用户名: 密码: 验证码:
不确定结构动力分析及星载天线展开机构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文首先以区间和区间随机结构为研究对象,探索性地研究了当结构参数和外载荷为区间变量或区间随机变量时结构的动力特性分析和动力响应分析;然后以在研的国家863高技术研究发展计划项目《大型星载可展开天线结构系统多状态全过程的可靠性综合分析研究》为工程背景,分别基于区间、模糊和灰色理论,针对小样本、贫信息事件,对星载天线展开机构系统的可靠性进行了计算、预测、分配和分析。主要内容如下:
     1、区间参数桁架结构的动力特性和动力响应分析方法研究。
     在考虑结构单元的物理参数、几何尺寸和载荷幅值具有不确定性时,利用区间因子法建立了结构的刚度矩阵和质量矩阵;从结构振动的Rayleigh商表达式出发,利用区间运算推导出结构特征值不确定变量的计算表达式;从结构响应的Duhamel积分式出发,利用区间因子法、区间运算和振型叠加法导出结构动力响应区间变量的表达式。通过算例分析区间桁架结构参数的区间分散性对其动力特性和动力响应的影响。
     2、区间随机参数桁架结构的动力特性和动力响应分析方法研究。
     当结构的物理参数和几何尺寸同时具有区间随机性时,利用区间因子法和随机因子法建立了结构的刚度矩阵和质量矩阵;由结构振动的Rayleigh商表达式,利用区间运算推导了结构动力特性区间随机变量的计算式;进而利用随机变量的矩法和代数综合法,推导出了结构特征值的数字特征的计算式。然后从Duhamel积分式出发,利用振型叠加法求出了结构动力响应区间随机变量的表达式;最后再由随机函数的矩法推导出结构区间随机动力响应的区间数字特征。从而分析区间随机桁架结构物理参数和几何参数的区间随机分散性对其动力特性和动力响应的影响。
     3、星载天线展开机构可靠性指标的计算方法研究。
     首先在周边桁架式星载天线展开机构运动机理分析的基础上,建立了展开机构的力学分析模型,并推导了桁架杆内力的计算式。从桁架展开要满足的功能函数出发,给出机构运动可靠性的分析模型。综合考虑尺寸误差和太空环境因素的影响,将运动功能函数视为区间变量函数,利用非概率方法导出可靠性计算公式,对机构在整个展开过程中的运动可靠性进行预测和仿真;然后对展开机构中的齿轮运动副的卡滞失效形式进行了研究,从齿轮啮合的极限位置出发,推导出了同步齿轮副不发生卡滞的条件。在综合考虑齿轮加工误差、装配误差和太空环境温度等因素的基础上,利用优化算法,构建了齿轮副防卡滞的非概率可靠度计算公式。最后,对同步齿轮副在不同装配误差和不同温度环境下的防卡滞的非概率可靠度进行了预测。
     4、星载天线展开系统可靠性分配方法研究。
     针对星载天线展开机构系统设计可靠性数据缺乏的实际情况,应用系统可靠性分配的模糊数学方法,在综合评分为权的系统可靠性加权分配法的基础上,将模糊数学引入可靠性分配的权系数矩阵中,建立了星载天线展开机构系统可靠性分配的模糊模型。利用模糊数学的运算规则,推导出星载天线展开机构系统可靠性分配的权系数表达式。最后以某星载天线展开机构系统为例,给出系统可靠性的分配结果,表明该方法的可行性和有效性。
     5、星载天线展开系统故障树的区间分析方法研究。
     在对星载天线展开系统故障树分析的基础上,针对传统故障树分析中存在的不确定性难以量化的问题,结合D-S(dempster-shafer)理论和区间概率理论,提出星载天线展开机构故障树的区间分析方法,构造失效独立和失效相关情况下故障树区间分析的与门区间算子和或门区间算子,在此基础上对系统的展开可靠度进行分析和预测。
     6、基于灰色关联法的星载天线展开机构系统故障树分析研究。
     针对星载天线展开机构系统设计中可靠性数据缺乏的实际情况,将灰色关联法引入到星载天线展开机构系统可靠性分析中,并采用该方法在星载天线展开机构系统的故障诊断中研究系统的故障特征与内部特征之间的相关性,确定实际模式归属于某个标准模式,并对故障树诊断进行综合分析。
Firstly, structures with interval parameters or interval-random parameters are taken as research objects in this paper. The structural dynamic characteristic and dynamic response are derived under the condition that physical parameters of structural materials, geometric dimensions of truss structures and applied loads are all interval or interval-random variables.Secondly, based on the engineering background of national 863 project, reliability computation, allocation, prediction and analysis on deployment mechanism system of satellite antenna are derived by means of non-stochastic theory. The main research works can be described as follows:
     1. The analysis of dynamic characteristic and dynamic response on interval truss structures.
     Under the condition that the uncertainty of physical parameters of structural materials, geometric dimensions of truss structures and considering uncertainty of applied load simultaneously, the structural stiffness matrix and mass matrix are constructed by using interval factor method. From the Rayleigh quotient of structural vibration, the computation expression of interval variable of structural characteristic is obtained on the basis of interval operation principles. From Duhamel integral, the expressions of structures interval dynamic response are deduced by combining mode superposition method with calculus, interval factor method and interval arithmetic, and membership functions of dynamic response can be derived in the end.Through some engineering examples, the influence of the interval structural parameters and interval applied load on structural interval dynamic characteristic and dynamic response are inspected.
     2. The study on dynamic characteristic and dynamic response of interval stochastic truss structures.
     Considering the interval randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices were constructed based on the interval factor method and random factor method; from the Rayleigh’s quotient of structural vibration, the structural interval random dynamic characteristic was obtained by means of the interval arithmetic; the interval numeric characteristics of dynamic characteristic were then derived by using the random variable’s moment function method and algebra synthesis method. From the Duhamel integral, structural dynamic responses are derived by the mode superposition method. Then, the interval numerical characteristics of interval random dynamic responses are derived by using the moment function method for random variables. Some numerical examples were provided to illustrate the validity and feasibility of the present method.
     3. The study on reliability index in the deployment mechanism of a large satellite antenna.
     Firstly, by studying the movement principium of hoop-truss satellite antenna, a mechanical analysis model of the deployment mechanism and the calculating formula for the interval forces of trusses were presented. Based on the function deployment of the hoop-truss must accord with, a movement reliability analysis model of the mechanism was given. Synthetically considering the effects of dimension errors and the space environment factors, we treated the mechanism movement-function as a function of some interval variables, and derived the reliability formula by using the method of non-probabilistic reliability. The movement reliability of the deployment mechanism was predicted and simulated in the whole process of deployment. Secondly, the seizure-preventing reliability of synchronous gears in the deployment mechanism is studied, from the ultimate position of the gearing mesh, the seizure-preventing condition for the gear pair is given in this paper. With gears’machining tolerances and fitting allowances and the space temperature considered synthetically, an analytical model of seizure-preventing non-probabilistic reliability of the gear pair is presented by using optimization. The seizure-preventing reliability of synchronous gears is predicted in different fitting allowances and different temperature conditions, and some significant conclusions are obtained.
     4. The study on the reliability allocation of satellite antenna deployment mechanism system.
     Fuzzy comprehensive evaluation method for system reliability allocation was proposed in the initial stages of the design of spaceborne antenna deployment mechanism. This method was based on the weight allocation method. Through introduced the fuzzy information into the matrix of weight coefficients, the fuzzy model for the reliability allocation of spaceborne antenna deployment mechanism was built. By the arithmetic operation rules of fuzzy mathematics, the expression of fuzzy weight coefficient was derived. Finally, the reliability allocation of a spaceborne antenna deployment mechanism was given as an example. The possible reliability of the system was obtained. The rationality and validity of the presented method were demonstrated.
     5. Interval analysis method of faulty tree for the deployment system of a large satellite antenna
     To formulate the uncertainties of conventional fault tree analysis, the method of fault tree interval analysis based on D-S(dempster-shafer) theory and interval probability theory is proposed. On the condition that the premises in FTA(faulty tree analysis) is dependence or independence between basic events, the AND operator and the OR operator are proposed to compute interval probability of FTA, and upon which the system reliability was forecasted.
     6. Fault analysis of the deployment mechanism system of satellite antenna based on grey relation method
     For the shortage of the system reliability datum in the initial stages of the design of satellite antenna deployment mechanism, grey relation method for system reliability allocation was proposed. It was used to study the relativity of the mechanism system’s failure characters and inside characters of the satellite antenna, and to confirm what kind of standard mode the actual mode belonged to. And it was also used in the fault tree’s synthetically analysis.
引文
[1] Schweppe F C. Uncertain dynamics systems. Prentice– Hall, Englewood Cliffs, N. J., 1973.
    [2] Ibrahim R.A. Structural dynamics with parameter uncertainties. Applied Mechanics, Reviews, 1987, 40(3): 309-328.
    [3] Givoli D, Elishakoff I. Stress concentration at a nearly circular hole with uncertain irregularities. Journal of Applied Mechanics, 1992, 59: 67-71.
    [4]邱志平.不确定参数结构静力响应和特征值问题的区间分析方法.吉林工业大学博士论文, 1994.
    [5]邱志平.非概率凸集合理论模型的拓广及算法的数值化.大连理工大学博士后研究工作报告, 1996.
    [6]张圣坤.不确定问题的有限元方法及应用.固体力学学报, 1987, 3: 277-281.
    [7]王培庄.模糊集合论及其应用.上海:上海科学技术出版社, 1987.
    [8]高伟,陈建军,马洪波.随机参数智能桁架结构振动控制中主动杆的优化配置.振动工程学报, 2003, 16(1): 89-94.
    [9]高伟,陈建军.线性随机智能桁架结构闭环动力响应,西安电子科技大学学报, 2003, 30(3): 357-361.
    [10] Dai J, Chen J J., Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [11]李杰.随机结构系统─分析与建模.北京:科学出版社, 1996.
    [12]王光远.论不确定性结构力学的进展.力学进展, 2002, 32(2): 205-211.
    [13]王光远.未确知信息及其数学处理.哈尔滨建筑大学学报. 1990, 23(4): 1-9.
    [14]刘开弟,吴和琴,庞彦军等.不确定性信息数学处理及应用.北京:科学出版社, 2000.
    [15] Thoft-Christensen P, Baker M J. Structural reliability theory and its applications. Springer-Verlag, 1982.
    [16] Li Jie, Chen Jianbing. Dynamic response and reliability analysis of structures with uncertain parameters. International Journal for Numerical Methods in Engineering, 2005, 62(2): 289-315.
    [17] Zhao Lei, Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation. Computers and Structures, 2000, 77(6): 651-657.
    [18]朱位秋.随机振动.北京:科学出版社, 1992.
    [19]陈塑寰.随机参数结构的振动理论.长春:吉林科学技术出版社, 1992.
    [20] Nagpal V K. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades. AIAA Journal, 1989, 27(6): 809-813.
    [21] Hien T D, Kleiber M. Finite element analysis based on stochastic Hamilton variation principle. Computer and Structures, 1990, 37(6): 893-902.
    [22]刘宁,吕泰仁.随机有限元及其工程应用.力学进展, 1996, 25(4): 437-452.
    [23]朱位秋.非线性随机振动理论的近期进展.力学进展, 1994, 24(2): 163-172.
    [24]庄表中,陈乃立,高瞻.非线性随机振动理论及应用.杭州:浙江大学出版社, 1989.
    [25]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究.力学进展, 1996, 26(4): 437-452.
    [26]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展, 1999, 29(1): 9-18.
    [27] Gao W, Chen J J, Ma H B et al. Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers & Structures, 2003, 81(1): 53-60.
    [28] Gao W, Chen J J, Ma J, Liang Z T. Dynamic response analysis of stochastic frame structures under nonstationary random excitation. AIAA Journal, 2004, 42(9): 1818-1822.
    [29] Gao W, Chen J J, Ma H B et al. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability. Structural Engineering and Mechanics, 2003, 15(2): 239-248.
    [30] Gao W, Chen J J, Hu T B, et al. Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation. Structural Engineering and Mechanics, 2004, 18(2): 137-150.
    [31] Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal's criticisms to modern convex modeling. Computers & Structures, 1995, 56(6): 871-895.
    [32] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in analysis and Design, 2000, 34(1): 75-88.
    [33] Elishakoff I. Three versions of the finite element method based on concept of either stochasticty, fuzziness or anti-optimization. Applied Mechanics Review, 1998, 51(3): 209-218.
    [34] Elishakoff I. Possible limitations of probabilistic methods in engineering. Applied Mechanics Review, 2000, 53(2): 19-36.
    [35]刘长虹.基于信息熵下的结构强度与外载的广义可靠度.机械科学与技术, 2003, 22(6): 631-638.
    [36]吕玺琳,吕恩琳.结构系统模糊可靠性的一种分析方法.中国人工智能进展,北京:北京邮电大学出版社, 2003.
    [37]郭书祥,吕震宙,冯立富.模糊运算和模糊有限元静力控制方程的求解.应用数学和力学, 2002, 23(9): 936-942.
    [38]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报, 2002,19(1): 89-93.
    [39] Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and systems, 1991, 42(2): 145-172.
    [40] Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context. Fuzzy Sets and systems, 1996, 83(2): 203-213.
    [41] Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications. Structural Safety, 1997, 19(2): 173-201.
    [42] Sawyer J P, Rao S S. Strength-based reliability and fracture assessment of fuzzy mechanical and structural systems. AIAA Journal, 1999, 37(1): 84-92.
    [43] L. A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1978(1): 1-9.
    [44] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoningⅠ. Information sciences, 1975(8): 199-249.
    [45] L. A. Zadeh, Fuzzy Sets. Information control, 1965(8): 338-353.
    [46]罗承忠.模糊集引论(Ⅰ).北京:北京师范大学出版社, 1989.
    [47] D. Dubois, H. Prade. Fuzzy Sets and System: Theory and Applications, Academic Press, New York, 1980.
    [48]陈绍仲,刘作述. Fuzzy概率的一些问题.模糊数学, 1982, 4: 111-112.
    [49] E. P. Klement. Fuzzy probability measures. Fuzzy Sets and Systems, 1981, 5: 230-239.
    [50] Wang Peizhuang. Fuzzy contactability and fuzzy variables. Selected papers on fuzzy subsets, Beijing Normal University, 1980.
    [51] L. A. Zadeh. Probability measure on fuzzy events. J. Math. Anal. Appl., 1968.
    [52] L. A. Zadeh. Outline of a New Approach to the Analysis of Complex systems and Decision Processes. IEEE Trans. Syst. Man and Cibern, SMC-3, 28-44, Jan. 1973.
    [53] L. A. Zadeh. Fuzzy Sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, 1: 3-28.
    [54]王光远.地震烈度的模糊综合评定及其在抗震结构设计中的应用.地震工程与工程振动, 1982, 4: 173-180.
    [55]王光远,王文泉.抗震结构的模糊优化设计.土木工程学报, 1985, 2: 50-58.
    [56]王光远,欧进萍.模糊变量的F期望与满足测度.哈尔滨建筑工程学院学报, 1988, 21(4): 1-10.
    [57]王光远,王文泉.抗震结构的模糊可靠性分析.力学学报, 1986, 5: 69-75.
    [58]王光远,王文泉,欧进萍.系统的广义可靠度.系统工程的理论与实践, 1988, 1: 1-9.
    [59]王光远,欧进萍.在地震作用下结构的模糊随机振动.力学学报, 1988, 20(2): 173-180.
    [60]欧进萍,王光远.基于模糊破坏准则的抗震结构动力可靠性分析.地震工程与工程振动,1986, 6(2): 173-180.
    [61]王光远,欧进萍.抗震结构的模糊随机振动.振动与冲击力学学报, 1988, 8(3): 211-219.
    [62]欧进萍.模糊随机振动.哈尔滨建筑工程学院博士论文, 1987.
    [63]王光远,欧进萍.多自由度滞变体系在地震作用下的模糊随机振动.地震工程与工程振动, 1986, 6(3): 1-10.
    [64]欧进萍,王光远.模糊过程与模糊微分方程的解法.模糊系统与数学, 1991, 5(2): 1-9.
    [65]王光远,欧进萍,汪培庄.动态模糊集.模糊系统与数学, 1988, 1: 1-7.
    [66]欧进萍,王光远.动态系统受模糊干扰的响应分析.哈尔滨建筑工程学院学报, 1989, 22(2): 1-8.
    [67] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam: Elsevier Science, 1990.
    [68] Lindberg H. An evaluation of convex modeling for multimode dynamic buckling. Journal of Applied Mechanics, 1992, 59: 929-936.
    [69] Lindberg H. Convex modes for uncertain imperfection control in multimode dynamic buckling. Journal of Applied Mechanics, 1992, 59: 937-945.
    [70] Elishakoff I, Elisseeff P, Glegg S A L. Non-probabilistic convex theoretic modeling of scatter in material properties. AIAA Journal, 1994, 32(4): 843-849.
    [71] Elishakoff I, Cai G Q, Starnes J H. Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. International Journal of Non-Linear Mechanics, 1994, 29(1): 71-82.
    [72] Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Computer Methods in Applied Mechanics and Engineering, 1993, 104(2): 187-209.
    [73] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells. Journal of Applied Mechanics, 1993, 60(3): 683-690.
    [74] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17(2): 91-109.
    [75] Ben-Haim Y, Chen G, Soong T T. Maximum structural response using convex models. Journal of Engineering Mechanics, 1996, 122(4): 325-333.
    [76] Pantelides C P, Ganzeli S. Design of truss under uncertain loads using convex models, Journal of Engineering Mechanics, 1998, 124(3): 318-329.
    [77]邱志平,顾元宪.结构静力位移的非概率凸集合模型的摄动数值算法.固体力学学报, 1997, 18(1): 86-89.
    [78] Singh B N, Yadav D, Iyengar N G R. Natural frequencies of composite plates with random material properties using higher-order shear deformation theory. International Journal ofMechanical Sciences, 2001, 43: 2193-2214.
    [79] Kaminski M. Monte-Carlo simulation of effective conductive for fiber composites. Int. Communications in Heat and Mass Transfer, 1999, 26(6): 801-810.
    [80] Hurtado J E, Barbat A H. Monte Carlo techniques for stochastic finite elements. Arch. of Comput. Method in Eng., 1998, 5(1): 3-30.
    [81] Kaminski M. Perturbation based on stochastic finite element method homogenization of two-phase elastic composites. Computers & Structures, 2000, 78(6): 811-826.
    [82] Yang X W, Chen S H, Wu B S. Eigenvalue reanalysis of structures using perturbations and pade approximation. Mechanical System and Signal Processing, 2001, 15(2): 257-263.
    [83] Cho K N. Mass perturbation influence method for dynamic analysis of offshore structures. Structural Engineering and Mechanics, 2002, 13(4): 429-436.
    [84] Kaminski M. Stochastic finite element method homogenization of heat conduction problem in fiber composites. Structural Engineering and Mechanics, 2001, 11(4): 373-392.
    [85]高伟,陈建军.线性随机结构的平稳随机响应分析.应用力学学报, 2003, 20(3): 92-95.
    [86]方同,冷小磊,李军强等.演变随机响应问题的统一解法.振动工程学报, 2002, 15(3): 290-294.
    [87] Spanos P D, Ghanem R G. Stochastic finite element expansion for random media. Journal of Engineering Mechanics Division. ASCE, 1989, 115(5): 1035-1053.
    [88] H Jensen, W D Iwan, Response of system with uncertain parameters to stochastic excitation, J. Engng Mech.. ASCE, 1992, 118(5), 1012-1025.
    [89]李杰.复合随机振动分析的扩阶系统方法.力学学报, 1996, 28(1): 66-74.
    [90]张森文等.精细积分时域平均法和扩阶系统法.力学学报, 2000, 32(2): 191-197.
    [91] Li J, Chen J B. Probability density evolution method for dynamic response analysis of stochastic structures. Advances in Stochastic Structural Dynamics. Boca Raton: CRC Press, 2003, 309-316.
    [92]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法.力学学报, 2003, 35(4): 437-442.
    [93]陈建兵,李杰.随机结构复合随机振动分析的概率密度演化方法.工程力学, 2004, 21(3): 90-95.
    [94]陈建兵,李杰.复合随机振动系统的动力可靠度分析.工程力学, 2005, 22(3): 52-57.
    [95]王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法.计算力学学报, 2004, 21(1): 56-61.
    [96] Chen S H, Qiu Z P. Perturbation method for computing eigenvalue bounds in vibration system with interval parameters. Communication in Numerical Methods in Engineering, 1994, 10: 121-134.
    [97]陈怀海,陈正想.求解实对称矩阵区间特征值问题的直接优化法.振动工程学报, 2000, 13(1): 117-121.
    [98]陈塑寰,邱志平,宋大同等.区间矩阵标准特征值问题的一种解法.吉林工业大学学报, 1993, 23(3): 1-8.
    [99]邱志平,陈塑寰,周振平.对称区间矩阵标准特征值问题的一种新算法.吉林工业大学学报, 1994, 4(3): 62-65.
    [100]陈塑寰.结构动态设计的矩阵摄动理论.北京:科学出版社. 1999.
    [101] Rao S S, Berke L. Analysis of uncertain structural system using interval analysis. AIAA Journal, 1997, 35(4): 727-735.
    [102] Koylouglu H U, Cakmak A S, Nielsen SRK. Interval algebra to deal with pattern loading and structural uncertainties. Journal of Engineering Mechanics, 1995, 121(11): 1149-1157.
    [103] Muhanna R L, Mullen R L. Uncertainty in mechanics problems-interval-based approach. Journal of Engineering Mechanics, 2001, 127(3): 557-566.
    [104] Mcwilliam S. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79: 421-430.
    [105]吴晓,罗佑新,文会军,李敏.非确定结构系统区间分析的泛灰求解方法.计算力学学报, 2003, 20(3): 329-334.
    [106] Nakagiri S, Suzuki K. Finite element interval analysis of external loads identified by displacement input with uncertainty. Comput Methods Appl Mech Engrg, 1999, 168: 63-72.
    [107]王登刚,刘迎曦,李守巨.弹性力学非线性反演方法概述.力学进展, 2003, 33(2), 166-174.
    [108]郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法.计算力学学报, 2005, 22(2): 227-231.
    [109]王登刚,李杰.结构可靠性分析的区间方法. 12届全国反应堆结构力学会议文集,烟台, 2002.
    [110] Chen S H, Lian H D, Yang X W. Interval displacement analysis for structures with interval parameters. Int J Num Methods in Eng, 2002, 53(2): 393-407.
    [111]吴杰,陈塑寰.区间参数结构的动力响应优化.固体力学学报, 2004, 25(2): 186-189.
    [112]郭书祥,吕震宙.区间运算和静力区间有限元.应用数学和力学, 2001, 22(12): 1249-1254.
    [113] Qiu Z P, Elishakoff I. Anti-optimization of structures with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3-4): 361-372.
    [114] Hansen Eldon. Global Optimization Using Interval Analysis. New York: Marcel Dekker Inc, 1992.
    [115]王登刚,李杰.计算不确定结构系统静态响应的一种可靠方法.计算力学学报, 2003,20(6): 662-668.
    [116] Ma Juan, Chen Jian-jun, Zhang Jian-guo, Jiang Tao. Interval factor method for interval finite element analysis of truss. Journal Multidiscipline Modeling in Materials and Structures, 2005, 1(4): 367-376.
    [117]林立广,陈建军,马娟等.基于区间因子法的不确定桁架结构动力响应分析.应用力学学报, 2008, 25(4): 612-616.
    [118]林立广,陈建军,马娟等.具有区间参数的智能桁架结构自振特性分析.工程力学, 2008, 25(12):189-193.
    [119]钟佑明,吕恩林,王应芳.区间概率随机变量及其数字特征.重庆大学学报(自然科学版), 2001, 24(1): 24-27.
    [120]肖盛燮,吕恩林.离散型区间概率随机变量和模糊概率随机变量的数学期望.应用数学和力学, 2005, 26(10): 1253-1260.
    [121]林立广,陈建军.区间随机桁架结构动力特性分析方法研究.振动与冲击, 2009, 28(4): 65-69.
    [122]陈建军.机械与结构系统的可靠性.西安电子科技大学, 1994.
    [123]郭书祥.非随机不确定结构的可靠性方法和优化设计研究.西北工业大学:博士学位论文, 2002.
    [124] Ben-Haim Y. A non-probabilistic concept of reliability. Struct Safety, 1994, 14: 227-245.
    [125] Elishakoff I. Discussion on: A non-probabilistic concept of reliability. Structural Safety, 1995, 17(3): 195-199.
    [126] Ben-Haim Y. Robust reliability in the mechanical sciences. Berlin: Springer-Verlag, 1996.
    [127]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报, 2001, 18(1): 56-60.
    [128]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 260-264.
    [129]郭书样,吕震宙.区间可靠性分析的概率和非概率混合模型.机械强度, 2002, 24(4): 524-526.
    [130] Misawa M, Yasaka T, Miyake S. Analytical and experimental investigations for satellite antenna deployment mechanisms. J Spacecraft, 1989, 26(3): 181-187.
    [131] Jin M. Comparative analysis of deployable truss structures for mesh antenna reflectors. AIAA, 1998, 36(8): 1546-1548.
    [132]冯达武,赵人杰.空间大型网状展开天线展开机构的研究.中国空间科学技术, 1997, (1): 64-70.
    [133]董志强,段宝岩.星载天线缠绕肋条的力学特性研究.西安电子科技大学学报, 2001, 28(6): 755-758.
    [134]陈建军,张建国,段宝岩等.大型星载天线展开机构中同步齿轮系放卡滞研究.西安电子科技大学学报, 2005, 32(3): 329-334.
    [135]冯元生.机构可靠性理论的研究.中国机械工程, 1992, 3(3): 1-3.
    [136]羊妗,冯元生.机构可靠性破坏模式研究.机械科学与技术, 1991, (2): 62-65.
    [137]任和,冯元生,贾少澎.机构磨损模糊可靠性算法研究.机械科学与技术, 1998, (1): 46-48.
    [138] B.Z.Sandler著,马培荪,马烈译.机构概率设计.北京:科学出版社, 1991.
    [139] J H Rhyu, B M Kwak. Optimal stochastic design of four-bar mechanisms for tolerance and clearance. Transactions of the ASME, 1988, 110(9): 225-262.
    [140] S J Lee, B J Gilmore. The determination of the probabilistic properties of velocities & accelerations in kinematic chains with uncertainty. Transactions of the ASME, 1991, 113(3): 84-90.
    [141]徐卫良,张启先.空间机构运动误差的概率分析和蒙特卡罗模拟.机械工程学报, 1988, 24(3): 97-104.
    [142]史天录. RCCC空间机构的运动精度和可靠性分析.机械科学与技术, 1995, (1): 47-51.
    [143]张新义.机械精度设计的理论概率法.北京:机械工业出版社, 1995.
    [144]贾少澎.曲柄滑块机构的弹性动力可靠性分析.飞机工程, 1997, (3): 49-53.
    [145]贺东斌.机构变形卡住可靠性分析.中国机械工程, 1994, 5(2): 3-5.
    [146]贺东斌.多支点轴防变形卡住可靠性分析.航空学报, 1995, 16(2): 243-245.
    [147]贺东斌.机构容差及其运动可靠性.中国机械工程, 1993, 4(3): 16-17.
    [148]贺东斌,冯元生.航空关节轴承的可靠性分析.机械强度, 1995, 17(1): 29-31.
    [149]史天录.机构动态可靠性分析方法.中国机械工程, 1994, 5(4): 367-369.
    [150]顾长鸿,盛一兴.飞机起落架上位锁机构的可靠性分析.北京航空航天大学学报, 1995, 21(4): 18-23.
    [151]张树林,黄文敏.飞行器机构的可靠性.北京航空航天大学学报, 1995, 21(4): 23-29.
    [152]胡太彬,陈建军,张建国.伞状天线旋转关节运动功能的可靠性分析.空间科学学报, 2005, 25(6): 552-557.
    [153]陈建军,张建国,段宝岩.周边桁架式大型星载天线的展开可能性分析.宇航学报, 2005, 26(增刊): 130-134.
    [154]林立广,陈建军,朱増青等.基于非概率模型的星载天线展开机构中同步齿轮系防卡滞研究,高技术通讯, 2007, 17(12): 1248-1253.
    [155]何国伟.可靠性设计.北京:机械工业出版社, 1993.
    [156]张树林,黄问敏.机械产品的可靠性分析、设计方法.航空标准化与质量. 1995, 4: 40-43.
    [157]朱文予.机械可靠性设计.上海:上海交通大学出版社, 1992.
    [158] Darid W, Alice E S. Reliability optimization of series-parallel systems using a geneticlalgorithm. IEEE Trans Reliability, 1996, 45: 254-260.
    [159] Gregory Let Al. Redundancy optimization for series-parallel multi-state systems. IEEE Trans Reliability, 1998, 47: 165-172.
    [160] Utkin L V. A method to solve fuzzy reliability optimization problem. Microelectronics and Reliability, 1995, 35: 171-191.
    [161] Dhingra A K. Optimal apportionment of reliability and redundancy inseries systems under multiple objectives IEEE Trans. Reliability, 1992, 41(4): 576-582.
    [162] Ravi V, Reddy P J, Zimmermann H-J. Fuzzy global optimization of complex system reliability. IEEE Trans Fuzzy System, 2000, 8(3): 241-248.
    [163] Park K S. Fuzzy apportionment of systems reliability. IEEE Trans. Reliability, 1987, 36(2): 129-132.
    [164] Rao S S, Dhingra A K. Reliability and redundancy apportionment using crisp and fuzzy muli-objective optimization approaches. Reliability Engineering and System Safety, 1992, 37: 253-261.
    [165]朱文予,陈心昭,胡洪涛,董玉革.系统可靠度分配的最优决策.系统工程学报, 1998, 13(1): 108-11.
    [166]陈建军,张建国,段宝岩,王小兵.大型星载天线的展开系统失效树分析.机械设计与研究, 2005, 21(3): 6-8
    [167]梁震涛,陈建军,胡太斌.星载天线展开机构系统可靠性分配的未确知方法.南京理工大学学报, 2006, 31(5): 579-584.
    [168]林立广,陈建军,马娟等.基于模糊综合评判法的星载天线展开机构系统可靠性分配.机械科学与技术, 2009, 28(3): 375-379.
    [169]林立广,陈建军,马娟等.大型星载天线展开系统故障树的区间分析方法.机械强度,已录用.
    [170] Yokota T, Gen M, Ida K. System reliability of optimization problems with several failures modes by genetic algorithm. Journal of Japan Society for Fuzzy Theory and Systems. 1995, 7(1): 117-185.
    [171] Con D, Smith A. Penalty guided genetic search for reliability design optimization. International Journal of Computers and industrial Engineering. 1996, 30(4): 895-904.
    [172] Con D, Smith A. Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on Reliability, 1996, 45(2): 254-260.
    [173] Marseguerra M., Zio E. Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation. Reliability Engineering and System Safety. 2000, 68: 69-83.
    [174]孙有朝,施军.相同成败型单元组成系统可靠性信息熵法评定.机械工程学报,1999, 35(6): 25-28.
    [175]李荣,王慈频,察洪.最大熵方法在系统可靠性Bayes评估中的应用.航空控制, 1999, 1: 75-80.
    [176]林少芬,马亮,李瑰资.模糊熵的可靠性设计与运用.集美大学学报. 2000, 5(1): 61-64.
    [177]倪明,单渊达.证据理论及其应用.电力系统自动化. 1996, 20(3): 76-80.
    [178]秦良娟.证据理论在复杂系统可靠性评估中的应用.西安交通大学学报, 1998, 32 (8): 100-103.
    [179] Yakov Ben-Haim, Alexander laufer. Robust reliability of projects with activity- duration uncertainty. ASCE Journal of Construction Engineering and Management, 1998, 124: 125-132.
    [180] Yakov Ben-Haim. Design certification with information-gap uncertainty. Structural Safety, 1999, 21:269-289.
    [181] Yakov Ben-Haim. Set-models of information-gap uncertainty: axioms and an inference scheme. Journal of the Franklin Institute, 1999, 336: 1093-1117.
    [182] Jorge E. Hurtado, Diego A. Alvarez. Neural-network-based reliability analysis: a comparative study. Computer Methods in Applied Mechanics and Engineering: 2001, 191: 113-132.
    [183]李平.神经网络在系统可靠性评估中的应用.舰船科学技术. 1999, 3: 51-56.
    [184]杨明顺,林志航,陈砚等.基于神经网络的模糊可靠性分配.机床与液压, 2002, 1: 19-21.
    [185] Alefeld G, Claudio D. The basic properties of interval arithmetic, its soft ware realizations and some applications. Computers & Structures, 1998, 67(4): 3-8.
    [186]聂润兔,邵成勋.压电桁架结构动力学建模与振动控制.宇航学报, 1998, 19(4): 8-14.
    [187] K. J. Bathe. Finite element procedures in engineering analysis. Prentice-Hall, Inc., 1982.
    [188] Feng Y S. The development of a theory of mechanism reliability. Reliability Engineering & System Safety, 1993, 41(1): 95-99.
    [189]陈勇.机构可靠性分析及其在星载天线展开机构中的应用.西安电子科技大学学位论文, 2000.
    [190] Page L B, Perry J E. Standard deviation as an alternative to fuzziness in fault tree models. IEEE Transactions on Reliability, 1994, 43(3): 402-407.
    [191] Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems, 1990, 37(2): 267-286.
    [192] Tanaka H, Fan L T, Lai F S, et al. Fault tree analysis by fuzzy probability. IEEE Transactions on Reliability, 1983, 32(5): 453-457.
    [193] Suresh P V, Babar A K, Venkat Raj V. Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets and Systems, 1996, 83: 135-141.
    [194] Cui W, Blockley D I. Interval probability theory for evidential support. International Journal of Intelligent System, 1990(5): 183-192.
    [195]段新生.证据理论与决策、人工智能.北京:中国人民大学出版社, 1989.
    [196] Moor R E. Methods and applications of interval analysis. Philadelphia: Society for Industrial and Applied Mathematics Publications, 1979.
    [197] Dempster A P. A generalization of Bayesian inference. Journal of the Royal Etatistical Society, 1968, Series B 30: 205-247.
    [198]李尔国,俞金寿.基于灰色关联度分析法的压缩机故障诊断研究.上海海运学院学报, 2001, 22(3): 294-297.
    [199]傅立.灰色系统理论及其应用.北京:科学技术文献出版社. 1992: 185-187.
    [200]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社. 1992.
    [201]罗佑新,张龙庭,李敏等.灰色系统理论及其在机械工程中的应用.长沙:国防科技大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700