3-dipolar cycloaddition of pyridinium ylides to chalcones for preparation of 1-benzoyl-2-arylindolizines [J]. Chin. J. Chem.,2006,24:279-281.
    [88]王炳祥,徐助雄,吴婧.吡啶叶立德与查尔酮1,3-偶极环加成反应制备2-苯基-3-乙酰基中氮茚[J].有机化学,2006,26:1587-1589.
    [89]TWAARI R S, DUBEY A K. Studies on cycloimmonium ylides. Synthesis of some 2,4,6-triaryl-substituted pyridines via isoquinolinium ylides [J]. J. Chem. Eng. Data, 1980,25:91-92.
    [90]TWAARI R S, DUBEY A K. Studies on cycloimmonium ylides. Synthesis of some 2,4,6-triaryl-substituted pyridines via picolinium ylides [J]. J. Chem. Eng. Data,1981, 26:106-108.
    [91]吴萍,蔡习美,颜朝国.2-氨基-4,6-二芳基吡啶的微波辐射促进合成[J].有机化学,2006,26:1673-1676.
    [92]YAN C G, CAI X M, WANG Q F, et al. Microwave-assisted four-component, one-pot condensation reaction: an efficient synthesis of annulated pyridines [J]. Org. Biomol. Chem.,2007,5:945-951.
    [93]ERYAZICI I, MOOREFIELD C N, DURMUSu S, et al. Synthesis and single-crystal X-ray characterization of 4,4-Functionalized 4'-(4-Bromophenyl)-2,2-terpyridines [J]. J. Org. Chem.,2006,71:1009-1014.
    [94]YAMADA S, YAMAMOTO J, OHATA E. Enantioselective cyclopropanation reaction using a conformationally fixed pyridinium ylide through a cation-π interaction [J]. Tetrahedron Lett.,2007,48:855-858.
    [95]KOJIMA S, HIROIKE K, OHKATA K. Stereoselective synthesis of activated cyclopropanes with an a-pyridinium acetamide bearing an 8-phenylmenthyl group as the chiral auxiliary [J]. Tetrahedron Lett.,2004,45:3565-3568.
    [96]YAN C G, SONG X K WANG Q F, et al. One-step synthesis of polysubstituted benzene derivatives by multi-component cyclization of a-bromoacetate, malononitrile and aromatic aldehydes [J]. Chem. Commun.,2008, (12):1440-1442.
    [97]ZHANG X C, HUANG W Y. A convenient synthesis of polyfluoroalkyl-substituted pyrazolo[1,5-a] pyridine, pyrrolo[1,2-6]pyridazine and indolizine derivatives [J]. J. Fluorine Chem.,1998,87(1):57-64.
    [98]ZHANG X C, HUANG W Y. Cycloaddition reactions of N-(cyanomethyl)pyridinium ylides with 2,2-dihydropolyfluoroalkanoates [J]. J. Fluorine Chem.,1998,92(1):13-16.
    [99]ZHANG X C, HUANG W Y. A one-step approach to 1-(fluoroalkyl)indolizine derivatives [J]. Synthesis,1999, (1):51-54.
    [100]CHENG W C, KURTHE M. The zincke reaction.A review. [J]. J. Org. Prep. Proced. Int.,2002,34(6):585-608.
    [101]BRIATOL D W, DITTMER D C. Reactions of pyridinium salts with alkaline hydrogen peroxide. Formation of pyrrolidinone hydroperoxides from 1-methyl-and 1-benzyl-3-carbamoylpyridinium chloride [J]. J. Org. Chem.,1970,35:2487-2495.
    [102]LYLE R E, BOYCE C. Sodium borohydride reduction of sterically hindered pyridinium salts [J]. J. Org. Chem.,1974,39:3708-3711.
    [103]WU P, CAI X M, WWANG Q F, et al. Facile synthesis of triarylpyrimidines with microwave-irradiated reactions of N-phenacylpyridinium chloride [J]. Synth. Commun.,2007,37(2):223-229.
    [104]POON K W C, DUDLEY G B. Mix-and-heat benzylation of alcohols using a bench-stable pyridinium salt [J]. J. Org. Chem.,2006,71:3923-3927.
    [105]XIA Z Q, PRZEWLOKA T, KOYA K, et al. Controlling chemoselectivity-application of DMF di-t-butyl acetal in the regioselective synthesis of 3-monosubstituted indolizines [J]. Tetrahedron Lett.,2006,47:8817-8820.
    [106]ENZENSPERGER C, LEHMANN J. Dopamine/serotonin receptor ligands.131:□ homologization of a benzindoloazecine-type dopamine receptor antagonist modulates the affinities for dopamine D1-D5 receptors [J]. J. Med. Chem.,2006,49: 6408-6411.
    [107]JOUCIN M H, DE VERNEJOUL M C, DRUET P, Fluoride-induced chronic renal failure [J]. Am. J. Kidney Dis.,1987,10:136-139.
    [108]HEARD K, HILL R E, CAIRNS C B. Calcium neutralizes fluoride bioavailability in a lethal model of fluoride poisoning [J]. J. Toxicol. Clin. Toxicol.,2001,39: 349-353.
    [109]SCOTTD A, WANG R, T M KREMAN, et al. The pendred syndrome gene encodes a chloride-iodide transport protein [J]. Nat. Genet.,1999,21:440-443.
    [110]STEED J W, AT WOOD J L(著).赵耀鹏,孙震(译).超分子化学[M].北京:化学工业出版社,2006:138-139.
    [111]BEER P D, GALE P A. Anion recognition and sensing:The state of the art and future perspectives [J]. Angew. Chem. Int. Ed.,2001,40:486-516.
    [112]HOFMEISTER F. On the understanding of the effects of salts. Ⅱ. On regularities in the precipitating effects of salts and theirrelationship to their physiological behavior [J]. Arch. Exp. Pathol. Pharmakol.,1888,24:247-260.
    [113]MARTINEZ-MANEZ R, SANCENON F. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev.,2003,103:4419-4476.
    [114]WEATHERALL J A, Pharmacology of fluorides. In handbook of experimental pharmacology XX/1 [M] Springer-Verlag, Berlin,1969,141-142.
    [115]AMENDOLA V, FABBRIZZI L, Anion receptors that contain metals as structural units [J]. Chem. Commun.,2009,513-531.
    [116]RAO M R, MOBIN S M, RAVIKANTH M, Boron-dipyrromethene based specific chemodosimeter for fluoride ion [J]. Tetrahedron,2010,66:1728-1734.
    [117]BUCKLAND D, BHOSALEh S V, LANGFORD S J, A chemodosimer based on a core-substituted naphthalene diimide for fluoride ion detection [J]. Tetrahedron Lett., 2011,52,1990-1992.
    [118]ZHU B C, YUAN F, LI Y, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells [J]. Chem. Commun.,2011,47:7098-7100.
    [119]SOKKALINGAM P, LEE C-H, Highly sensitive fluorescence "Turn-on" indicator for fluoride anion with remarkable selectivity in organic and aqueous media [J]. J. Org. Chem.,2011,76:3820-3828.
    [120]YAMAGUCHI S, AKIYAMA S, TAMAO K, Photophysical properties changes caused by hypercoordination of organosilicon compounds:□ from trianthrylfluorosilane to trianthryldifluorosilicate [J]. J. Am. Chem. Soc,2000,122: 6793-6784.
    [121]XU S, CHEN K, TIAN H, A colorimetric and fluorescent chemodosimeter:fluoride ion sensing by an axial-substituted subphthalocyanine [J]. J. Mater. Chem.,2005,15: 2676-2680.
    [122]KUBO Y, YAMAOTO M, IKEDA M, et al. A colorimetric and ratiometric fluorescent chemosensor with three emission changes:fluoride ion sensing by a triarylborane-porphyrin conjugate [J]. Angew. Chem. Int. Ed.,2003,42:2036-2040.
    [123]Liu C X, Qian X H, Sun G Q, et al. Chromogenic and fluorescent chemodosimeter for fluoride ion based on novel anion-catalyzed intramolecular hydrogen transfer [J]. New J. Chem.,2008,32:472-476.
    [124]LUXAMI V, SHARMA N, KUMAR S., Quaternary ammonium salt-based chromogenic and fluorescent chemosensors for fluoride ions [J]. Tetrahedron Lett., 2008,49:4265-4268.
    [125]LUXAMI V, KUMAR S., Hundal M S, Internal electric field driven chromofluorescent chemodosimeter for fluoride ions [J]. Sens. Actuat. B,2010,145: 1-6.
    [126]BEER P D, WHEELER J W, GRIEVE A, et al.Anion recognition by new acyclic quaternary polybipyridinium receptors [J]. J. C. S. Chem. Commun.,1992: 1225-1227.
    [127]BEER P D, FLETCHER N C, WEAR T. Halide anion recognition by new acyclic ruthenium(Ⅱ)bipyridyl-polypyridinium receptors [J]. Inorg. Chim. Acta.,1996,251: 335-340.
    [128]BEER P D, FLETCHER N C, GRIEVE A, et al. Halide anion recognition by new acyclic quaternary polybipyridinium and polypyridinium receptors [J]. J. C. S. Perkin.Trans.,1996,2:1545-1551.
    [129]GHOSH K, SARKAR A R, MASANTA G. An anthracene based bispyridinium amide receptor for selective sensing of anions [J]. Tetrahedron Lett.,2007,48: 8725-8729.
    [130]GHOSH K, SARKAR A R, PATRA A. Pyridinium amide-based simple synthetic receptor for selective recognitionof dihydrogenphosphate [J]. Tetrahedron Lett., 2009,50:6557-6561.
    [131]GONG W T,BAO S, NING G L, et al. Two-mode selective sensing of H2PO4" controlled by intramolecular hydrogen bonding as the valve [J]. Tetrahedron Lett., 2011,52:630-634.
    [132]杨频,高孝恢.性能-结构-化学键.[M]高等教育出版社,1987.
    [133]陈懿,汪鹏飞,吴世康.取代吡喃盐化合物的分子内电荷和光谱行为的研究[J].化学学报,1996,54:119-125.
    [134]陈懿,吴世康.2,4,6-三苯基吡喃盐分子内旋转受阻对其发光行为的影响[J].高等学校化学学报,1996,17:1622-1625.
    [135]陈懿,汪鹏飞,吴世康.吡喃盐分子在受限制体系中的电荷转移和发光行为[J]物理化学学报,1997,15:67-70.
    [136]宋世松,戴郁菁,范曲立等.有机共轭分子自组装方法[J].化学进展,2012,24:81-96.
    [137]HANNATA M.Chiral molecular tweezers [J]. Acc. Chem. Res.,2004,37: 862-873.
    [138]SCHMIDTCHEN F P. Reflections on the construction of anion receptors:is there a sign to resign from design [J].Coord. Chem. Rev.,2006,250:2918-2928.
    [139]吴芳英,温珍昌,江云宝.硫脲类阴离子受体的研究进展[J].化学进展,2004,16:776-784.
    [140]BAO S, GONG W T, NING G L, et al. Colorimetric'naked-eye'sensor for anions based on conformational flexible tripodal receptor [J]. J.Incl. Phenom. Macrocycl. Chem.,2011,70:115-119.
    [141]HIRANA K, ODERAOTOSHI Y, MINAKATA S, et al.Unique fluorescent properties of 1-aryl-3,4-diphenylpyrido[1,2-α]benzimidazoles [J]. Chem.Lett.,2001 1262-1263.
    [142]SHORTREED M, KOPELMAN R, KUHN M, et al. Fluorescent fiber-optic calcium sensor for physiological measurements [J]. Anal. Chem.,1996,68: 1414-1418.
    [143]CABALLREO A, MARTMEZ R, LOVERASI V, I. et al. Highly selective chromogenic and redox or fluorescent sensors of Hg2+in aqueous environment based on 1,4-disubstituted azines [J]. J. Am. Chem. Soc,2005,127:15666-15667.
    [144]LIN W, YUAN L, CAO Z, A sensitive and selective fluorescent thiol probe in water based on the conjugate 1,4-addition of thiols to α,β-unsaturated ketones [J]. Chem. Eur. J.,2009,15:5096-5103.
    [145]KATRITZKY A R, TYMOSHENKO D O, MONTEUX D, et al. A new three-carbon synthon for efficient synthesis of benzannelated and 1-(2-arylethenyl) heterocycles [J]. J. Org. Chem,2000,65:8059-8062.
    [146]PANDA K, SURESH J R, JUNJAPPA H, et al. Heteroaromatic annulation of 2-methyl/2-cyanomethylbenzimidazole dianions with r-oxoketene dithioacetals:a highly regioselective synthetic protocol for 1,2-and 2,3-substituted/annulated pyrido[1,2-α]benzimidazoles [J]. J. Org. Chem,2003,68:3498-3506.
    [147]KISELYOV A S. A one-pot synthesis of polysubstituted imidazo[1,2-α]pyridines [J]. Tetrahedron Lett.,2006,47:2941-2944.
    [148]WANG H G, WANG Y, ZHU Q, et al. A direct intramolecular C-H amination reaction cocatalyzed by copper(II) and iron(III) as part of an efficient route for the synthesis of pyrido[1,2-α]benzimidazoles from N-aryl-2-aminopyridines [J]. J. Am. Chem. Soc,2010,132:13217-13219.
    [149]YAN C G, WANG Q F, SONG X K, et al. One-step synthesis of pyrido[1,2-a]benzimidazole derivatives by a novel multicomponent reaction of chloroacetonitrile, malononitrile, aromatic aldehyde, and pyridine [J]. J. Org. Chem., 2009,74:710-718.
    [150]BARALDI P G, BOVERO A, FRUTTAROLO F, et al. DNA minor groove binders as potential antitumor and antimicrobial agents [J]. Med. Res. Rev.,2004,74: 475-528.
    [151]HRANJEC M, PIANTANIDA I, KRALJ M, et al. Novel amidino-substituted thienyl-and furylvinylbenzimidazole:derivatives and their photochemical conversion into corresponding diazacyclopenta[c]fluorenes. synthesis, interactions with DNA and RNA, and antitumor evaluation.4 [J]. J. Med. Chem.,2008,51: 4899-4910.
    [152]CALETA I, KRALJ M, TOMIC S, et al. Novel cyano-and amidinobenzothiazole derivatives:synthesis, antitumor evaluation, and X-ray and quantitative structure-activity relationship (QSAR) analysis [J] J. Med. Chem.,2009,52: 1744-1756.
    [153]HRANJEC M, PABLOVIC G, KRALJ M, Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes:Synthesis, antitumor evaluation in vitro and crystal structure determination [J]. Eur. J. Med. Chem.,2010, 45:2405-2417.
    [154]REFAAT H M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives [J]. Eur. J. Med. Chem.,2010,45:2949-2956.
    [155]GRBLER J A, DORNADULA G, RICE M R, et al. HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro [J]. J. Biol. Chem.,2007,282:8005-8010.
    [156]EASMON J, PURSTINGER G, HOFMANN J, et al. Synthesis, structure-activity relationships, and antitumor studies of 2-benzoxazolyl hydrazones derived from alpha-(N)-acyl heteroaromatics [J]. J. Med. Chem.,2006,49:6343-6350.
    [157]RAHIMIZADEH M, PORDEL M, BAKAVOLI M, et al. The synthesis of highly fluorescent heterocyclic compounds:Pyrido[2,1:2,3]imidazo[4,5-6]quinoline-12-yl cyanides [J]. Dye and Pigments,2010,86:266-270.
    [158]GE Y Q, JIA J, YANG H, et al. The synthesis, characterization and optical properties of novel pyrido[1,2-α]benzimidazole derivatives [J]. Dye and Pigments, 2011,88:344-349.
    [159]HIRANA K, ODERAOTOSHI Y, MINAKATA S, et al.Unique fluorescent properties of 1-aryl-3,4-diphenylpyrido[1,2-α]benzimidazoles [J]. Chem.Lett.,2001, 1262-1263.
    [160]张华.现代有机波谱分析[M].北京:化学工业版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700