用户名: 密码: 验证码:
浅黄恩蚜小蜂对B型和Q型烟粉虱若虫的寄主选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型和Q型是烟粉虱Bemisia tabaci的两个非常重要的生物型,且先后侵入我国并造成了严重的危害。近年来,发现在很多地区Q型烟粉虱成为了田间的优势种群,而寄生蜂在Q型烟粉虱竞争替代B型烟粉虱的过程中是否发挥作用尚不清楚。本文在实验室条件(27±1℃、L:D16:8、RH70-80%)下研究了烟粉虱寄生蜂浅黄恩蚜小蜂Encarsia sophia对B型和Q型烟粉虱的寄主选择行为、取食行为、功能反应以及这两种生物型烟粉虱对子代蜂发育历期、寿命、繁殖力的影响。取得了如下研究结果:
     (1)浅黄恩蚜小蜂在B型和Q型烟粉虱若虫上的寄生行为过程基本上表现一致,即体外检测寄主、体内检测寄主-产卵。浅黄恩蚜小蜂体外检测时间在B型和Q型烟粉虱若虫间差异不显著,而寄生Q型烟粉虱若虫时的体内检测寄主-产卵时间(190.2±14.6 s)显著高于寄生B型时所用时间(140.0±7.5 s)。浅黄恩蚜小蜂在非选择条件下寄生B型烟粉虱若虫的数量(8.1±0.5头)及总产卵量(9.3±0.6粒)显著高于寄主为Q型烟粉虱时的寄生数量(6.3±0.5头)及总产卵量(7.0±0.6粒);而被寄生若虫单头着卵量在两个处理间差异不显著。在选择性条件下,浅黄恩蚜小蜂寄生B型烟粉虱若虫量(3.1±0.4头)、总产卵量(3.8±0.5粒)及被寄生若虫单头着卵量(1.2±0.1粒)都显著高于寄生Q型烟粉虱时的情况(1.8±0.3头、1.8±0.4粒、0.7±0.1粒)。
     (2)寄生蜂的发育历期、羽化率、寿命和繁殖能力是衡量寄主适合度的重要指标。以B型烟粉虱为寄主时,浅黄恩蚜小蜂雌蜂卵-黑蛹(7.2±0.1 d)、黑蛹-羽化(5.2±0.1d)的发育时间与以Q型烟粉虱若虫为寄主时的相应发育时间(7.3±0.1 d、5.6±0.1 d)间无显著性差异。以B型烟粉虱为寄主时寄生蜂的羽化率(73.55±1.42%)与以Q型烟粉虱为寄主时寄生蜂的羽化率(68.42±13.01%)间也无显著差异。B型烟粉虱繁殖出的子一代浅黄恩蚜小蜂的平均寿命(17.1±0.8 d)和产卵总量(73.3±3.5粒)与Q型烟粉虱繁育出的小蜂平均寿命(16.0±0.7 d)和产卵总量(67.9±3.0粒)间均无显著差异。
     (3)无论寄生蜂是否交配或寄主生物型是否相同,浅黄恩蚜小蜂的取食行为过程基本表现一致,且主要分为三步:①体外检测寄主,②产卵器穿刺寄主并检测寄主内环境,③取食寄主体液。不同交配状态的浅黄恩蚜小蜂在B型和Q型烟粉虱若虫上的体外检测寄主时间基本相同。烟粉虱生物型对浅黄恩蚜小蜂产卵器穿刺寄主及检测寄主内环境时间没有影响,但交配过的寄生蜂在Q型烟粉虱若虫上的产卵器穿刺及检测寄主内环境时间显著短于未交配过的小蜂。两种生物型烟粉虱对浅黄恩蚜小蜂的取食时间没有影响;而交配过的浅黄恩蚜小蜂取食时间显著长于未交配的小蜂。浅黄恩蚜小蜂雌蜂取食B型和Q型烟粉虱的数量间差异不显著,但对于同一生物型而言,交配过的雌蜂能够取食更多的烟粉虱若虫。
     (4)浅黄恩蚜小蜂对两种生物型烟粉虱若虫的寄生、取食数量随寄主密度的增加而增多。在各寄主密度下,烟粉虱生物型对该蜂的取食数量没有影响,但寄生数量受烟粉虱生物型的影响显著。浅黄恩蚜小蜂对B型和Q型烟粉虱的功能反应均符合HollingⅡ圆盘方程,对B型烟粉虱的功能反应模型为:Na=1.2485Nt/(1+0.0634Nt),对Q型烟粉虱的功能反应模型为:Na=1.1189Nt/(1+0.0648Nt)。该蜂通过寄生和取食杀死B型和Q型烟粉虱的最大日致死量分别为19.7头和17.2头。
     (5)B型和Q型烟粉虱不同比例组合下,随供试B型和Q型烟粉虱数量的增加,其被浅黄恩蚜小蜂寄生和取食的数量也增加;在固定Q型烟粉虱数量的各组合间,被小蜂寄生和取食的Q型烟粉虱数量差异不显著;而在固定B型烟粉虱数量的各组合间,被小蜂寄生的B型烟粉虱数量间差异显著,但取食数量无显著差异。当B:Q为1:1、2:1、3:1、4:1、5:1时,浅黄恩蚜小蜂寄生B型烟粉虱的数量都明显高于寄生Q型烟粉虱的数量;当B:Q为1:2、1:3时,小蜂寄生两生物型的烟粉虱数量间都不存在差异,而B:Q为1:4、1:5时,小蜂寄生Q型的数量才明显多于寄生B型的数量。
B and Q biotype are two very important Bemisia tabaci biotypes, and has invaded China and caused seriously damage. In recent years, it's emerged that Q biotype B. tabaci has become the dominant biotype in the field in many areas, however, the role of parasitoids in displacement of B biotype B. tabaci by Q biotype in field left to be understood. In this paper we observed the parasitizing behavior and preference, host feeding behavior, functional response of Encarsia sophia on B and Q biotype B. tabaci and investigated the effects of B. tabaci biotypes on development, longevity and fecundity of E. sophia in the laboratory under 27±1℃, L:D=16h:8h and RH70~80%. The main results are as following.
     (1) The parasitizing process of E. sophia on B and Q biotypes B. tabaci nymphs were similar, including outside host examination, inside host examination and oviposition. Time for outside host examination of E. sophia was not significantly different between two whitefly biotypes, whereas the inside host examination and oviposition time on Q biotype nymph was significantly longer than that on B biotype nymph (190.2±14.6s vs 140.0±7.5s). In non-choice test, the number of Q biotype parasitized (8.1±0.5) and the total egg number (9.3±0.6) laid by E. sophia was significantly more than those,6.3±0.5 and 7.0±0.6, separately, for B biotype nymph, while the number of egg loaded per nymph parasitized were not significantly different between B and Q biotypes. In choice test, the number of nymph parasitized (3.1±0.4), total egg laid per wasp (3.8±0.5), and egg loaded per host (1.2±0.1) for B biotype was more than that corresponding number (1.8±0.3, 1.8±0.4 and 0.7±0.1) for Q biotype.
     (2) The developmental duration, emergence rate, longevity and fecundity of parasitoid are important indicators for weighing host fitness. The developmental duration of wasp for egg-pupa (7.2±0.1 d), and pupa (5.2±0.1 d) on B biotype nymph was not significantly different from that corresponding time 7.3±0.1 d and 5.6±0.1 d on Q biotype. Emergenece rate of wasp pupae from B biotype nymph (73.55±1.42%) was not significantly different from that from Q biotype nymph (68.42±13.01%). The average longevity (17.1±0.8 d) and lifetime fecundity (73.3±3.5) of the first generation E. sophia reared on B biotype B. tabaci was not significant different from that 16.0±0.7 d and 67.9±3.0, respectively, of E. sophia reared on Q biotype B. tabaci.
     (3) In spite of the mating of wasp or host biotype, host-feeding process of E. sophia were similar and could roughly be divided into the following three steps:①outside host examination,②ovipositor drilling and inside host examination,③pulling out the ovipositor and feeding host. Time for outside host examination of mated or unmated E. sophia was similar between on B and Q biotypes B. tabaci. Ovipositor drilling and inside host examination time wasn't affected by whitefly biotype, but ovipositor drilling and inside host examination time of mated parasitoid on Q biotype whitefly nymphs was significantly shorter than that of unmated parasitoid. The feeding time of E. sophia was not significantly different between two whitefly biotypes, but feeding time of the mated parasitoid was significantly longer than that of unmated parasitioid. There were no significant differences in number of nymphs fed by E. sophia between B and Q biotypes, but the mated female wasp fed more nymph than unmated female wasp did within the same biotype.
     (4) Both numbers of nymph parasitized and that fed by E. sophia increased with host density for two biotypes. In each host density, host-feeding of parasitoid wasn't affected by whitefly biotype, but there were significant effects of B. tabaci biotype on number of host parasitized. Functional responses of E. sophia could be described well by HollingⅡtype equation on both B and Q biotypes B. tabaci, and the model for B biotype was Na=1.2485Nt/(1+0.0634Nt) and Na=1.1189Nt/(1+0.0648Nt) for Q biotype. The maximum number of B and Q biotype B. tabaci parasitized and fed reached 19.7 and 17.2, respectively, within 24 h.
     (5) In different B. tabaci biotype B-Q ratio combinations, the number of B and Q biotype whiteflies parasitized and fed by E. sophia increased with the number of two biotypes whitefly supplied; the number of Q biotype B. tabaci parasitized and fed by E. sophia were not significantly different among combinations with same number of Q biotype B. tabaci; whereas the number of B bitotype B. tabaci parasitized were significantly different among the combinations with same number B biotype supplied, but the number of nymph fed by E. sophia were similar. When B:Q was 1:1,2:1,3:1,4:1,5:1, the number of nymph parasitized for B biotype was more than that number for Q biotype; when B:Q was 1:2 or 1:3, the number of whitefly nymphs parasitized by E. sophia between two biotypes didn't differ significantly; when B:Q was 1:4 or 1:5, the number of Q biotype whitefly nymphs parasitized by E. sophia was significantly more than that of B biotype nymphs parasitized.
引文
1. 安新城,任顺祥.烟粉虱繁殖力的寄主适应性评估及分析[J].华南农业大学学,2007,28(2):29-33.
    2. 陈庭慧,张帆,贾栋伟,等.一种标定烟粉虱若虫位置及判断若虫发育阶段的方法[J].昆虫知识,2009,46(6):974-977.
    3. 陈庭慧.浅黄恩蚜小蜂的过寄生现象及其对子代发育的影响[D].南京:南京农业大学,2010:49.
    4. 褚栋,陈国发,徐宝云,等.烟粉虱B型和Q型群体遗传结构的RAPD分析[J].昆虫学报,2007,50(3):264-270.
    5. 褚栋,刘国霞,陶云荔,等.烟粉虱复合种内共生菌多样性及其生物学意义[J].昆虫学报,2006,49(4):687-694.
    6. 褚栋,张友军,丛斌,等.云南Q型烟粉虱种群的鉴定[J].昆虫知识,2005,42(1):54-55.
    7. 高珏晓,孟玲,李保平.广大腿小蜂对菜粉蝶蛹体型大小的产卵选择及后代发育表现[J].生态学杂志,2010,29(2):339-343.
    8. 侯照远,严福顺.寄生蜂寄主选择行为研究进展[J].昆虫学报,1997,40(1):94-107.
    9. 黄建.中国蚜小蜂科分类[M].重庆:重庆出版社,1994.
    10.黄建,郑琼华,傅建炜,等.粉虱寄生蜂种类的调查与鉴定[J].华东昆虫学报,2000,9(2):29-33.
    11.黄琼,周祖基,杨伟,等.繁育川硬皮肿腿蜂替代寄主的筛选[J].昆虫学报,2005,48(3):375-379.
    12.纪敏,汪伦记,李西波,等.入侵B型与Q型烟粉虱的发生及防治对策[J].安徽农业科学,2008,36(30):13252-13253.
    13.蒋学建,周祖基.替代寄主蛹龄对川硬皮肿腿蜂取食和产卵的影响[J].广西林业科学,2005,34(4):179-180.
    14.康晓霞,杨益众,赵光明,等.卷叶螟绒茧蜂寄生棉大卷叶螟的行为及其与寄主密度的关系[J].植物保护学报,2007,34(1):22-26.
    15.李庆宝,施祖华,刘树生.菜蛾啮小蜂的寄主识别能力和种间竞争[J].浙江大学学报(农业与生命科学版),2004,30(2):164-168.
    16.郦卫弟,黄芳,陈亚锋,等.颈双缘姬蜂毒液对寄主小菜蛾的免疫抑制作用[J].昆虫学报,2006,49(2):206-212.
    17.李元喜,戴华国,符文俊.米蛾对三种赤眼蜂的适合性及别寄生后卵内游离氨基酸含量的变化[J].昆虫学报,2008-51(6):628-634.
    18.李元喜.寄主抗药性对菜蛾绒茧蜂抗药性发展及控害潜能的影响[J].杭州:浙江大学,2000:101.
    19.李元喜,刘树生.拟寄生昆虫中的过寄生现象[J].昆虫知识,2001,38(3):169-172.
    20.李元喜,罗晨,周长青,等.烟粉虱两种寄生蜂生物学特性及寄主竞争关系研究[J].昆虫学 报,2008b.51(7):738-744.
    21.梁光红,陈家骅,季清娥,等.橘小实蝇寄生蜂——切割潜蝇茧蜂的生物学特性[J].福建林学院学报,2007,27(3):253-258.
    22.刘金燕,张桂芬,万方浩,等.烟粉虱种内及种间竞争取代机制[J].生物多样性,2008,16(3):214-224.
    23.刘树生,何俊华.松毛虫赤眼蜂产卵行为观察[J].昆虫知识,1991,28(2):103-105.
    24.刘万学,万方浩.棉铃虫齿唇姬蜂寄主识别行为的研究[J].中国生物防治,2007,23(3):201-204.
    25.刘向东,张孝羲,翟保平.蚜虫寄主专化型及其成因[J].昆虫学报,2004a,47(4):499-506.
    26.刘向东,翟保平,张孝羲,等.棉花型和瓜型棉蚜形态和生态适应力的分化[J].昆虫学报,2004b,47(6):768-773.
    27.娄永根,汪霞,杜孟浩,等.寄生性天敌寄生行为及研究中应注意的若干问题[J].生态学杂志,2005,24(4):438-442.
    28.罗晨,姚远,王戎疆,等.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型[J].昆虫学报,2002,45(6):759-763.
    29.欧晓明,江汉华,陈常铭.茶毒蛾黑卵蜂的功能反应[J].昆虫天敌,1998,20(1):13-18.
    30.潘慧鹏,戈大庆,王少丽,等.在北京和河北局部地区Q型烟粉虱取代了B型烟粉虱[J].植物保护,2010,36(6):40-44.
    31.邱宝利,任顺祥,林莉,等.广东省烟粉虱蚜小蜂种类及种群动态调查初报[J].昆虫知识,2004,41(4):333-335.
    32.邱鸿贵,邱中良,沈伯钧,等.啮小蜂寄主接受行为的研究[J].昆虫天敌,2001,23(3):97-108.
    33.邵家斌,刘树生,余元钊,等.海氏浆角蚜小蜂对两种生物型烟粉虱的功能反应研究[J].环境昆虫学报,2010,32(1):73-77.
    34.史树森,臧连生,刘同先,等.寄生蜂取食寄主特性及其在害虫生物防治中的作用[J].昆虫学报,2009,52(4):424-433.
    35.谭毅,周祖基,黄琼,等.替代寄主被川硬皮肿腿蜂寄生后主要糖类含量及水解酶系活力的变化[J].林业科学,2003,39(4):73-77.
    36.陶敏,李保平,孟玲.甜菜夜蛾不同龄期幼虫被斑痣悬茧蜂寄生的风险分析[J].生态学杂志,2010,29(1):75-78.
    37.王继红,张帆,李元喜.烟粉虱寄生蜂种类及繁殖方式多样性[J].中国生物防治学报,2011,27(1):115-123.
    38.王文夕,李巧丝.寄主密度对烟蚜茧蜂生殖特性的影响[J].华北农学报,1996,11(4):52-57.
    39.王问学.麦蛾茧蜂性比与寄主的关系[J].生物防治通报,1991,7(1):16-18.
    40.王振营,周大荣,Hassan S A玉米螟赤眼蜂产卵行为的研究[J].中国生物防治,1996,12(4):145-149.
    41.王竹红,黄建,陈倩倩,等.花角蚜小蜂对松突圆蚧的寄生功能反应[J].应用生态学报,2007,18(10):2326-2330.
    42.伍和平,李保平.补充营养对斑痣悬茧蜂寿命和取食行为的影响[J].中国生物防治,2007,23(2):184-187.
    43.吴坤君,盛承发,龚佩瑜.捕食性昆虫的功能反应方程及其参数的估算[J].昆虫知识,2004,41(3):267-269.
    44.巫之馨,钦俊德.松毛虫赤眼蜂对假卵不同内含物的产卵反应[J].昆虫学报,1982,25(4):363-372.
    45.徐婧,王文丽,刘树生.Q型烟粉虱在浙江局部地区大量发生危害[J].植物保护,2006,32(4):121.
    46.徐庆刚,花保祯.桃蛀果蛾寄主生物型分化的RAPD分析[J].昆虫学报,2004,47(3):379383.
    47.徐汝梅.昆虫种群生态学[M].北京:北京师范大学出版社,1987.
    48.徐三军,刘万学,万方浩,等.豌豆潜蝇姬小蜂对4种寄主植物上美洲斑潜蝇幼虫的选择性及适合度[J].中国生物防治,2008,24(1):12-15.
    49.徐文华,左文惠,王瑞明,等.烟粉虱种群在江苏沿海城市市区的寄主分布与虫源性质[J].华东昆虫学报,2007,16(3):187-196.
    50.杨志信,任伊森.三种巨角跳小蜂及其在柑桔盾蚧中的寄主种类[J].江西果树,1996,4:22-23.
    51.姚万军,杨忠岐.人工繁殖管氏肿腿蜂的替代寄主研究[J].中国生物防治,2008,24(3): 220-226.
    52.张帆,罗晨,张君明.丽蚜小蜂对烟粉虱和温室白粉虱的寄生选择[J].华北农学报,2007,22(6):179-182.
    53.张世泽,万方浩,张帆,等.丽蚜小蜂两个品系对烟粉虱若虫的寄生适宜性[J].中国生物防治,2003,19(4):149-153.
    54.张世泽,郭建英,万方浩,等.丽蚜小蜂两个品系寄生行为及对不同寄主植物上烟粉虱的选择性[J].生态学报,2005,25(10):2595-2600.
    55.张延峰.两种赤眼蜂寄生行为的比较及种间竞争的研究[D].南京:南京农业大学,2010:57.
    56.周长青.浅黄恩蚜小蜂Encarsia sophia(Girault & Dodd)的生物学特性研究[D].重庆:西南大学,2008:53.
    57.周长青,李元喜,刘同先,等.浅黄恩蚜小蜂雌蜂的个体发育及其寿命和产卵量的观察.中国生物防治,2010,26(2):113-118.
    58.周尧.中国产粉螓科昆虫名录[J].中国昆虫学,1949,3(4):1-18.
    59. Aggarwal N, Brar D S. Effects of different neem preparations in comparison to synthetic insecticides on the whitefly parasitoid Encarsia sophia (Hymenoptera:Aphelinidae) and the predator Chrysoperla carnea (Neuroptera:Chrysopidae) on cotton under laboratory conditions[J]. Journal of Pest Science,2006,79(4):201-207.
    60. Antony B, Palaniswami M S, Henneberry T J. Encarsia transvena (Hymenoptera:Aphelinidae) development on different Bemisia tabaci Gennadius (Homoptera:Aleyrodidae) instars[J]. Environmetnal Entomology,2003,32(3):584-591.
    61. Bai B, Mackauer M. Oviposition and host-feeding patterns in Aphelinus asychis (Hymenop-tera: Aphelinidae) at different aphid densities[J]. Ecological Entomology,1990,15:9-16.
    62. Batchlor T P, Hardy I C W, Barrera J F, et al. Insect gladiators II.Competitive interactions within and between bethylid parasitoid species of the coffee berry borer,Hypothenemua hampei (Coleoptera:Soolytidae)[J]. Biological Control,2005,33:194-202.
    63. Brown J K, Frohlichand D R, Rosell R C. The sweet potato or silver leaf whiteflies:biotypes of Bemisia tabaci or a species complex[J]. Annual Review Entomology,1995, (40):511-534.
    64. Burger J M S, Kormany A, van Lenteren J C, et al. Importance of host feeding for parasitoids that attack honeydew-producing host[J]. Entomologia Experimentalis et Applicata,2005,117:147-154.
    65. Chabora P C. Studies of parasite-host interactions.Reproductive and developmental response of the parasite Nasonia vitripennis to strains of the housefly host, Musca domestica[J]. Annals of the Entomological Society of America,1970,63:1632-1636.
    66. Chu D, Zhang Y J, Brown J K, et al. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops[J]. Florida Entomologist,2006,89 (2):168-174.
    67. Collier T R, Murdoch W W, Nisbet P M. Egg load and the decision to host-feed in the parasitoid, Aphytis melinus[J].Journal of Animal Ecology,1994,63:299-306.
    68. De Barro P J, Liebregts W, Carver M. Distribution and identity of biotypes of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) in member countries of the Secretariat of the Pacific Community[J]. Australian Journal of Entomology,1998,37:214-218.
    69. De Barro P J, Liu S S, Boykin L M, et al. Bemisia tabaci:A Statement of Species Status[J]. Annual Review Entomology,2011,56:1-19.
    70. Gelman D B, Gerling D, Blackburn M B, et al. Host-parasite interactions between whiteflies and their parasitoids[J]. Archives of Insect Biochemistry and Physiology,2005,60(4):209-222.
    71. Gennadius P. Disease of tobacco plantations in Trikonia:the aleurodid of tobacco [J]. Ellenike Georgia,1889,5:1-3.
    72. Gerling D, Quicke D L J, Orion T. Oviposition mechanisms in the whitefly parasitoids Encarsia transvena and Eretmocerus mundus[J]. BioControl,1998,43:289-297.
    73. Gerling D, Alomar O, Arno J. Biological control of Bemisia tabaci using predators and parasitoids[J]. Crop Protection,2001,20:779-799.
    74. Giron D, Pincebourde S, Casas J. Lifetime gains of host-feeding in a synovigenic parasitic wasp[J]. Physiological Entomology,2004,29,436-442.
    75. Godfray H C J. Parasitoids:Behavioral and Evolutionary Ecology[C]. Princeton, New Jersey: Princeton University Press,1994.
    76. Goolsby J A, De Barro P J, Kirk A A, et al. Post-release evaluation of biological control of Bemisia tabaci biotype 'B' in the USA and the development of predictive tools to guide introductions for other countries[J]. BioControl.,2005,32:70-77.
    77. Guirao P, Beitia F, Cenis J L. Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera:Aleyrodidae)[J]. Bulletin of Entomological Research,1997,87:587-593.
    78. Hardy I C W, Blackburn T M. Brood guarding in a bethylid wasp[J]. Ecological Entomology,1991, 16:55-62.
    79. Harrison E G, Fisher R C, Ross K M. The temporal effects of Dufour's gland secretion in host discrimination by Nemeritis canescens[J]. Entomologia Experimentalis et Applicata,1985,38:215-220.
    80. Hassell M P. The dynamics of arthropod predator-prey systems[M]. New York:Princton University Press,1978.
    81. Heimpel G E, Collier T R. The evolution of host-feeding behavior in insect parasitoids[J]. Biological Reviews,1996,71:373-400.
    82. Honda J Y, Luck R F. Interactions between host attributes and wasp size:a laboratory evalution of Trichogramma platneri as an augmentative biological control agent for two avocado pests[J]. Entomologia Experimental is et Applicata,2001,100(1):1-13.
    83. Horowitz A R, Denholm I, Gorman K, et al. Biotype Q of Bemisia tabaci identified in Israel [J]. Phytoparasitica,2003,31(1):94-98.
    84. Ikeya T, Broughton S, Alic N, et al. The endosymbiont wolbachia increases insulin/IGF-like signalling in Drosophila[J]. Proceedings of the Royal Society B:Biological Science,2009,276: 3799-3807.
    85. Jennifer P. Host interaction and regulation in parasitoid wasps[J]. Connexions,2010,1(3):1-16.
    86. Jervis M A, Kidd N A C. Host-feeding strategies in hymenopteran parasitoids[J]. Biological Reviews,1986,61:395-434.
    87. Kainoh Y, Brown J J. Amino acides as oviposition stimulants for the egg-larval paresitoid, Chelonus sp. near Curvimaculatus (Hymennoptera:Braconidae)[J]. BioControl.,1994,4:22-25.
    88. Kajita H. Geographical distribution and species composition of parasitoids (Hymenoptera: Chalcidoidea) of Trialeurodes vaporariorum and Bemisia tabaci-complex (Homoptera: Aleyrodidae) in Japan[J]. Appl Entomol Zool.,2000,35(1):155-162.
    89. Kidd N A C, Jervis M A. Host-feeding and oviposition strategies of parasitoids in relation to host stage[J]. Researches on Population Ecology,1991,33:13-28.
    90. Lenteren J C V, Drost Y C, van Roermund H J W, et al. Aphelinid parasitoids as sustainable biological control agents in greenhouses[J]. Journal of Applied Entomology,1997,121:437-483.
    91. Liu S S, De Barro P J, Xu J, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly[J]. Science,2007,318:1769-1772.
    92. Muniz M. Host suitability of two biotypes of Bemisia tabaci on some common weeds[J]. Entomologia Experimentalis et Applicata,2000,95(1):63-70.
    93. Muniz M, Nombela G. Differential variation in development of the B-and Q-biotypes of Bemisia tabaci (Homoptera:Aleyrodidae) on sweet pepper at constant temperatures[J]. Environmental Entomology,2001,30:720-727.
    94. Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae)[J]. Pest Management Science,2002, 58:868-875.
    95. Netting J F, Hunter M S. Ovicide in the whitefly parasitoid, Encarsia formosa[J]. Animal Behaviour,2000,60:217-226.
    96. Nombela G, Beitia F, Muniz M. A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype[J]. Entomologia Experimentalis et Applicata,2001,98(3):339-344.
    97. Oliver K M, Moran N A, Hunter M S. Variation in resistance to parasitism in aphids is due to symbionts not host genotype[J]. Proceedings National Academy Sciences,2005,102:12795-12800.
    98. Oliver K M, Russell J A, Moran N A, et al. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps[J]. Proceedings National Academy Sciences,2003,100:1803-1807.
    99. Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative research projects for Bemisia tabaci[J]. Crop Protectiion,2001,20 (9):709-723.
    100. Olson D M, Andow D A. Larval crowding and adult nutrition effects on longevity and fecundity of female Trichogramma nubilale (Ertle and Davis) (Hymenoptera:Trichogramm-atidae)[J]. Environmental Entomology,1998,27:507-5141.
    101. Otim M, Legg J, Kyamanywa S, et al. Occurrence and activity of Bemisia tabaci parasitoids on cassava in different agro-ecologies in Uganda[J]. BioControl,2005,50(1):87-95.
    102. Pascual S, Callejas C. Intra-and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera:Aleyrodidae) from Spain[J]. Bulletin of Entomological Research,2004,94:369-375.
    103. Perez-Lachaud G, Batchelor T P, Hardy I C W. Wasp eat wasp:facuhative hyperparasitism and intra-guild predation by bethylid wasps[J]. Biological Control,2004,30:149-155.
    104. Quicke D L J. Physiological interactions of parasitic wasps and their hosts[M]. In:Quicke DLJ ed. Parasitic Wasps. London:Chapman and Hall,1997,106-244.
    105. Raiendram G F. Some factors affecting oviposition of Trichogramma californicum in artificial media[J]. Canadian Entomologists,1978,110:345-352.
    106. Rao Q, Luo C, Zhang H, et al. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China[J]. Bulletin of Entomological Research,2013,101:81-88.
    107. Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Archives of Insect Biochemistry and Physiology, 2003,54,165-176.
    108. Rehman A, Powell W. Host selection behaviour of aphid parasitoids (Aphidiidae:Hymenopt-era)[J]. Journal of Plant Breeding and Crop Science,2010,2(10):299-311.
    109. Reitz S R, Trumble J T. Competitive displacement among insects and arachnids[J]. Annual Review of Entomology,2002,47:435-465.
    110. Rivero A. The relationship between host selection behaviour and offspring fitness in a koinobiont parasitoid[J]. Ecological Entomology,2000,25:467-472.
    111. Sait S M, Andreev R A, Begon M, et al. Venturia canescens parasitizing Plodia interpunctella: Host vulnerability-a matter of degree[J]. Ecological Entomology,1995,20:199-201.
    112. Schmale I, Wackers F L, Cardona C, et al. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans:the effect of adult parasitoid nutrition on longevity and progeny production[J]. Biological Control,2001,21:134-139.
    113.Stansly P A, Calvo J, Urbaneja A. Release rates for control of Bemisia tabaci (Homoptera: Aleyrodidae) biotype 'Q' with Eretmocerus mundus (Hymenoptera:Aphelinidae) in greenhouse tomato and pepper[J]. Biological Control,2005a,35:124-133.
    114. Stansly P A, Calvo F J, Urbaneja A. Augmentative biological control of Bemisia tabaci biotype'Q' in Spanish greenhouse pepper production using Eretmocerus spp[J]. Crop Protection,2005b,24: 829-835.
    115. Stansly P A, Sanchez P A, Rodriguez J M, et al. Prospects for biological control of Bemisia tabaci(Homoptera, Aleyrodidae) in greenhouse tomatoes of southern Spain[J]. Crop Protection, 2004,23:701-712.
    116. Stilmant D, van Bellinghen C, Hance T, et al. Host specialization in habitat specialists and generalists[J]. Oecologia,2008,156(4):905-912.
    117. Stireman J O, Nason J D, Heard S B, et al. Cascading host-associated genetic differentiation in parasitoids of phytophagous insects[J]. Proceedings of the Royal Society B:Biological Sciences, 2006,273(1586):523-530.
    118. Takasu K, Lewis W J. Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes[J]. Biological Control,1995,5:25-301.
    119. Timberlake P H. New Species of Hawaiian chalcides (Hymenoptera)[J]. Proceedings of the Hawaiian Entomological Society.1926,6:305-320.
    120. Turlings T C J, Scheepmarker J W A L E M, Vet J H, et al. How contact foraging experiences affect the preferences for host-related odors in the larval parasitoid Cotesia marginiventris (Cresson) (Hymenoptera:Braconidae)[J]. Journal of Chemical Ecology,1990,16:1577-1589.
    121. Ueno T. Host-feeding and acceptance by a parasitic wasp (Hymenoptera:Ichneumonidae) as influenced by egg load and experience in a patch[J]. Evolutionary Ecology,1999,13:33-44.
    122. van Alphen J J M, Bernstein C, Driessen G. Information acquisition and time allocation in insect parasitoids[J]. Trends in Ecology and Evolution,2003,18(2):81-87.
    123. van Lenteren G C, Cock M J W. Environmental Impact of Invertebrates for Biological Control of Arthropods:Methods and Risk Assessment[J]. In:Bigler F. Babendreier D. Kuhlmann U. Wallingford:CABI Publishing,2006,45-60.
    124. Vinson S B. Host selection by insect parasitoids[J]. Annual Review of Entomology,1976,21:109-133.
    125. Vinson S B. The Chemical Ecology of the parasitoid host relationship[C].In W.J.Belt and R.T.Carde eds. Chemical Ecology of Insects. Chapman and Hall, London,1984.
    126. Vinson S B. The behaviour of parasitoids[J]. In G. A. Nordlund, R.L. Jones and W. J. Lewis, eds., Semiochemicals, Their Role in Pest Control, John Wiley, New York,1985,51-78.
    127. Vinson S B, Bin F, Vet E M. Critical issues in host selection by insect parasitoids[J]. Biological Control,1998,11:77-78.
    128. Wajnberg E. Time allocation strategies in insect parasitoids:from ultimate predictions to proximate behavioral mechanisms[J]. Behavioral Ecology and Sociobiology,2006,60:589-611.
    129. Walter G H. Oviposition behaviour of diphagous parasitoids (Hymenoptera, Aphelinidae):a case of intersexual resource partitioning?[J]. Behaviour,1993,124 (1-2):73-78.
    130. Zang L S, Liu T X. Host-feeding of three parasitoid species on Bemisia tabaci biotype B and implications for whitefly biological control[J]. Entomologia Experimentalis et Applicata,2008,127: 55-63.
    131. Zang L S, Liu T X. Food-deprived host-feeding parasitoids kill more pest insects[J]. Biocontrol Science and Technology,2009,19(6):573-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700