用户名: 密码: 验证码:
基于性能的纵边落地支承单层柱面网壳抗震理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震分析与设计是工程抗震发展史上的一个重要里程碑,代表了抗震研究的发展方向。在多高层建筑结构领域,基于性能的抗震研究已经取得了比较丰硕的理论成果,在抗震设计规范中已经有了一些体现。然而目前基于性能的空间结构抗震研究还处于初步的理论探索阶段,远未形成具体有效的设计方法,相比于多高层建筑结构,其理论研究大大滞后,严重制约了空间结构进一步的应用与发展。本文以空间结构的一种形式——纵边落地支承单层柱面网壳为主要研究对象,进行了基于性能的抗震理论研究,主要研究内容及成果如下:
     (1)空间结构地震时程分析Rayleigh阻尼系数的研究
     基于结构在单维地震动下的振型峰值应变能公式,结合空间结构自振特性及地震响应的统计分析及规律总结,引入合理简化条件,首次推导了空间结构在三维地震动下的振型峰值应变能系数近似公式,该系数是空间结构三维地震动下各振型贡献的合理度量系数。以此系数为权重,提出了基于多参考振型的加权最小二乘法计算空间结构Rayleigh阻尼系数,基于Rayleigh阻尼理论的基本原理和假设条件,以纵边落地支承单层和双层柱面网壳为典型算例,对Rayleigh阻尼系数传统计算方法和本文提出的新方法进行了对比分析。分析表明,传统方法在某些地震波作用下会导致较大误差,而在任意地震波作用下新方法的结果都比传统方法更为合理,因此该方法是空间结构地震时程分析Rayleigh阻尼系数通用合理的计算方法。
     (2)纵边落地支承单层柱面网壳强震倒塌机理研究
     采用基于荷载域全程响应分析方法首次对纵边落地支承单层柱面网壳强震倒塌机理进行了系统研究。研究表明,该类型柱壳呈现明显的沿跨度方向的单向受力特征,当长宽比大于1时,长宽比对其受力几乎没有影响;强震破坏均为动力强度破坏;最低阶特征值屈曲模态和最低阶振动模态都可以作为初始几何缺陷分布模式,这两种分布模式对柱壳的地震响应几乎没有影响;初始几何缺陷方向对其地震响应有显著影响,因此地震响应分析必须考虑两个方向的初始几何缺陷;矢跨比对其倒塌PGA的发展趋势并无固定的影响规律;倒塌PGA均随屋面附加恒荷载的增大而减小,其减小程度随柱壳不同而不同。
     (3)单层网壳地震损伤评估方法研究
     提出了基于静力稳定极限承载力退化的单层网壳地震损伤评估方法。该方法理论基础及分析过程合理,计算简单且易于实现。利用该方法对纵边落地支承单层柱面网壳进行了损伤评估,并对该方法在单层球面网壳中的应用进行了研究。结果表明,该方法能够以较高的精度对单层网壳的地震损伤尤其是临近倒塌时的损伤进行评估,是单层网壳地震损伤评估的合理方法。该方法得到的损伤指数可以用来衡量单层网壳的性能水平,解决了基于性能的单层网壳抗震分析中的一个关键问题。
     (4)纵边落地支承单层柱面网壳地震动参数研究
     首次系统研究了在近场地震动下纵边落地支承单层柱面网壳的损伤和常用地震动参数的相关性和有效性。结果表明,由于该类型柱壳沿跨度方向的单向受力特性明显,整体角度来看,跨度方向的地震动参数的相关性和有效性高于其他两个方向的地震动参数;沿跨度方向地震动在结构基本周期处的加速度谱值Sa(T1)是最为合理的地震动参数,而PGA并非合适的地震动参数。该部分研究可以为纵边落地支承单层柱面网壳基于概率的抗震性能评估奠定基础。
     (5)纵边落地支承单层柱面网壳性能水平划分和抗震性能评估研究
     以《建筑地震破坏等级划分标准》(建设部90建抗字377号)给出的性能水平为基础,结合纵边落地支承单层柱面网壳的地震响应特点,利用基于静力稳定极限承载力退化的地震损伤指数对该类型柱壳的性能水平进行了划分,给出了不同性能水平下结构的破坏特征;依据基于概率的结构抗震性能评估方法对矢跨比为1/4的典型纵边落地支承单层柱面网壳进行了抗震性能评估,计算了某场地下各性能水平的年均超越概率和设计基准期50年的超越概率,结果表明,该柱壳具有很好的抗震性能。
As a milestone in engineering seismic research, performance-based seismic research has become the developing trend in seismic research. A lot of theoretical research results have been acquired regarding multi-story buildings, some of which have been implemented in the designing code. While the performance-based seismic research about spatial structures is just at the beginning, far away from forming the effective designing method. The research status in spatial structures is far behind that of multi-story buildings, which severely restricts the application and development of spatial structures. As one kind of spatial structures, single-layer cylindrical latticed shell with longitudinal edge ground supported is taken as the main research object, the performance-based seismic analysis of which is performed in the paper, and the main research contents and results is as follows:
     (1) Research of Rayleigh damping coefficients in seismic time-history analysis of spatial structures
     Based on the maximum strain energy ratio of modes under one dimensional seismic excitation, considering the characteristics of natural vibration and seismic response of spatial structures, the approximate maximum strain energy ratio of modes under three dimensional seismic excitations are firstly deduced with the rational simplifications in the equation, which can quantify the modal contribution of spatial structures under three dimensional seismic excitations. With it as the weight, a multi-mode based weighted least square method is proposed to compute the Rayleigh damping coefficients of spatial structures. Based on the basic theory and assumptions of Rayleigh damping theory, with single-layer and double-layer cylindrical latticed shell with longitudinal edge ground supported as the examples, the comparison between the traditional method and the new method is performed. The results show that, significant error will be induced when the traditional method is used under some ground motions, and the results of the new method are better than those of the traditional method under all the ground motions, so the new method is the general and rational method to compute the Rayleigh damping coefficients in seismic time-history analysis of spatial structures.
     (2) Research of collapse mechanism of single-layer cylindrical latticed shell with longitudinal edge ground supported under severe earthquakes
     The collapse mechanism of single-layer cylindrical latticed shell with longitudinal edge ground supported under severe earthquakes are studied with the full-range responses analysis method based on load domain. The results show that, it has very distinct one way mechanical characteristics along the span direction, so the length to width ratio has little influence on the mechanical characteristics, and all the failure modes under severe earthquakes are of the dynamic strength failure kind, and it makes little difference with the basic eigenvalue buckling mode or the basic natural vibration mode as the initial geometrical imperfection, so both can be the initial geometrical imperfection, and the initial geometrical imperfection direction has a great influence on its dynamic response, so both the directions should be considered in seismic response analysis, and the rise to span ratio has no fixed influence pattern on the collapse PGA, and the collapse PGA will decrease with the increase of roof super dead load, but the magnitude of which varies with the shells.
     (3) Research of seismic damage assessment method of single-layer latticed shells
     The seismic damage assessment method of single-layer latticed shells based on degradation of static stability capacity is proposed. The method has a solid theoretical basis and rational analysis process, and it can be easily implemented. Its application in single-layer cylindrical latticed shell with longitudinal edge ground supported and single-layer latticed dome are studied, and the results show that the method has a high precision especially when the shells near collapse, so it is a rational method in damage assessment of single-layer latticed shells. And the method can be used to quantify the seismic performance levels of single-layer latticed shells, which is a key problem in performance-based seismic analysis of single-layer latticed shells.
     (4) Research of ground motion intensity measures for single-layer cylindrical latticed shell with longitudinal edge ground supported
     The correlation and effectiveness of ground motion intensity measures for single-layer cylindrical latticed shell with longitudinal edge ground supported under near source ground motions are systematically studied for the first time. And the results show that, since this kind of shell takes on very distinct mechanical characteristics along span direction, the intensity measures of ground motions in span direction have stronger correlation and effectiveness than those in other directions on the whole, and the acceleration spectrum at basic period Sa(T1) is the most appropriate intensity measure while PGA is not. This research result can provide the basis for the probability-based seismic performance assessment of this kind of shells.
     (5) Research of performance level classification and seismic performance assessment for single-layer cylindrical latticed shell with longitudinal edge ground supported
     Based on the performance levels given by , considering the seismic response characteristics of single-layer cylindrical latticed shell with longitudinal edge ground supported, the seismic performances are quantified with the damage index based on the degradation of static stability capacity, and the damage characteristics under each performance levels is given. The seismic performance of the shell with the rise to span ratio of 1/4 is evaluated with the probability-based seismic performance assessment method, and the exceedance probability in one year and design reference period of 50 years for each performance levels are calculated, which shows that the shell has a high seismic performance.
引文
1谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动.北京:科学出版社, 2009
    2徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报, 2005, 38(1):1~10
    3李刚,程耿东.基于性能的结构抗震设计:理论、方法与应用.北京:科学出版社, 2004
    4 Los Angeles Tall Buildings Structural Design Council. An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region. 2008 Edition
    5 H. Kuramoto. Seismic Design Codes for Buildings in Japan. Journal of Disaster Research. 2006 , 1(3):341~356,
    6 CECS 160~2004建筑工程抗震性态设计通则(试用)
    7中华人民共和国国家标准.建筑结构抗震设计规范(GB 50011-2010).北京:中国建筑工业出版社, 2010
    8 A. Ghobarah. Performance-Based Design in Earthquake Engineering: State of Development. Engineering Structures, 2001, 23(8):878~884
    9 A. M. Chandler , T. K. Lam Nelson. Performance-Based Design in Earthquake Engineering: A Multi-disciplinary Review. Engineering Structures, 2001, 23(12): 1525~1543
    10 G. G. Deierlein. Overview of a Comprehensive Framework for Earthquake Performance Assessment. Proceedings of the International Workshop on Performance-Based Seismic Design: Concepts and Implementation. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2004:15~26
    11 J. P. Moehle, G.G. Deierlein. A framework methodology for performance-based earthquake engineering. Proceedings of 13th WCEE. Vancouver, Canada: CAEE/ACGP, 2004:No:679
    12李灿灿,陆洲导,李凌志.建筑结构基于性能的抗震设计.四川建筑科学研究, 2005, 31(5):99~102
    13马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报(自然科学版). 2002, 30(12):1429~1434
    14小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展.建筑结构. 2000, 30(6):3~9
    15尹之潜.地震灾害及损失预测方法.北京:地震出版社, 1996
    16胡聿贤.地震工程学.第2版.北京:地震出版社, 2006
    17 C. A. Cornell. Engineering Seismic Hazard Analysis. Bulletin of theSeismological Society of America, 1968, 59(5):1583~1606
    18 SEAOC Vision 2000 Committee. Performance Based Seismic Engineering. Sacramento, California: Structural Engineers Association of California, 1995
    19 R. Medina. Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions. San Francisco: Stanford University, 2002
    20 J. P. Conte, H. Pandit, J. P. Stewart and J. W. Wallace. Ground Motion Intensity Measures for Performance-Based Earthquake Engineering. Proceedings of 9th International Conference on Applications of Statistics and Probability in Civil Engineering. San Francisco: ICASP9,2003
    21 C. A. Cornell. Hazard, Ground Motions and Probabilistic Assessments for PBSD. Proceedings of the International Workshop on Performance-Based Seismic Design: Concepts and Implementation. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2004:39~52
    22 P. Giovenale, A. C. Cornell and L. Esteva. Comparing the Adequacy of Alternative Ground Motion Intensity Measures for the Estimation of Structural Responses. Earthquake Engineering and Structural Dynamics. July 10, 2004, 33 (8):951~979
    23 N. Luco, C. A. Cornell. Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions. Earthquake Spectra, 2007, 23(2):357~392
    24王建民.基于概率的桥梁结构抗震性能研究.北京:北京交通大学, 2006
    25 D. Vamvatsikos, C. A. Cornell. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491~514
    26 T. Polsak, L. Nicolas. Probabilistic Seismic Demand Analysis Using Advanced Ground Motion Intensity Measures. Earthquake Engineering and Structural Dynamics. October 25, 2007, 36(13): 1837~1860
    27 N. Luco, C.A. Cornell. Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions. Earthquake Spectra. May 2007, 23( 2): 357~92
    28 J. E. Padgett, B. G. Nielson and R. DesRoches. Selection of Optimal Intensity Measures in Probabilistic Seismic Demand Models of Highway Bridge Portfolios. Earthquake Engineering and Structural Dynamics. April 25, 2008, 37( 5): 711~725
    29 P. Bazzurro, C. A. Cornell. Vector-Valued Probabilistic Seismic Hazard Analysis. Seventh U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, 2002: 1~10
    30王建民,朱晞.地面运动强度度量参数的有效性研究.北京交通大学学报. February 2006, 30( 1): 21~24
    31 P. Bazzurro, C. A. Cornell. Vector-valued Probabilistic seismic hazard analysis. Proceedings of 7th U.S. National Conference on Earthquake Engineering. Boston, Massachusetts: Earthquake Engineering Research Institute(EERI),2002
    32 J. W. Baker, C. A. Cornell. Choice of a Vector of Ground Motion Intensity Measures for Seismic Demand Hazard Analysis. Proceedings of 13th WCEE. Vancouver, Canada: CAEE/ACGP, 2004:3384
    33 D. Vamvatsikos, C. A. Cornell. Developing Efficient Scalar and Vector Intensity Measures for IDA Capacity Estimation by Incorporating Elastic Spectral Shape Information. Earthquake Engineering and Structural Dynamics, 2005, 34(13): 1573~1600
    34 J. W. Baker. Probabilistic Structural Response Assessment Using Vector-Valued Intensity Measures. Earthquake Engineering and Structural Dynamics, 2007, 36(13):1861~1883
    35 J. W. Baker, C. A. Cornell. Vector-Valued Intensity Measures for Pulse-Like Near-Fault Ground Motions. Engineering Structures, 2008, 30(4) :1048~1057
    36 J. W. Baker, C. A. Cornell. Vector-Valued Intensity Measures Incorporating Spectral Shape for Prediction of Structural Response. Journal of Earthquake Engineering, 2008, 12(4) :534~554
    37 M. Saidii, M. Sozen. Simple Nonlinear Seismic Analysis of R/C Structures. Journal of the Structural Division. 1981,107(5): 937~952
    38 Sucuoglu, Hal?k and M. Günay. Generalized Force Vectors for Multi-mode Pushover Analysis. Earthquake Engineering and Structural Dynamics. 2011, 40( 1): 55~74
    39 Zordan, Tobia, B. Briseghella and L. Cheng. Parametric and Pushover Analyses on Integral Abutment Bridge. Engineering Structures. 2011, 33(2): 502~515
    40 N. Li, C. H. Zhai, Z. X. Li, J. J. Hu and L. L. Xie. Energy-Based Modal Pushover Procedure for Asymmetric Structures. Advances in Structural Engineering. 2010, 13( 6): 1129~1138
    41 A. Windisch. Pushover Analysis of Shear-Critical Frames: Formulation. ACI Structural Journal. 2010, 107( 6): 740~742
    42 A. Windisch. Pushover Analysis of Shear-Critical Frames: Verification and application. ACI Structural Journal. 2010, 107(6): 743~744
    43 K. Huang, J. S. Kuang. On the Applicability of Pushover Analysis for Seismicevaluation of Medium-and High-Rise buildings. Structural Design of Tall and Special Buildings, 2010, 19( 5): 573~588
    44 T. S. Paraskeva, A. J. Kappos. Further Development of A Multimodal Pushover Analysis Procedure for Seismic Assessment of Bridges. Earthquake Engineering and Structural Dynamics. 2010, 39(2): 211~222
    45 S. C. Dutta, A. Raychaudhuri, S. Chakroborty and R. Roy. Pushover Analysis: Proposals for Modification. Structural Engineering International. 2009, 19(3): 249~255
    46 H. Azimi, K. Galal and O. A. Pekau. Incremental Modified Pushover Analysis. Structural Design of Tall and Special Buildings. December 2009, 18(8): 839~859
    47 A. D'Ambrisi, M. S. De and M. Tanganelli. Use of Pushover Analysis for Predicting Seismic Response of Irregular Buildings: A Case Study. Journal of Earthquake Engineering. December 2009, 13(8): 1089~1100,
    48 S. C. Dutta, S. Chakroborty and A. Raychaudhuri. Efficacy of pushover analysis methodologies: a critical evaluation. Structural Engineering and Mechanics. 2009, 31(3): 265~76
    49 J. Li, J. B. Chen. Probability Density Evolution Method for Dynamic Response Analysis of Structures with Uncertain Parameters. Computational Mechanics 2004,34(5):400~409
    50刘章军,陈建兵,李杰.结构非线性随机地震反应的概率密度演化方法.固体力学学报. 2009,30(5): 489~495
    51陈建兵,李杰.非线性随机地震响应的概率密度演化分析.武汉理工大学学报. 2010,32(9): 6~10
    52 Fema273, Nehrp Guidelines for the Seismic Rehabilitation of Buildings. Washington D C: Federal Emergency Management Agency, 1997
    53 Y. J. Park, A. H. S. Ang. Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering, ASCE, 1985, 111(4):722~739.
    54 Y. J. Park,A. H. S Ang and Y. K. Wen. Damage-Limiting Aseismic Design of Buildings. Earthquake Spectra 1987, 3(1):1~26
    55 H. Liang,Y. K. Wen, G. C. Foliente. Damage Modeling and Damage Limit State Criterion for Wood-Frame Buildings Subjected to Seismic Loads. Journal of Structural Engineering. 2011, 137(1): 41~48
    56陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型.同济大学学报(自然科学版). 2010,38(8): 1103~1107
    57杨伟,欧进萍.基于能量原理的Park & Ang损伤模型简化计算方法.地震工程与工程振动. 2009,29(2): 159-165
    58王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型.土木工程学报.2004 ,37(11): 41~49
    59 A. Ghobarah, H. Abou-Elfath and A. Biddah. Response-Based Damage Assessment of Structures. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 79~104.
    60 P. S. Skjrbk, S. R. K. Nielsen, P. H. Kirkegaard and A. S. ?akmak. Damage Localization and Quantification of Earthquake Excited RC-Frames. EarthquakeEngineering and Structural Dynamics. September 1998,27(9):903~916
    61 S. Toussi, JTP. Yao and WF. Chen. A Damage Indicator for Reinforced Concrete Frames. ACI Journal. 1984,81(3):260~267
    62 MSL. Roufaiel, C. Meyer. Analytical Modeling of Hysteretic Behaviour of R/C Frames. Journa1 of Structural Engineering (ASCE) . 1987,113(3):429~444
    63 E. DiPasquale, J-W. Ju, and A. Askar et al. Relation between Global Damage Indices and Local Stiffness Degradation. Journal of Structural Engineering(ASCE). 1990,1l6(5):1440~1456
    64 S. Kato, S. Nakazawa. A Trial for Seismic Fragility Evaluation of a Large Lattice Dome Supported by Buckling Restrained Braces. International Journal of Space Structure. 2010,25(2):125~134
    65任峰,方鸿强.基于性能抗震设计方法的几点思考.建筑结构. 2009,39(S1):626~630
    66 ISO2394. General Principles on Reliability for Structures.
    67程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动. 2003,23(4):50~55
    68沈章春,王全凤.基于性能抗震设计理论与实用方法.四川建筑科学研究. 2008,34(3):136~140
    69彭观寿,高轩能.基于性能的钢结构抗震设计理论与方法.钢结构. 2007,22(1):49~54
    70 S. Ganzerli, C. P. Pantelides and L. D. Reaveley. Performance-Based Design Using Structural Optimization. Earthquake Engineering and Structural Dynamics. 2000,29(11):1677~1690
    71 M. Fragiadakis, M. Papadrakakis. Performance-Based Optimum Seismic Design of Reinforced Concrete Structures. Earthquake Engineering and Structural Dynamics. 2008,37(6):825~844
    72 M. Fragiadakis, N. D. Lagaros and M. Papadrakakis. Performance-Based Multiobjective Optimum Design of Steel Structures Considering Life-Cycle Cost. Structural and Multidisciplinary Optimization. 2006,32(1):1~11
    73 H. A. Rojas, S. Pezeshk and C. M. Foley. Performance-Based Optimization Considering Both Structural and Nonstructural Components. Earthquake Spectra. 2007,23(3):685~709
    74 J. P. Moehle. Displacement Based Design of RC Structures Subjected to Earthquakes. In:Eerva A,ed. 10th World Conference on Earthquake Engineering. Mexi-co:WECC,1992,8(3):1567~1574
    75 R. D. Bertero, V. V. Bertero and A. Teran-Gilmore. Performance-Based Earthquake-Resistant Design Based on Comprehensive Design Philosophy and Energy Concepts. Proceedings of 11 WCEE, Paper No. 611, 1996
    76杨大彬,张毅刚,吴金志.增量动力分析在单层网壳倒塌评估中的应用.空间结构. 2010, (3): 91~96
    77支旭东,范峰,齐春玲.大跨度倒三角型悬臂桁架抗震性能评估.土木建筑与环境工程. 32(S2):251~252
    78 Y. Taniguchi, P. L. Gould and M. Kurano. Earthquake Input Energy at Dynamic Collapse for Double-Layer Cylindrical Lattice Roofs. Journal of the International Association for Shell and Spatial Structures. 2008,49(2):89~96
    79蓝天,张毅刚.大跨度屋盖结构抗震设计.北京:中国建筑工业出版社, 2000
    80曹资,薛素铎.空间结构抗震理论与设计.北京:科学出版社, 2005
    81范峰,支旭东,沈世钊.大跨度网壳结构强震失效机理研究.建筑结构学报. 2010,31(6):153~159
    82 S. Kato, M. Shomura and Y. Mukaiyama. Study on Dynamic Behaviour and Collapse Acceleration of Single Layer Reticular Domes Subjected to Horizontal and Vertical Earthquake Motions. Journal of Structural and Construction Engineering. 1995,477(11):87~96
    83 S. Kato, S. Nakazawa and T. Minegishi, et al. Dynamic Collapse Mechanism of Single Layer Reticular Domes with Braces Subjected to Severe Earthquake Motions. Proceedings of the IASS-MSU International Symposium. Istanbul, Turkey: Sanayi-i Nefise Vakfy, 2000:319~326
    84 K. Ishikawa, S. Okubo and Y. Hiyama, et al. Evaluation Method for Predicting Dynamic Collapse of Double Layer Latticed Space Truss Structures Due to Earthquake Motion. International Journal of Space Structures. 2000, 15(3~4): 249~257
    85杨飏,支旭东,范峰,等.短程线网壳结构强震作用下的动力强度破坏.哈尔滨工业大学学报. 2008,40(12):1878~1882
    86支旭东,吴金妹,范峰,等.考虑材料损伤累积单层柱面网壳在强震下的失效研究.计算力学学报. 2008,25(6):770~775
    87何放龙,马自克.强震作用下双层球面网壳结构非线性动力响应分析.湖南大学学报(自然科学版). 2007,34(10):1~5
    88支旭东.网壳结构在强震下的失效机理.哈尔滨:哈尔滨工业大学, 2006
    89杜文风.基于性能的空间网壳结构设计理论研究.杭州:浙江大学, 2007
    90付智强.弦支穹顶结构动力灾变研究.杭州:浙江大学, 2008
    91支旭东,范峰,沈世钊.基于模糊综合判定的网壳结构强震失效模式研究.工程力学. 2010,27(1):63~68
    92 X. D. Zhi, F. Fan and S. Z. Shen. Failure Mechanisms of Single-Layer Reticulated Domes Subjected to Earthquakes. Journal of the International Association for Shell and Spatial Structures. 2007, 48(153):29~44.
    93史义博,支旭东,范峰,等.单层球面网壳在强震作用下的损伤模型.哈尔滨工业大学学报. 2008,40(12):1874~1877
    94支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究.土木工程学报. 2007,40(8):29~34
    95于志伟,支旭东,范峰,沈世钊.单层球面网壳与支承结构整体强震失效特征.哈尔滨工业大学学报. 2010,42(10):1519~1523
    96 ATC-63. Quantification of Building Seismic Performance Factors. Redwood City, California:Applied Technology Council, 2009
    97 R. W. Clough, J. P. Penzien. Dynamics of Structures.2nd ed. New York: McGraw-Hill, 1993
    98江晓峰,陈以一.固定阻尼系数对结构弹塑性时程分析的误差影响.结构工程师. 2008,24(1):51~55
    99 A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2001
    100 S. Kato, S. Nakazawa and S. Keita. Estimation of Static Seismic Loads for Latticed Domes Supported By Substructure Frames with Braces Deteriorated due to Buckling. Journal of the International Association for Shell and Spatial Structures. 2007,48(2):71~86
    101黄吉锋,李云贵,邵弘,等.抗震计算中几个问题的研究.建筑科学. 2007,23(3):15~18
    102 http://peer.berkeley.edu/smcat/
    103曹资,薛素铎,王雪生,等.空间结构抗震分析中的地震波选取与阻尼比取值.空间结构. 2008,14(3):3~8
    104中华人民共和国行业标准. JGJ 7─2010空间网格结构技术规程.北京:中国建筑工业出版社, 2010
    105曹正罡,范峰,沈世钊.单层球面网壳结构弹塑性稳定性能研究.工程力学. 2007,24(5):17~23
    106曹正罡.网壳结构弹塑性稳定性能研究.哈尔滨:哈尔滨工业大学,2007
    107沈世钊,支旭东.球面网壳结构在强震下的失效机理.土木工程学报. 2005,38(1):11~20
    108 A. Elenas, K. Meskouris. Correlation Study between Seismic Acceleration Parameters and Damage Indices of Structures. Engineering Structures. June 2001,23(6):698-704
    109 A. Yakut, H. Ylmaz. Correlation of Deformation Demands with Ground Motion Intensity. Journal of Structural Engineering. 2008,134(12):1818~1828
    110叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究.地震工程与工程振动. 2009,29(4):9~22
    111 A. Arias. A Measure of Earthquake Intensity, in Seismic Design for NuclearPower Plants. R.J. Hansen(Editor), MIT Press, Cambridge, Massachusetts, 1970:438~483
    112 Y. J. Park, A. H. S. Ang and Y. K. Wen. Seismic Damage Analysis of Reinforced Concrete Buildings. Journal of Structural Engineering. 1985,111(4):740~757
    113 S. L. Kramer. Geotechnical Earthquake Engineering. U.S.: Prentice Hall,1996
    114 J. L. Von Thun, L. H. Roehm and G. A. Scott,etc. Earthquake Ground Motions for Design and Analysis of Dams. Proc.of Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground Motion Evaluation Geotechnical Special Publication, 20,ASCE, New York,2002, 463~481
    115 http://earthquake.usgs.gov/hazards/products/conterminous/2008/data/
    116 http://earthquake.usgs.gov/hazards/designmaps/javacalc.php
    117 C. A. Cornell, J. Fatemeh, O. H. Ronald and A. F. Douglas. Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. Journal of Structural Engineering. 2002,128(4):526~533
    118 D. Vamvatsikos, C. A. Cornell. Applied Incremental Dynamic Analysis. Earthquake Spectra. 2004,20(2):523~553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700