用户名: 密码: 验证码:
数控系统硬件可靠性增长技术及其措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控系统是数控机床的核心。提高数控系统的可靠性是提高数控机床可靠性水平的重要途径。数控技术是先进制造技术的核心,大力发展数控技术,它已经成为加快经济发展,增强综合国力的重要途径。因此,提高可靠性,分析数控系统的可靠性现状,开发和应用高效的和实用的可靠性增长技术,已成为数控系统发展的关键。本文仅限于研究数控系统的最重要的部分之一硬件部分的可靠性。随着数控系统的可靠性研究的深入发展,可靠性的数据收集工作已经变得越来越重要。对30台数控加工中心机床的性能进行跟踪,对获得的数据进行分析。以确保故障数据信息的质量和数量,本文制定了一套严格的故障数据收集程序和方法,并编制了详细的规范的表格,建立了数控系统硬件的故障部位、故障原因、故障模式、故障代码的数据库。通过失效模式和效果分析(FMEA),故障模式、影响及危害性分析(FMECA),可靠性,可用性,维修分析(RAM)和故障树分析(FTA)分析,发现数控系统硬件的薄弱环节,建立可靠性增长技术和措施,以提高数控系统硬件的可靠性水平。首先,对数控系统硬件的运行状态的研究,对故障数据进行分析,建立故障定位,故障模式及其原因的评价准则。通过对故障数据分析,发现数控系统硬件频繁发生故障的部件,如电气系统、PLC单元和前处理模块,故障模式,如元器件损坏、线或电缆连接不好的,故障原因,如元件损坏。对数控系统的硬件子系统进行分析,发现了薄弱环节,并提出了可靠性设计的改进措施。基于故障数据的详细分析,建立数控系统硬件的故障树。传统的故障树分析,危害度的确定,模糊和不精确的事件包括人为的错误等往往不能有效地处理。在缺少定量数据和基本事件的概率含有模糊数时,模糊方法可能是决定故障概率值的唯一的方法。此外,模糊的方法是用来处理主观判断的有效工具。为了有效地对模糊事件或不明原因(包括人为因素)的故障进行评价,本文将专家意见与模糊集理论相结合的方式来处理故障树分析中的模糊问题。经过9个步骤的分析,提出46个最重要的故障事件根据其在顶事件的分布,这些故障事件代表了数控系统硬件需要改善的潜在故障。CPU, PLC单元,检测单元对数控系统硬件故障有很大的影响,从而改善这些事件的故障发生率以提高数控系统硬件的安全。为了确保数控系统的可靠性,可用性和可维护性以及系统整体的效率和运行能力,必须采取新的和务实RAM的分析方法。通过对数控系统硬件进行RAM统计分析,得到了相应的概率分布模型和统计特征参数,获得的分析结果可以指导数控系统硬件的操作和维修管理、确定可靠性的特点、故障的性质、故障部位、故障模式的频率,确定组件的可维护性要求等问题,以及提高数控系统硬件的可靠性。本文,基于故障数据,采用定性可靠性的方法FMEA和FMECA对数控系统的硬件的可靠性进行评估。评价指标如数控系统硬件的故障率、故障间隔时间(MTBF)、平均修复时间(MTTR)和可用性分析通过计算得出结果。在取得FMEA分析的结果之后,本文进一步确定预防/检测行为,以尽量减少故障潜在所引起的风险。数控系统的硬件优化的风险评估和减少风险优先数(RPN)被分析、.计算并得出结果。提出了可靠性评估和系统硬件可靠性改进的方法。
Computerized Numerical Control (CNC) system is the brain of CNC machine tools. Improving the reliability of CNC system is very important to improve the reliability level of CNC machine tools. Endeavoring to develop numerical control technology, which is the core of advanced manufacturing technology, has become an important way to accelerate economic development and enhance comprehensive national strength. Thus, increasing reliability, analyzing the reliability status of CNC system, as well as developing and applying advanced technologies for improving reliability have become key for the development of CNC system. The aim of this dissertation is to study the reliability of CNC system hardware, which is one of the most important parts of a CNC system. Improving CNC system hardware reliability is an important way to improve the reliability of the full CNC system. In this dissertation;the analysis data is obtained by tracking the performance of30CNC Machining Center units. Based on the tracked data, strict fault data collection procedures and methods, the preparation of a detailed specification of the failure positions, failure causes, failure modes, and failure codes, CNC system hardware database forms are proposed in order to ensure the quality and quantity of fault data information. RAM (Reliability, Availability and Maintainability), FMEA (Failure Mode and Effects Analysis), FMECA (Failure Mode and Effects Critical Analysis) and FTA (Fault Tree Analysis) are used to analyze the running CNC system hardware. Fault data, the criteria of the fault locations, fault mode, and cause are obtained from these analyses. By analyzing fault data, the frequent fault of CNC system hardware parts (electrical systems, PLC unit and pre-processing module), the fault modes (damaged components, line or bad cable connection), and frequent fault causes are thereby found. Based on the critical analysis of CNC system hardware subsystems, the weaknesses of CNC system hardware are found and methods for improving design reliability are proposed. The FTA framework of CNC system hardware is established based on the careful analysis of fault data. In traditional fault tree analysis (FTA), which is an established technique in hazard identification, ambiguous and imprecise events, such as human errors, can not be handled efficiently. Fuzzy method can generate failure probability values with only a little available quantitative information. The probabilities of basic events are treated as fuzzy numbers. Therefore fuzzy methods are effective tools to deal with subjective judgment. The method to handle the fuzzy problems in the FTA is proposed in this dissertation by combining expert elicitation with fuzzy set theory. In this dissertation we propose9analysis steps of the46most important fault events that affect the fault rate of top events to improve CNC system hardware reliability. Central Processing Unit (CPU), Programmable Logic Controller (PLC) Unit, and Detection Unit failures are common in CNC system hardware. Thus, improving these units' reliability will be the most significant contribution to enhance CNC system hardware. By analyzing the RAM system data, the corresponding probability distribution model, statistical characteristic parameters are obtained. The result of this analysis which determines the reliability characteristics, the nature of failures, the frequency of failures, the failure positions, the failure modes, and the maintainability requirements of CNC system hardware components, can be used as the reference for CNC system hardware operation, maintaining and repairing activities, as well as improving the reliability of CNC system hardware. Based on the failure data, the most well-known qualitative reliability methods, FMEA and FMECA, are used to analyze the reliability of CNC system hardware. Index evaluation of CNC system hardware such as failure rates, MTBF (Mean Time Between Failures), MTTR (Mean Time To Repairs), and are calculated to propose reliability evaluation methods for domestic CNC system hardware. After obtaining the FMEA result, further preventive/detection actions are defined in order to minimize the risk of the potential failure causes. The optimized risk assessment of CNC system hardware and the reduction in RPN (Risk Priority Number) are shown in this dissertation. Some problems of reliability evaluation are pointed out and some suggestions for system hardware reliability improvement are given.
引文
[1]China CNC Machine Tool Industry Report 2009[C],2010, No:1367.
    [2]郭重庆.全球化与中国制造业[J].中国机械工程,2001,Vol.12:241-244.
    [3]高档数控国家工程研究中心.蓝天高档数控机床发展历程及其产业化成果[J].中国机械工程.1999,Vol.10:1153-115.
    [4]北京发那科机电有限公司.畅销世界的FANUC 0系列数控系统[C].制造技术与机床.2001,Vol.10:39-40.
    [5]李雪梅.数控机床[M].北京:电子工业出版社,2005.
    [6]秦勇.数控机床加工技术的现状与发展趋势[M].机械工业出版社,2002.
    [7]吴祖宇,秦鹏飞.数控机床[M].上海科学技术出版社,2000.
    [8]Zhou Zude, Long Yihong, Liu Quan. Embedded-Based network numerical control technology and system [J]. Chinese Journal of Mechanical Engineering,2007, Vol.43:1-6.
    [9]Lutz P, Sperling W. Design applications for an OSACA controls [C]. Innsbruck, Austria:Int. Assoc. of Science and Technology for Development,1997:16-21.
    [10]李善术.数控机床及应用[M].北京机械工业出版社,1996.
    [11]Herrin G E. Open module architecture controllers (OMAC)[C]. Modem Machine Shop, 1996.
    [12]Zhang, H.B., Jia, Y.Z., Zhou, GW, Pei, Y.H., Chen, Y.L.. Failure mode, effects and analysis (FMECA) of CNC system[J]. China Mechanical Engineering,2004, Vol.15:491-4.
    [13]Information on http://www.engpapers.com/17612.html
    [14]Liu, X.J., Jia, Y.Z., Zhang, R.M.. Research on the control model and automatically generation of CNC reliability intelligent network[J]. Chinese Journal of Mechanical Engineering,2003,Vol.39:114-7.
    [15]Owen J V. Opening up controls architecture [J]. Manufacturing Engineering, 1995, Vol.115:53-60.
    [16]Sun h. Current and future patterns of using advanced manufacturing technologies [J]. Technovation,2000, Vol.20:631-641.
    [17]张英芝,申桂香,贾亚洲,等.数控车床故障分布规律及可靠性[J].农业机械学报,2006,Vol.37:156-159.
    [18]Wang Y Q, Shen G X, Jia Y Z. Multidimensional force spectra of CNC machine tools and their applications, Part two:reliability design of elements[J]. International Journal of Fatigue,2003, Vol.25:447-452.
    [19]El-Sebakhy E A. Software reliability identification using functional networks:a comparative study [J]. Expert Systems with Applications,2009, Vol.36:4013-4020.
    [20]Auda DJ, Nuwer K. Effective failure mode effects analysis facilitation. Tutorial Notes of the Annual Reliability and Maintainability Symposium, Alexandria, VA,2005,24-27.
    [21]张柱银.数控原理与数控机床[M].北京化学工业出版社,2000.
    [22]Bo-Carlsson. The development and use of machine tools in historical perspective[J]. Journal of Economic Behavior and Organization,1984, Vol.5:91-114.
    [23]Liu B, Zhou Y F, Tang X Q. A research on open CNC system based on architecture/ component software reuse technology [J]. Computer in Industry,2004, Vol.55:73-85.
    [24]Wang S, Ravishankar C V. Open Architecture Controller Software for Integration of Machine Tool Monitoring[J]. IEEE International Conference on Robotics and Automation, 1999, Vol.2:1152-1157.
    [25]Wang S, Shin K G. Reconfigurable software for open architecture controller[C]. New York, USA:Institute of Electrical and Electronics Engineers Inc,2001:4090-4095.
    [26]贾亚洲译,[苏]A.C.普罗尼科夫.机床的可靠性(二)[J].国外机械加工技术,1987,Vol.6:55-58.
    [27]McGoldrick P F, Kulluk H. Machine tool reliability-a critical factor in manufacturing system [J]. Reliability Engineering,1986, Vol.14:205-221.
    [28]Jones J A, Hayes J A. Use of a field failure database for improvement of product reliability [J]. Reliability Engineering and System Safety,1997, Vol.55:131-134.
    [29]Karyagina M, Wong W, Vlacic L. Life cycle cost modelling using marked point processes [J]. Reliability Engineering and System Safety,1998, vol.59:225-238.
    [30]Wang Y Q, Yam R, Zuo M J,et al. A comprehensive reliability allocation method for design of CNC lathes[J]. Reliability Engineering and System Safety,2001, Vol.72: 247-252.
    [31]于捷,申桂香.基于推广的L-M法的数控机床可靠性评价[J].机床与液压,2008,Vol.36:171-173.
    [32]申桂香,王桂萍,贾亚洲,等.面向网络的数控装备可靠性分析技术[J].中国机械工程,2005,Vol16:33-41.
    [33]肖俊,陈志军,杨建国,等.数控车床故障率的可靠性分析[J].现代制造工程,2006,Vol.12:34-36.
    [34]肖俊,陈志军,杨建国,等.数控机床可靠性模糊分配法[C].2006全国机械可靠性学术交流论文集,2006:54-58.
    [35]王润孝,高利辉,薛俊峰.基于故障层次模型的集成神经网络诊断[J].控制与检测, 2005,Vol.3:44-46.
    [36]乐清洪,朱名铨,王润孝.一种新型的神经网络及其在智能质量诊断分析中的应用[J].机械科学与技术,2005,Vol.24:30-34.
    [37]刘清建,王太勇,王涛,等.嵌入式数控系统的结构可靠性分析[J].天津大学学报,2008,Vol.43:149-155.
    [38]http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1341907
    [39]周凯.发展国产数控系统的技术途径[J].制造技术与机床,2000,Vol.3:5-7.
    [40]周凯.数控技术与业发展途径探讨[J].国机械工程,1999,Vol.10:1084-1089.
    [41]周凯.一种新型计算机数控系统[J].制造技术与机床,1997-06-03:12-15.
    [42]北京发那科机电有限公司.(?)FANUC数控系统的可靠性[J].制造技术与机床,2001,Vol.9:47-48.
    [43]张海波,贾亚洲.数控系统可靠性控制模型研究[J].设计与研究,2010,Vol.4:81-53.
    [44]Wang Y Q, Wang X J, Hua S M. Reliability analysis and improvement of ATCs of CNC lathes[J]. Applied Mechanics and Materials,2010, Vol.(37-38):939-943.
    [45]赵艳辉.数控系统可靠性分析设计与增长技术及其综合应用[D].长春:吉林大学,2011.
    [46]张海波,贾亚洲,周广文.数控系统故障间隔时间分布模型的研究[J].哈尔滨工业大学学报,2005,Vol.2:198-200.
    [47]V.S.Deshpande, J.P.Modak. Maintenance strategy for tilting table of rolling mill based on reliability considerations[J]. Reliability Engineering&System Safety, 2003, Vol.80:1-18.
    [48]J.Ashayeri. Development of computer-aided maintenance resources planning (CAMRP):A case of multiple CNC machining centers[J]. Robotics and Computer-Integrated Manufacturing,2007, Vol.23:614-623.
    [49]A.Gharbi, J.-P.Kenne, M.Beit. Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems[J]. International Journal of Production Economics,2007, Vol.107:422-434.
    [50]曹勇,韩至骏.论我国数控技术及其产业的发展与对策[J].改革与战略,1994Vol.6:12-15.
    [51]张海波,贾亚洲,周广文,裴咏红,陈云雷.数控系统故障模式、影响及危害度分析(FMECA)[J].中国机械工程,2004,Vol.15:491-493.
    [52]张明光等.数控系统之“我”见-数控系统应用之路[J].金属加工,2009,Vol.14:8-14.
    [53]Hongyi Sun, Current and future patterns of using advanced manufacturing technologies[J]. Technovation,2000, Vol.20:631-641.
    [54]王亚军,蒲洁,何建国.CNC软件系统设计的可靠性与实时性技术[J].组合机床与自动化加工技术,2003,Vol.5:4-6.
    [55]K.Das. A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMC design[J]. Computers and Industry Engeneering, 2008, Vol.54:12-33.
    [56]Xiong-bo MA,Zhen-yu HAN, Yong-zhang WANG etal. Development of a PC-based Open Architecture Software-CNC System[J]. Chinese Hounal of Aeronautics,2007, Vol.20:272-281.
    [57]陈明,张京妹.控制系统可靠性设计[M].西安:西北工业大学出版社,2006:1-11.
    [58]于捷,贾亚洲.数控车床故障模式影响与致命性分析[J].哈尔滨工业大学学 报,2005,Vol.37:491-494.
    [59]朱有为,毛果平.数控机床人-机-环境系统可靠性[J].机械工程师,2005,Vol.3:44-46.
    [60]K.Goseva-Popstojanova, K.S.Trivedi. Architecture-based approaches to software reliability prediction[J]. Computers&Mathemastics with Applications,2003, Vol.66: 241-252.
    [61]何沛霖,李斌,陆云祥等.CNC系统可靠性的模糊评价[J].中国机械工程,1999,Vol.10:1280-1281.
    [62]谭华.基于故障树分析法的数控系统可靠性研究[J].装备制造技术,2006Vol.4:19-20.
    [63]石柱.控制软件可靠性设计和评估方法[J].航天控制,2004,Vol.22:58-62.
    [64]李伯成.嵌入式系统可靠性设计[M].北京:电子工业出版社,2006,Vol.1:153-188.
    [65]Jong Gyun Choi,Poong Hyun Seong.Reliability assessment of embedded digital system using multi-state function[J]. Reliability Engineering&System Safety, 2006, Vol.91:261-269.
    [66]Katerina Go eva-Popstojanova.Kishor S.Trivedi,Architecture-based approach to reliability assessment of software systems[J]. Performance Evaluation,2001, Vol.45:179-204.
    [67]Jing-An Li, Yue Wu, Kin Keung Laia, Ke Liu.Reliability estimation and prediction of multi-state components and coherent systems[J]. Reliability Engineering and System Safety,2005, Vol.88:93-98.
    [68]Kuei-Chen Chiu, Yeu-Shiang Huang, Tzai-Zang Lee.A study of software reliability growth from the perspective of learning effects[J]. Reliability Engineering and System Safety,2008, Vol 93:1410-1421.
    [69]Yi Dai,Yun-fei Zhou,Ya-zhou Jia.Distribution of time between failures of machining center based on type I censored data[J]. Reliability Engineering and System Safety,2003, Vol.79:377-379.
    [70]Damian Verma,etc. Reliability of growth prediction with hand-wrist radiographs [J]. European Journal of Orthodontics,2009, Vol.31:438-442.
    [71]袁成荣,缑斌丽,王立杰.数控系统开发中的广义可靠性增长[J].机械设计与制造,2001,Vol.4:7-8.
    [72]数控装备及系统质量控制编委会.数控装备及系统质量控制[M].北京:机械工业出版社,1997.4:1-373.
    [73]数控机床数控系统维修技术与实例编委会.数控机床数控系统维修技术与实例[M].北京:机械工业出版社,2001.7:51-59,152-159.
    [74]Bergman, B. The development of reliability techniques:A retrospective survey[J]. Reliability Engineering and system Safety,1992 Vol.36:3-6.
    [75]Keller, A. Z. & Kara-Zaitri Further application of fuzzy logic to reliability assessment safety analysis[J]. Micro Reliab.,1989, Vol.29:399-404.
    [76]Wang,Y. and Jia,Y.et al. Fiel failure database of CNC lathes[J]. International Journal of quality and Reliability Management,199, Vol.16:330-340.
    [77]Rajiv Kumar Sharma, Sunand Kumar. Performance modeling in critical engineering systems using RAM analysis[J]. Reliability Engineer and system Safety,2008, Vol.93: 891-897.
    [78]Oystein M. Use of reliability technology in the process industry[J]. Reliability Engineering and System Safety,1998, Vol.60:179-81.
    [79]Cochran JK, Murugan A, Krishnamurthy V. Generic Markov models for availability estimation and failure characterization in petroleum refineries[J]. Comput Oper Res 2000, Vol.28:1-12.
    [80]Dai Y, Jia Y. Reliability of a VMC and its improvement[J]. Reliability Engineering and System Safety,2001, Vol.72:99-102.
    [81]Hauptmanns U. Semi-quantitative fault tree analysis for process plant safety using frequency and probability ranges[J]. Journal Loss Prev Process Ind,2004; Vol.17:339-45.
    [82]Liberopoulos Q Tsarouhas P. Reliability analysis of an automated pizza production line[J]. J Food Eng,2005, Vol.69:79-96.
    [83]Bezdek Rudolph Frederick Stapelberg. Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design[M]. Springer-Verlag London Limited,2009:147-150.
    [84]Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault tree handbook[C]. U.S. Nuclear Regulatory Commission, Washington DC,1981.
    [85]Department of Defense Handbook. Acquisition Logistics, MIL-HDBK-502, USAMC Logistics Support Activity[M], May 30,1997.
    [86]Kwai-Sang China, Ying-MingWangb, Gary KaKwaiPoona, Jian-BoYangc. Failure mode and effects analysis using agroup-base devi dential reasoning approach[J]. Computers & Operations Research,2009, Vol.36:1768-1779
    [87]Chao Chung Ho, Ching-Jong Liao.The use of failure mode and effects analysis to construct an effective disposal and prevention mechanism for infectious hospital waste[J]. Waste Management,2011, Vol.31:2631-2637.
    [88]D.M. Barends, M.T. Oldenhof, M.J. Vredenbregt, M.J. Nauta. Risk analysis of analytical validations by probabilistic modification of FMEA[J]. Journal of Pharmaceutical and Biomedical Analysis,2012, Vol.64:82-86.
    [89]Kovacova Monika, janco roland. Critically assesment for FMECA analysis using fuzzy logic[J]. Journal of applied Mathematics,2008, Vol.1:261-270.
    [90]http://www.fmeainfocentre.com/standards.htm
    [91]United States Department of Defense.'MIL-STD-1629A-military standard procedures for performing.a failure mode, effects and criticality analysis',24th November,1980.'System Reliability Center PDF Directory'..
    [92]A. S. Aganvala. Shortcomings in mil-std-1629A guidelines for criticality analysis[M]. Proc. Ann. Reliability & Maintainability Symp.,1990:494-496.
    [93]Hu-Chen Liu. Long Liu Nan Liu. Risk evaluation approaches in failure mode and effects analysis:A literature review[J]. Expert Systems with Applications,2013, Vol.43:828-838.
    [94]Franceschini, F., & Galetto, M.. A new approach for evaluation of risk priorities of failure modes in FMEA[J]. International Journal of Production Research,2001, Vol.39:2991-3002.
    [95]Gilchrist, W. Modelling failure modes and effects analysis[J]. International Journal of Quality & Reliability Management,1993, Vol.10:16-23.
    [96]Chang, K. H., & Cheng, C. H. A risk assessment methodology using intuitionistic fuzzy set in FMEA[J]. International Journal of Systems Science,2010, Vol.41:
    [97]Carmignani, G. An integrated structural framework to cost-based FMECA:The priority-cost FMECA[J]. Reliability Engineering and Systems Safety,2009, Vol.94:861-871.
    [98]Franceschini, F., & Galetto, M. A new approach for evaluation of risk priorities of failure modes in FMEA[J]. International Journal of Production Research,2001, Vol.39:2991-3002.
    [99]Zafiropoulos, E. P., & Dialynas, E. N.. Reliability prediction and failure mode effects and criticality analysis (FMECA) of electronic devices using fuzzy logic[J]. International Journal of Quality & Reliability Management,2005, Vol.22: 183-200.
    [100]Sharma, R. K., Kumar, D., & Kumar, P.. Modeling and analysing system failure behaviour using RCA, FMEA and NHPPP models. International Journal of Quality & Reliability Management,2007, Vol.24:525-546.
    [101]Sharma, R. K., & Sharma, P.. System failure behavior and maintenance decision making using, RCA, FMEA and FM[J]. Journal of Quality in Maintenance Engineering,2010, Vol.16:64-88.
    [102]Ben-Daya, M. and Raouf, A.. A revised failure mode and effect analysis model[J]. International Journal of Quality & Reliability Management,1996, Vol.13:43-7.
    [103]Ford Motor Company. Potential failure mode and effects analysis in design (design FMECA) and for manufacturing and assembly process (process FMECA) instruction manual[C]. Internal Report, September, Detroit, MI.1988.
    [104]Gilchrist, W.. Modelling failure modes and effects analysis[J]. International Journal of Quality & Reliability Management,1993, Vol.10:16-23.
    [105]Buchanan BG, Shortliffe EH (1984) Rule-based expert systems. Addison-Wesley, Reading, MA
    [106]Franceschini, F., & Galetto, M.. A new approach for evaluation of risk priorities of failure modes in FMEA[J]. International Journal of Production Research,2001, Vol.39:2991-3002.
    [107]Gandhi, O. P., & Agrawal, V. P.. FMEA-A diagraph and matrix approach[J]. Reliability Engineering & System Safety,1992, Vol.35:147-158.
    [108]Geum, Y, Cho, Y., & Park, Y. A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach. Mathematical and Computer Modelling,2011, Vol.54:3126-3142.
    [109]Gilchrist, W.. Modelling failure modes and effects analysis. International Journal of Quality & Reliability Management,1993, Vol.10:16-23.
    [110]Dong Yuhua, Yu Datao. Estimation of failure probability of oil and gas transmission pipe by fuzzy fault tree analysis[J]. Journal of Loss Prevention in the Process Industries,2005, Vol.18:83-88.
    [111]Chen, L., Wang, G L., & Meng, H. R. Fault tree analysis of an oil well pump[J]. Acta Petroleum Sinica,1995, vol.16:145-151.
    [112]Lee, K.w, Tillman. A literature survey of the human reliability component in a machines system[J]. IEEE transaction on reliability,1998, Vol.37:3-31.
    [113]Liao, K. X., Yao, A. L., & Zhang, H. X.. Fault tree analysis of pipelines[J]. Oil and Gas Transportation,2001, Vol.20:27-3.
    [114]Ayhan Mentes, Ismail H. Helvacioglu. An application of fuzzy fault tree analysis for spread mooring systems[J]. Ocean Engineering,2011,Vol.38:285-294
    [115]Suk-Hwan Suh, Seong-Kyoon Kang, Dae-Hyuk Chung, Ian Stroud, Theory and design of CNC systems[M]. Springer Series in Advanced Manufacturing ISSN 1860-5168:21
    [116]Watson HA. Launch control safety study. Bell Telephone Laboratories[C]. Murray Hill, NJ, USA,1961.
    [117]Chen. S.J, Hwang. C.L. Fuzzy multiple attribute decision making methods and applications [M]. Berlin:Germany Springer- Verlag, Berlin Herdelberg,1990: 466-469.
    [118]Pedrycz, W. Why triangular membership functions? [J]. Fuzzy sets and system, 1994, Vol.64:21-30.
    [119]Swain. A.D, Guttmann. H.. Handbook of Human Reliability with emphasis on Nuclear Power plant Applications[M]. NUREG/CR-1278-F, Sandia National Labs, NM,1983.
    [120]Khodabandehlehloo, A. Analyses of robot systems using fault and event trees, case studies[J]. Reliability Engineering and System Safety,1996, Vol.53:247-264.
    [121]Chen. S.J, Hwang. C.L. Fuzzy multiple attribute decision making methods and applications[M].Springer- Verlag,New York,1992.
    [122]Walker, I. D. & Cavallaro, J. R. Failure mode analysis for a hazardous waste clean-up manipulator[J]. Reliability Engineering and System Safety,1996, vol.53:277-290.
    [123]K. Durga Rao, V.Gopika, V.V.S.Sanyasi Rao, H.S.Kushwaha, A.K.Verma, A.Srividya. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J]. Reliability Engineering and System Safety,2009, Vol.94:872-883
    [124]Singer D.. A fuzzy set approach to fault tree analysis[J]. Fuzzy Sets and Systems,1990, Vol. 34:145-155.
    [125]Pandey D. and Tyagi Sanjay Kumar. Profust Reliability of a gracefully degradable system[J]. Fuzzy Sets and Systems,2007, Vol.158:794-803.
    [126]Cai, K. Y. System failure engineering and fuzzy methodology an introductory overview[J]. Fuzzy Sets and Systems,1996, Vol.83:113-133.
    [127]Page, L. B. & Perry, J. E. Standard deviation as an alternative to fuzziness in fault tree models[J]. IEEE Trans. Reliab.,1994, Vol.43:402-407.
    [128]Wang, J., Yang, J. B. & Sen, P. Safety analysis and synthesis using fuzzy sets and evidential reasoning[J]. Reliability Engineering and System Safety,1995, Vol.47,103-118.
    [129]Li-Ching Ma,Han-Lin Li. A fuzzy ranking method with range reduction techniques; European Journal of Operational Research.2008, Vol.184:1032-1043.
    [130]FAULT (Whalen et al.1982), FLOPS (Buckley et al.1987), FLISP (Sosnowski, 1990) and CLIPS (Orchard 1998).
    [131]Walker, I. D. & Cavallaro, J. R. Failure mode analysis for a hazardous waste clean-up manipulator. Reliability Engineering and System Safety,1996, Vol.53: 277-290.
    [132]Onisawa.T. An approach of fuzzy concepts to modeling of reliability analysis[J]. Fuzzy set and systems,1990, Vol.37:266-286.
    [133]Onisawa.T. Nishiwaki.Y. fuzzy human relibility on the Chernobyl accident[J]. Fuzzy set and Systems,1988, Vol.28:115-127.
    [134]Mital, A., Motorwala, A., Kulkarni, M., Sinclair, M. & Siemieniuch, C. Allocation of functions to humans and machines in a manufacturing environment:part I. Guidelines for the practitioner. International Journal of Industrial Ergonomics,1994,14, 3-31.
    [135]Liang, G S. & Wang, M. J. Fuzzy fault-tree analysis using failure possibility. Microelectron. Reliab.,1933,33(4),583-597.
    [136]Keller, A. Z. & Kara-Zaitri Further application of fuzzy logic to reliability assessment safety analysis[J]. Micro Reliab.,1989, Vol.29:399-404.
    [137]Preyssl, C. Safety risk assessment and management-the ESA approach[J]. Reliability Engineering and System Safety,1995, Vol.49:303-309.
    [138]Zadeh L.A.1965. Fuzzy sets. Information and control, Vol.8, pp.338-353.2.L. A.
    [139]Zadeh, Anote on Z-numbers[J]. Information Sciences,2011, Vol.181:2923-2932.
    [140]Liang, G S. & Wang, M. J. Fuzzy fault-tree analysis using failure possibility[J]. Microelectron. Reliab.,1933, Vol.33:583-597.
    [141]Zadeh L.A. Fuzzy sets[J]:Information and control,1965, Vol.8:338-353.2.L. A.
    [142]Sanjay Kumar Tyagi, Diwakar Pandey, Vinesh Kumar, Fuzzy Fault Tree Analysis for Fault Diagnosis of Cannula Fault in Power Transformer[J]. Applied Mathematics,2011, Vol.2:1346-1355.
    [143]Antonio C.F. Guimarees and Nelson F.F. Ebeken.. Fuzzy FTA:a fuzzy fault tree system for uncertainty analysis[J]. Annals of Nuclear Energy,1999, Vol.26: 523-532.
    [144]Furuta H. and hiraishi N.. Fuzzy importance in fault tree analysis[J]. Fuzzy Sets and Systems,1984, Vol.12:205-213.
    [145]Zadeh, L. A.. A fuzzy-algorithmic approach to the definition of complex or imprecise concepts[J]. International Journal of Man-Machine Studies,1976, Vol.8:249-291.
    [146]Zhao, Z. & Chen, C.. Concrete bridge deterioration diagnosis using fuzzy inference system[J]. Advances in Engineering Software,2001, Vol.32:317-325
    [147]Zhao, Z. & Chen, C. A fuzzy system for concrete bridge damage diagnosis. Computers and Structures,2002, Vol.80:629-641.
    [148]M.kasaeyan, J. Wang, I jenkinson, M.R.Miri Lavasani. Fuzzy consequence modelling of hydrocarbon offshore pipeline[J]. Int.J.Mar. Sci. Eng,2011, Vol.1:3-12.
    [149]Onisawa. T. An aproach to human reliability in man-machine system using error possibility[J]. Fuzzy set and systems,1998, Vol.27:87-103.
    [150]Cheong. C.W, Lan. A.L. Web acess failure analysis-fuzzy reliability approach[J]. International journal of the computer, The internet and Management,2004, Vol.12:65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700