用户名: 密码: 验证码:
桩锚土钉复合支护基坑施工时变力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基坑工程作为一项综合性的系统工程,涉及到地质工程、材料工程、结构工程、优化设计与施工力学等诸多研究领域,且具有很强的区域性特点。复合形式的支护结构既要综合考虑开挖深度、宽度、支护结构横向和纵向位移、地下水情况等众多影响因素,又需考虑各种因素随开挖过程的变化情况,以及土体本身随时间而变化的特性。故基坑施工中土体流变作用、土压力时变特性、复合支护结构力学性状及其时变过程设计是深基坑工程中极其重要的问题。
     在施工过程中,基坑工程(包括结构物、地基、围岩等)存在着物理特性与几何形状逐步变化,不完整结构承受突发荷载与不断变化的施工荷载的受力过程,因而有必要考虑研究对象的材料、物理和几何变化的时变性与结构非线性以及被动荷载耦合效应间的关系特征。而时变力学恰是研究物体几何、物理与边界条件等参数随时间变化规律的新兴力学学科。将施工力学与时变力学相结合无疑是现代力学发展的重要组成部分和新的生长点。
     由于存在施工中不完整结构与工程的安全度分析,施工荷载作用下时变结构的内力重分配与时空最大值的确定,材料的刚度、强度随时间变异以及施工过程中不同时段会产生不同非稳定粘性应力场时效叠加效应等诸多难点,本文试图通过时变力学的研究建立施工过程中的力学分析思路和方法,以施工过程中结构在时间序列和空间发展为研究对象,对岩土工程的环境施工力学影响进行了研究,在以下方面做出了具有独创性的成果。
     1.结合郑州地区工程地质条件进行了土体材性的时变特性研究。根据土体开挖时序特点,利用土体的本构关系,把粘性应变视为初应变,采用时步—粘性初应变法建立了基坑粘弹塑性土体有限元计算模型。分析了郑州黄土的剪切流变特征,求解了黄土剪切流变模型参数,通过示例验证了基坑开挖过程中土体材料时变特性的不可忽视性。
     2.进行了桩锚土钉复合支护基坑开挖过程的时变力学研究。推导了基坑施工过程的时变力学基本方程,分析了桩锚土钉复合支护结构的施工时变特性,建立了基于施工过程的桩锚土钉复合支护结构力学方程;分析了基坑工程时变过程中的稳定性问题,建立了运动单元法的机会约束规划模型;并首次提出了异性复合支护的基本概念。利用有限元软件模拟了基坑开挖过程和基坑桩锚土钉复合支护效果,弥补了传统算法中基坑外力、土性参数以及土与支护结构耦合作用的不确定性等缺点,通过实例计算较好地预估了基坑土体、近基坑土体运动趋势及对支护结构构件的影响,同时为复杂基坑监测前仿真和测点选择提供有力的理论依据。
     3.进行了桩锚土钉复合支护结构施工过程力学响应分析和协同工作机制研究。对非线性粘弹塑性岩土材料进行建模,并将模型及原理应用于施工过程中在粘弹塑性介质中的桩锚土钉复合支护结构,对其进行力学分析,建立基于时变力学分析的桩锚土钉复合支护结构力学方程,对开挖、支护变化与土体粘性耦合引起的力学效应进行分析验算。根据施工过程中桩锚土钉复合支护结构力学方程,建立了模拟土体粘性、开挖过程的桩锚土钉复合支护基坑开挖与支护的施工力学效应分析体系。对由于外荷载变化引起的时变力学效应性进行计算,并通过基于有限元方法的数值模拟,研究了桩锚土钉复合支护结构的协同工作机理和工作力学性状。
     4.进行了桩锚土钉复合支护结构时变土压力分配演变规律的研究。首次提出了时变土压力的基本概念,研究了基坑工程中有限土体土压力、全过程时变土压力和土钉轴力形成过程以及变化特点,推导了其估算公式。根据反演理论,进行了开挖过程的土压力反演,并将反演结果与试验结论进行了比较验证。根据工程测斜曲线,可随时反演出基坑支护结构土压力的变化情况,实现了基坑支护的动态设计。可以运用本文方法进行土钉支护结构和桩锚支护结构的设计计算,使桩锚土钉复合支护结构受力变形趋于合理,反之又可根据变形实测结果估算各支护体系的有效发挥水平。
As a comprehensive and systematic project, foundation pit engineering refers to structural engineering, material engineering, geological engineering, construction mechanics and optimization design in many research fields, and with strong regional characteristics. It is necessary to consider either the influence factors of the excavation depth, width, horizontal and vertical displacements of the support structure, groundwater conditions, and the changing situation of the factors during the excavation process as well as the soil characters which also change with the the time-varying. So the soil creeping effect, time-varying earth pressure, the mechanics properties and the process design during the construction progress are very important questions for the foundation pit engineering.
     During the construction process, the foundation pit engineering inluding the strucuture, the foundation and the surrounding rock endure the changes of the geometry and physical properties gradually, the force process of the non-complete construction under the changing construction loads and sudden load. So it is necessary to consider the relation characteristic of the time-varying material, physical and geometry with the structure nonlinear and coupling effect of the passive loads. Time-variation mechanics is just the new branch of science on the time-varying geometry, time-varying physics, and time-varying boundary condition of the objects. Therefore, to combine the construction mechanics and time-varaiation mechanics is doubtless an important part of the development and a new growing point of the modern mechanics.
     Due to existing many difficulties, such as to decide the maximum of the time-variation structure time-varying spatial and temporal distribution and internal force re-established under the action of construction loading, the non-completed structure and construction works safety analysis, the material stiffness and strength varying with time and the superposition effects caused by construction process different periods of non-stable viscous stress field, and so on. In this article, attempting to establish the mechanical analysis ideas and methods of the construction process based on studying time-variation mechanics and spatial development structure in the time series for the study of the environmental geotechnical engineering construction mechanical effects were studied. The independent innovation achievements were made in the following:
     1. It is researched on the time-varying characteristic of the soil material based on Zhengzhou engineering geological condition. By analyzing the soil time dependent properties based on the theory of time-varying mechanics, visco-elastic flow problems and visco-elastic-plastic rheological questions were computed and studied by establishing finite element model according to temporal characteristics of soil excavation by the time step-the beginning of viscous strain, comprehensive considering of geotechnical engineering compositeity of each factor and using soil constitutive between the beginning of the viscous strain as strain. It revealed that the soil time dependent properties in deep excavating would be guidance significance of construction and this method was validable and reliable, by buliding visco-elastic-plastic model and calculating its parameter, and the practical computing and targeted analyzing Zhengzhou loess.
     2. It is researched on the time-variation mechanics of the construction process of the pile-anchor and soil-nail composite retaining foundation pit excavation. The concept of different properties composite supporting structure was brang up by summarized composite supporting structure and its each component working propertie was analyzed. To have assayed and summarized the time-varying mechanical principles and methods of foundation pit construction process, the time-varying mechanics basic equations of visco-elastic-plastic rheological soil was derived, and the construction analysis formula of anchored-pile combined soil-nail structural was established to analyze the foundation construction process mechanical time-varying effects, and the chance constrained programming model was established also to analyze the bottom stability of foundation pit time-varying process. Using finite element analysis software to build models to simulate the excavation process and the foundation pile anchor effect, make up the traditional algorithm in the external foundation, soil parameters and soil retaining structure coupled with the uncertainty of the role of shortcomings, the practical calculation to better predict the foundation soil, pile deformation and bending moment, also received a good trends of foundation groundwater movement and on the soil and supporting structure, while before the simulation of composite pit and choice of measurement points provides a strong theoretical basis for making the construction process of the numerical simulation can be effective optimization and adjustment.
     3. It is researched on the mechanical response analysis and the co-operation mechanics of the construction process of the pile-anchor and soil-nail composite supporting structure. Modeling the nonlinear visco-elastic-plastic geotechnical material, the model and theory were used in the pile-anchor and soil-nail composite supporting structure construction process in the visco-elastic-plasti medium, and its mechanical effect was analyzed. Based on time-varying mechanical analysis, pile-anchor and soil-nail compositeed support structure mechanics equations were founded, analyzing and checking the coupling mechanical effect of excavation, support change and soil viscous. According to the mechanical equations of pile-anchor and soil-nail retaining composite structure construction, construction mechanics effect analysis system was set up, which can simulate soil viscousion and excavation of pile-anchor and soil-nail support and supporting. Due to changes in external loads on the mechanical effects of time-varying calculations, and based on finite element method numerical simulation of visco-elastic-plastic equations to achieve the co-operation mechanics and working behaviour of pile-anchor and soil-nail retaining composite structure.
     4. It is researched on the time-varying earth pressure of the pile-anchor and soil-nail composite supporting structure. In terms of time-varying characteristics during excavation earth pressure, the concept of time-varying earth pressure was firstly proposed, by studying the formation course and change characteristics of the time-varying earth pressure and the active soil pressure of finite soil body in deep excavation construction and the time-history axial force of soil-nail. According to inversion theory, excavation earth pressure was inversed in the light of practical engineering inclinometer-curve data and validation test results were compared, and then to dynamic design foundation pit according to excavation earth pressure changes in force structure by utilizing this method at any time. In order to better calculation and design soil-nailing structure and anchored-pile structure, by estimating combined support system earth pressure distribution mechanism adopting inversion system, so that the joint excavation support structure deformation trends more reasonable, instead be based on deformation estimate the experimental results effectively support system level.
引文
[1]史佩栋.深基坑工程技术现状(上)(下)[J].建筑施工,1998,20(3,4):46~48,49~51.
    [2]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(1):112~113.
    [3]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [4]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [5]冯紫良,朱志伟.岩土工程施工过程中体系演变问题的分析方法[J].岩土工程学报,1999,21(3):366~369.
    [6]左命麒,刘永超,孟庆文.基础工程设计与地基处理[M].北京:中国铁道出版社,2000.
    [7]龚晓南,高有潮.深基坑工程设计手册[M].北京:中国建筑工业出版社,1998.
    [8]唐业清,李启民,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999.
    [9]曾宪明,林润德,易平.基坑与边坡事故警示录[M].北京:中国建筑工业出版社,1999.
    [10]曹志远.土木工程分析的施工力学方法[J].工程力学,1996(增):71~77.
    [11]曹志远.土木工程分析的施工力学与时变力学基础[J].土木工程学报,2001,34(3):41~46.
    [12]曹志远.时变力学及其工程应用[J].力学与实践,1999,21(5):1~4.
    [13]王光远.论时变结构力学[J].土木工程学报,2000,33(6):105~108.
    [14]Brown C B. Flexible culverts under light fills. J Struct Div ASCE,1968,94(4):905.
    [15]Namov V E. Mechanics of growing defonnable solids-A review.J of Eng Mech,1994, (2):207.
    [16]曹志远.时变固体力学的黏弹性解[J].力学学报,2000,32(4):467~501.
    [17]Q. L. Li. Formulation of time-dependent structural serviceability. Computers & Structure, 1994 52(2),219~226.
    [18]李瑞礼,曹志远.高层建筑施工结构力学分析[J].计算力学学报,1999,16(2):157~161.
    [19]Meshcherskii Ⅳ Dynamics of a Particle of Variable Mass PhD Thesis, St Petersburg.1897.
    [20]Southwell R V.An Introduction to the theory of Elasticity for Engineers and Physicists.2nded, Dxdord:Oxford Univ. Press,1941.
    [21]Brown C B, Goodman L E. Gravitaton stresses in accreted bodies. Proc Royal Soc of London, 1966,276(1):571.
    [22]Kharlat VD. Linear theory of creep for agrowing body. ProcLeiaingra11,1966,49:93.
    [23]Arutyunyan N Kh.Boundary value problem of the theory of creep for a body with accretion. J Appl Math and Mech,1977,41(5):804.
    [24]Arutyunyan N Kh, Metlov V V Some problems in the theory of creep in bodies with variable boundaries. Mech of Solids,1982,17(5):92.
    [25]Arutyunyan N Kh, Namov V E. The theory of viscoelastic plasticity of a growing body. J APPI Math and Mech,1984,48(1):1.
    [26]姚金星.土木工程中的时变力学问题[J].荆州师范学院学报(自然科学版),2000,23(2):48~50.
    [27]Wittke W.. New design concept for under-ground openings in rocks[M]. Finite Elements in Geomechanics, Aachen,1972.
    [28]曹志远等.施工力学与时变力学的数值分析[J].计算力学学报,1997,14(增):35~41.
    [29]胡振动,曹志远.时变元及其应用[J].固体力学学报,2002,23(1):104~108.
    [30]曹志远,刘永仁,周汉斌.超级有限元法及其在结构工程中的应用[J].计算结构力学及其应用,1994,11(4):454~469.
    [31]段文峰,王蕾笑,廖雄华.岩土工程施工力学问题数值模拟方法探讨[J].吉林建筑工程学院学报,2003,20(2):16~21.
    [32]曾小清,孙钧,曹志远.隧道工程施工过程中的力学分析[J].同济大学学报,1998,26(5):512~515.
    [33]曾小清.地铁工程双线盾构隧道平行推进及施工力学研究[D].同济大学博士学位论文,1995年.
    [34]曾小清,孙钧.面向21世纪的隧道施工力学研究[J].地下工程与隧道,1996,4:2~7.
    [35]曾小清,张庆贺.隧道施工过程的解析与数值结合分析[J].岩土工程学报,1998,20(1):14~17
    [36]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [37]梁岗,曹志远,徐旭.地下工程中基坑开挖施工三维非线性时变计算分析[J].上海大学学报(自然科学版),2001,7(2):170~174.
    [38]朱合华,杨林德,桥本正.深基坑工程动态施工反演分析与变形控制[J].岩土工程学报,1998,20(4):30~35.
    [39]朱合华,刘学增,傅德明.软土深基坑粘弹性动态增量反演理论分析与变形预测[J].岩土力学,2000,21(4):381~384.
    [40]熊祚森,黄宏伟,杨林德,徐全庆.基坑围护结构系统动态模式反演分析[J].工程力学,1998(增):457~461.
    [41]黄宏伟,支国华.基坑围护结构系统的性态及其状态变量[J].岩土力学,1997,18(3):7~12.
    [42]黄宏伟,熊祚森.基坑开挖施工中围护结构动态行为的预报[J].地下空间,1999,19(5):382~388.
    [43]黄宏伟,熊祚森.深基坑围护结构的动态稳定性数学分析[J].应用基础与工程科学学报,2000,8(1):84~88.
    [44]范益群,钟万勰,刘建航.时空效应理论与软土基坑工程现代设计概念[J].清华大学学报(自然科学版),2000,40(S1):49~53.
    [45]刘国彬,刘金元,徐全庆.基坑开挖引起的土体力学特性变化的试验研究[J].岩石力学与工程学报,2000,19(1):112~116.
    [46]段光杰,梁池生,李兆平.环境土层中应力路径变化对土工程性质影响的试验研究[J].岩土工程界,2001,5(5):62~64.
    [47]葛增杰,李锡夔,孙洪伟.软土深基坑施工过程控制和土体物性参数识别方法研究[J].大连理工大学学报,2001,41(3):279~287.
    [48]李云安.深基坑工程变形控制优化设计及其有限元数值模拟系统研究[J].岩石力学与工程学报,2001,(3).
    [49]刘维宁,张弥,华成.开挖作用对基坑周围地层工程性质的影响[J].岩石力学与工程学报,2002,21(1):60~64.
    [50]吕凤梧.考虑支护结构时变特性的挡土墙变形概率分析[J].建筑技术,2004,35(5):380~382.
    [51]武亚军.基坑工程中土与支护结构相互作用及边坡稳定行的数值分析[D].大连理工大学博士学位论文,2003.
    [52]武亚军,栾茂田,仁汉锋.深基坑支护设计增量法的理论分析及其应用[J].工业建筑,2004,34(9):1~4.
    [53]栾茂田,武亚军.土与结构间接触面的非线性弹性—理想塑性模型及其应用[J].岩土力学,2004,25(4):507~513.
    [54]武亚军,张国军,栾茂田.深基坑工程施工的力学分析方法[J].建筑结构,2005,35(5):55~64.
    [55]贾坚.软土时空效应原理在基坑工程中的应用[J].地下空间与工程学报,2005,1(4):490~493.
    [56]徐杨青.深基坑工程设计的优化原理与途经[J].岩石力学与工程学报,2001,(2).
    [57]郭院成,王新玲,曹二帅.排桩预应力支护结构中的锚筋预应力的施工力学[J].河南科学,2001,19(4):356~359.
    [58]郭院成,王新玲,吕伟.单支点桩锚结构中锚杆预应力锁定值的反演分析[J].工业建筑,2002,32(9):46~61.
    [59]张忠民,叶永峰,郭院成,韩伟.桩锚支护结构计算模型中支点弹性系数的时变性分析[J].河南科学,2005,23(5):695~698.
    [60]濮辉铭,燕柳斌,刘雄心.考虑施工过程的基坑锚杆支护计算机模拟研究[J].广西大学学报,2005,30(2):151~155.
    [61]公宝兴,孙振.钢管桩与土钉墙联合支护设计研究[J].国防交通工程与技术,2005,3(1):65~68.
    [62]周群建.杭州瑞丰大厦排桩-土钉墙组合支护结构[J].岩土工程界,2002,5 (11):32~34.
    [63]张治晖,伍军,赵华.卵砾石地层深基坑土钉和锚杆桩联合支护技术[J].岩土工程技术,1999,13(3):14~15.
    [64]鞠骥勤,苏豪将.人工挖孔桩、锚杆土钉墙联合支护深基坑工程施工实例[J].江苏地质,2004,28(3),160~165.
    [65]杜峰.深基坑支护综合施工技术[J]. 建材技术与应用,2004, (3):48~51.
    [66]郑坚,徐刚毅.土钉与桩锚联合支护在基坑工程中的应用[J].铁道建筑,2002,(8): 22~24.
    [67]张飞,刘忠臣,陈国刚.预应力土层锚杆与土钉墙联合支护的力学工作机理研究[J].岩土力学,2002,23(3):292~296.
    [68]郭院成,周同和,宋建学.桩锚复合土钉支护结构的工程实例[J].郑州大学学报(工学版),2003,24(2):26~28.
    [69]郭院成,周同和,宋建学.桩锚与复合土钉联合支护结构的工程设计[J].建筑施工,2001,23(6):375~377.
    [70]郭院成,童怀峰,秦会来等.受限的桩锚复合土钉支护结构的计算模式[J].郑州大学学报(工学版),2004,25(2):28~31.
    [71]郭院成,杨庆,黄广华,秦会来.桩锚复合土钉支护结构的优化选型[J].河南科学,2004,22(3):35~38.
    [72]郭院成,秦会来,王立明.桩锚复合土钉支护结构中的土压力分配模式[J].郑州大学学报(工学版),2004,25(3):52~55.
    [73]申利梅,王坤,曾力.桩锚复合土钉支护结构传力机制的对比分析[J].河南科学,2005,23(3):386~390.
    [74]欧阳鬯.粘弹塑性理论(第一卷)[M].长沙:湖南科学技术出版社,1986.
    [75]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [76]赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社,1996.
    [77]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [78]赵维炳.软粘土的一种粘弹性本构模型及参数测定[C],中国青年学者岩土工程力学与应用讨论会论文集,1994.
    [79]范镜泓等.非线性介质力学基础[M].重庆:重庆大学出版社,1987.
    [80]Vulliet, L.amd Hutter, K., Set of Constitutive Models for Soils under Slow Movement[J], Journal of Geotechnical Engineering, Vol.114, No.9(1998).
    [81]钱家欢,殷宗泽.土工数值分析[M].北京:中国铁道出版社,1991.
    [82]孙钧.粘土流变力学特性及其工程应用研究[M].上海:同济大学出版社,1991.
    [83]邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [84][日]村山朔郎,柴田彻.关于粘土的流变特性(石朝辉译)[M],南京水利科学研究所.
    [85]孙钧等.地下结构有限元法解析[M].上海:同济大学出版社,1988.
    [86]郑榕明等.软土工程中的非线性流变分析[J],岩土工程学报,1996(9)
    [87]Terzaghi,L.. Theoretical Soil Mechanics[M]. New York(1943).
    [88]袁建新.土的弹粘塑性关系[J].岩土工程学报,1982,4(4):29~44.
    [89]D.G费雷德隆德,H.拉哈尔佐.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [90]黄润秋,戚国庆.滑坡基质吸力观测研究[J].岩土工程学报,2004,26(2):216~219.
    [91]刘祖典,党发宁.强度指标对滑坡稳定性的影响[J].岩土工程技术,2002,(3):140~143.
    [92]Q.扎留巴,V.门次尔.滑坡及其防治[M].北京:中国建筑工业出版社,1974.
    [93]罗斌,胡厚田,吕小平.南方花岗岩残积层路堑边坡坡面冲蚀研究[J].铁道工程学报,1999(3):82~85.
    [94]罗晓辉.用遗传算法确定地基承载力[J].岩石力学与工程学报,2001,20(3):394-398.
    [95]林育梁.岩土与结构工程中不确定性问题及其分析方法[M].北京:科学出版社,2009:395-399.
    [96]IWAMURA K, LIU B. A genetic algorithm for chance constrained programming[J]. J. of Information & Optimization Science,1996,17(2):40-47.
    [97]罗晓辉,李再光,何立红.土钉支护稳定性的机会约束规划方法[J].工程力学,2007,24(12):128-134.
    [98]罗晓辉,何立红.边坡稳定性规划的机会约束方法[J].岩石力学与工程学报,2008,27(增刊1):2821-2824.
    [99]JGJ120-99,建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [100]姜洪伟,赵锡宏,张保良.各向异性条件下软土深基坑抗隆起稳定性分析[J].岩土工程学报,1997,19(1):1~7.
    [101]胡展飞,周健,杨林德.深基坑基底软土稳定性研究[J].土木工程学报,2001,34(2):84~95.
    [102]邹广电.基于一个上限分析方法的深基坑抗隆起稳定分析[J].岩土力学,2004,25(12):1873~1878.
    [103]王景春,徐日庆,黄斌.施工扰动作用下基坑抗隆起稳定性分析[J].岩石力学与工程学报,2005,24(s2):5405~5409.
    [104]胡志平,姚海明,罗丽娟.基坑潜在隆起破裂面的Dijkstra组合优化搜索法[J].岩土力学,2006,27(9):1583~15878.
    [105]Feng Z L, Lewis R W. Optimal estimation of in-situ ground stresses from displacement measurements [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(6):391-408.
    [106]王洪新,陈建军,刘冀山.基坑抗隆起稳定安全系数实用计算分析与应用[J].岩石力学与工程学报,2007,26(s1):3223~3230.
    [107]程琪,刘国彬,张伟立.上海地区地铁超深基坑及深基坑变形有限元分析[J].地下空间与工程学报,2009,5(s2):1498~1502.
    [108]刘宝旋,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998.
    [109]李明峰,陈国兴,安庆军.顾及模型误差的基坑位移监测数据处理方法[J].防灾减灾工程学报,2006,25(4):468~470.
    [110]Kung T.C., Hsein C.J. and Hsiao C.L. Ground settlement Caused by Excavation in clay-an empirical method 2006:363~370.
    [111]Kuklik P. Several comments on influence zone depth progress in deep hole foundation. Underground construction and ground movement.2006:355~362.
    [112]Xie X.Y., Li Y.S. and Huang H.W. Analysis in deep excavation by top-down construction in soft soils using FEM. Underground construction and ground movement.2006:401~408.
    [113]Shen S.L., Tang.C.P. and Xu.Y.S. Analysis of settlement due to withdrawal of groundwater around an unexcavated foundation pit. Underground construction and ground movement.2006:377~384.
    [114]Cunha R.P., Medeiros A.G.B. and Silva C.M. Design and construction aspects of the largest pile curtain retaining structure built in the tropical soil of the Brazilian central area. Underground construction and ground movement.2006:415~522.
    [115]Chen Y.L., Azzam. R. and Zhang F.B. Three-dimensional displacement computation and construction pre-control of foundation pit in Dping station of Shanghai track traffic line 6 project. Underground construction and ground movement.2006:320~327.
    [116]Whittle A J, Hashash Y M. Analysis of a deep excavation in Boston. Journal. of the Geot. engrg. Div.. ASCE,1993,27~39.
    [117]Hsie P.G., Ou C.Y. Shape of ground surface settlement profiles caused by excavation.Canadian Geotechnical Journal.1998,35:1004~1017.
    [118]Kung T.C. Surface settlement induced by excavation with consideration of strain behavior of Taipei silty clay.National Taiwan University of Science and Technology 2003:74-91.
    [119]郝文化ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [120]陈世龙.土钉支护三维有限元分析[D].兰州:兰州理工大学,2006.7.
    [121]胡群芳,李清富,刘文.土的本构模型研究现状与趋势[J].河南建材,2005,1:22~24.
    [122]朱泓,殷宗泽.土与结构材料接触面性能研究综述[J].河海科技进展,1994,14(4):1~8.
    [123]林琳.复合型土钉支护的有限元分析及工作机理研究[D].湘潭:湘潭大学,2003.
    [124]薛丽影.土钉支护结构的侧向变形对基坑周边环境影响的试验研究[D].北京:中国建筑科学研究院,2005.
    [125]Karl Terzaghi, Ralph B. Peck, Gholamreza Mesri. Soil mechanics in Engineering Practice (Third Edition)[M]. New York:Wiley,1995.
    [126]Petros Pxanthakes. Sluury Walls as Structural Engineering.V.125, N.5,1999:375-363.
    [127]SUKLJE L. Rheology Aspect of Soil Mechanics [M]. London:Wiley,1969.
    [128]HENKEL D J. Investigation of two long-term failures in London clay slopes at Wood Green and Northolt[C]//Proc 4th ICSMFE, London,1957.
    [129]茜平一,冯国栋,张路.软弱地基深挖基坑中桩的受力分析[J].岩土工程学报,1993,15(3):60-66.
    [130]梅国雄,宰金珉,徐建.考虑变形与时间效应的土压力计算方法研究[J].岩石力学与工程学报,2001,20(增刊1):1079-1082.
    [131]张燕凯,桂国庆,赵抚民.深基坑工程中考虑开挖深度和时间效应的土压力计算公式的探讨[J].南昌大学学报(工学版),2002,24(1):85-89.
    [132]马石城,邹银生,王贻荪.支挡结构黏性土土压力的时变特性研究[J].湘潭大学学报,2001,23(3):84-87.
    [133]时伟,刘继明,王磊.基坑支护体系主动区土压力试验研究[J].岩石力学与工程学报,2002,21(增刊2):2379-2381.
    [134]顾慰慈 著.挡土墙土压力计算手册[M].北京:中国建材工业出版社,2005:98~103.
    [135]卢延浩.考虑粘聚力及墙背粘着力的主动土压力公式[J].岩土力学,2002,23(4):470~473.
    [136]高印立.有限土体土压力的计算探讨[J].建筑科学,2000,16(5):53~56.
    [137]王文杰,曾进群,陈小丹.深基坑开挖中有限土体土压力计算方法探讨[J].岩土工程界,2005,(3):30~31.
    [138]维亚洛夫C C.土力学的流变原理[M].杜余培译.北京:科学出版社,1987.
    [139]Schlosser F.. Mechanically stabilized earth retaining structures in Europe[J]. Geotechnical Special Publication. Design and Performance of Earth Retaining Structures-Proceedings of a Conference. ASCE, New York, NY, USA,1990(25):347~378.
    [140]Bridle R. J., Davis M. C. R.. Analysis of soil nailing using tension and shear:experimental observations and assessment[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering.1997,125 (3):155~167.
    [141]Juran Ilan. NAILED-SOIL RETAINING STRUCTURES:DESIGN AND PRACTICE[J]. Transportation Research Record 1119.1987:139~150.
    [142]Juran Ilan; Baudrand, Geoge etc.. Kinematical limit analysis for design of soil-nailed structures [J]. Journal of Geotechnical Engineering.1990,116 (1):54~72.
    [143]Juran Ilan, Baudrand Geoge etc.. Design of soil nailed retaining structures[C]. Geotechnical Special Publication. Design and Performance of Earth Retaining Structures-Proceedings of a Conference. ASCE, New York, NY, USA,1990(25):644~659.
    [144]Bridle R. J. Soil Nailing-Analysis and Design[J]. Ground Engineering,1989, (9):52~56.
    [145]黄强编著.建筑基坑支护技术规程应用手册[M].北京:中国建筑工业出版社,1999.
    [146]CECS96-97,基坑土钉支技术规程(S)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700