用户名: 密码: 验证码:
地黄种质遗传关系及根际土壤微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地黄(Rehmannia glutinosa)为玄参科(Scrophulariaceae)多年生草本植物,其膨大的块根可以加工成鲜地黄、生地(黄)和熟地(黄)三种方式入药,是一种大宗常用传统滋补中药。地黄药材全部来源于人工栽培,在长期的人工栽培历史中,形成了众多的栽培品种或者变种。目前文献报道的地黄栽培品种就达50多个,然而只有少数品种的形态和农艺性状有比较详细的描述,多数是品种混杂,遗传关系不清楚。本研究根据地黄的来源、栽培品种、田间变异以及部分种子繁殖材料,建立了地黄种质资源圃。对所有材料从外观性状(叶型、叶色、叶缘、根重、根皮颜色、花冠和花药颜色,及植株形态等)方面作了研究分析;同时,应用RAPD、AFLP及rDNA-ITS等分子标记分析方法,对收集到的地黄种质从遗传物质的变异方面进行了深入研究。结果表明,89份地黄种质样本经过分子标记的遗传相似性聚类、外观形状分析和ITS序列比较,剔除重复后鉴定出二十一类共48份种质。其中种质2、20、39、50、53、71、82、86等既具有特异的基因型,又具有明显的表型性状,是挖掘地黄种质优异基因需要特别关注的新材料,也是根据遗传关系选择杂交育种工作需要考虑的“远缘”亲本。8对AFLP引物扩增出1019条带,10条RAPD引物扩增出了118条带,应用UPGMA和SHAN方法对这两组数据建立了地黄的遗传距离树状图。对根据AFLP-RAPD建立的遗传关系图上差异较大的种质进行了rDNA-ITS序列比较分析,参考GENBANK数据库地黄ITS序列和测定序列,应用Mega3.1软件建立了部分地黄种质进化树。地黄ITS1+5.8S+ITS2序列长度为611~613bp,其中有22个位点存在地黄属植物进化相关的碱基变化信息,C-T颠换是地黄ITS序列变异的主要碱基变化。
     另外,生产实践表明,地黄种植生产中存在严重的连作障碍问题。我们推测,地黄连作问题可能和根系对土壤的微生物生态变迁有关。因此,本研究测定了地黄根际土壤和非根际土壤的土壤微生物生物碳(SMBC)、基础呼吸、代谢商和土壤pH值等基本理化数据,同时,采用基于Biolog唯一碳源利用的群落水平生理刨面(CLPP)和磷脂脂肪酸(PLFA)法,研究了地黄根际土壤微生物的群落功能和结构变化。地黄种植地田间调查表明,连作问题不仅在2年生田间发生,5年轮作田也存在。地黄根际土壤SMBC无明显变化,但是基础呼吸和代谢商显著高于非根际土壤;相反,基于Biolog碳源培养分析的地黄根际土壤微生物的AWCD和Shannon指数均有显著的下降,同时,AWCD和SMBC具有随季节变化的相似特征,在地黄生长发育的旺季高,而在收获季节低。应用主成分分析法对不同处理土壤样品在Biolog生态盘上的31种不同的碳源的代谢生理进行分析表明,主成分一(PC1)和主成分二(PC2)能够有效的区分不同处理的土壤,可以反映地黄根际土壤微生物群落的功能变化。主成分共解释了81.47%的变异,其中PC1为67.42%,PC2为14.05%。在所有33种PLFAs中,有18种PLFAs占88-90%的丰度,是地黄根际生态系统的主要成分。所有测试土壤中,真菌PLFA(18:2ω6,9)具有相对较高的丰度,并且发现比较一致的结果,地黄根际土壤真菌比对照土壤高1.36~2.62倍。总之,地黄根际土壤微生物生态研究表明,地黄种植改变了土壤微生物的代谢活动,降低了能量代谢的效率,同时,地黄根际土壤微生物的结构也发生明显的变化,这些变化会引起植物的不良生长,可能是引起地黄连作问题的主要原因。
Rehmannia glutinosa(named 'DiHuang' in Chinese),one of the most famous medicinal plants,is a perennial herbaceous plant of the Scrophulariacea family.Owing to its nourishing functions to human body, its tuberous root is frequently used for Traditional Chinese Medicines in three different forms,i.e.fresh,dry and boil processed.Many cultivars or varieties were selected and cultivated in China in a long history of R. glutinosa cultivation practices.According to the report,there are more than 50 cultivars of R.glutinosa in China,but only few of them are described in detail in agronomical and morphological characters.Most of them are promiscuous and with unclear genetic relationship.In this work,cultivars,varieties and some sexual raise up seeds of R.glutinosa were collected and planted in the garden of Institute of Medicinal Plant Development.Field investigation was carried out in the morphological diversity including the shape,color, edges of leaves,color of anther,cornal and root,and the yield of medicinal part of root.Two molecular markers,random amplified polymorphism DNA(RAPD ) and amplified fragment length polymorphism (AFLP ),were employed for determine the genetic relationship of R.glutinosa,and the ribosome DNA internal transcribed spacer(ITS ) sequences was also used for analyzing sequence variations and phylogenetic history.The results showed that 48 accessions belong to 21 clusters were identified from 89 collections of R.glutinosa by UPGMA cluster analysis using RAPD in combination with AFLP markers. Among the 48 accessions,the germplasms of 2,20,39,50,53,71,82 and 86 have differential genotype as well as obviously phenotype,and these materials might be pay more attention while mining specific gene or crossbreeding.According to the distances in the dendrogram of R.glutinosa established from 1137 polymorphic bands in RAPD and AFLP markers combination,rDNA ITS sequences in several accessions were amplified and sequenced.The analysis of ITS sequences indicated that ITS1-5.8S-ITS2 of R.glutinosa were informative in its.611-613bp long sequence and have 22 variable sites including mostly occurred C-T transversion.Two phylogenetic trees were generated by Neighbour-jioning and UPGMA methods based on ITS sequences and were compared.
     In addition,R.glutinosa is an important medicinal plant,but there is a serious problem with its continuous cropping on the same land.We hypothesized some relationships between this problem and the disturbed soil ecosystem.In this work,two community-based microbiological measurements,community level physiological profiling(CLPP ) using Biolog sole C source utilization tests and phospholipid ester-linked fatty acid(PLFA) profiles,were used to evaluate soil microbial community function and composition of different R.glutinosa cropping soils.Field investigation showed that the problems with continuous cropping occurred not only in two-year continuous fields,but also in five-year rotation fields. Soil basal respiration and metabolic quotient were significantly higher in R.glutinosa cropping soils than in the non-cropping controls.On the contrary,the Shannon index and the average well color development (AWCD) from the Biolog data set were lower in R.glutinosa cropping soils,and we also found a seasonal change in AWCD and soil microbial biomass carbon(SMBC ),higher in cropping season but lower in harvest season.CLPP-based principal component analyses(PCA ) explained 87.47%variation of soil microbial communities,PC1 67.42%and PC2 14.05%,and these showed distinct groupings of soil microbial communities in R.glutinosa rhizosphere in PCA scatter plot.Eighteen PLFAs account for 88-90%aboundant in 33 PLFAs used in this work were main component in R.glutinosa rhizosphere soil.PLFA-based PCA also showed distinct composition of soil microbial communities in R.glutinosa rhizosphere,and 11 PLFAs representing different microbes were identified from the principal component scores of PLFAs.Among these, an abundance of PLFA 18:2ω6,9,which is a biomarker of soil fungi,was significantly higher (1.36-2.62times) in R.glutinosa cropping soils than control soils.These results suggest an alteration of soil microbial community following R.glutinosa cropping,and this might be an important reason for the constraints associated with continuous cropping.
引文
[1].闫坤,等。地黄属种间亲缘关系研究.西北植物学报,2007,2796):1112-1120
    [2].李宏庆。博士论文,地黄属分类学与系统学研究,2005
    [3]杜红光。地黄不同炮制品中梓醇的含量测定研究。时珍国医国药,2004,15(9):582-583
    [4]边宝林,等。地黄及其炮制品中总糖及几种主要糖的含量测定。中国中药杂志,1995,20(8):469-471
    [5]李先恩,等。不同来源地黄梓醇含量研究。中国中药杂志,2002,37(11):820-823
    [6]《中国药典》2005,化学工业出版社。82-83
    [7]朱青,等。地黄中腺苷含量的影响因素。植物资源与环境,1997,6(1):58-59
    [8]张留记,等。怀地黄品种比较和质量研究。河南农业科学,2007,3:101-103
    [9]李先恩,等。地黄不同品种及不同块根部位梓醇含量分析。中国中药杂志,2002,37(11):820-823
    [10]陈京荔,等。地黄不同品种的RAPD分析。中国中药杂志,2002,27(7):45-50
    [11]张进忠,等。地黄品种遗传多样性RAPD分析。河南农业科学,2006,6:97-100
    [12]张红芳,等,等,晋南地黄品种选育目标及品种适应性研究。山西农业科学,2007,35(2):25-27
    [13]武雯,等。地黄属资源植物中梓醇的分布及积累动态。华东师范大学学报,2006,128(4):91-96
    [14]刘红谚,等。地黄连作障碍因素及解除措施研究。华北农学报,2006,21(4):131-132
    [15]许光辉,等。微生物生态学。南京,东南大学出版社,1991,127-128
    [16]鲁如坤,等。土壤.植物营养学。山东化学出版社,1998,61
    [17]陆雅海,张福锁。根际微生物研究进展。土壤,2006,38(2):123-127
    [18]Morgan JAW,et al.,Biological costs and benefits to plant-microbe interactions in the rhizopshere.J.Experimental Botany,2005,56(417):1729-1739.
    [19]Gomes,N.C.,et al.Dynamics of fungal communities in bulk and maze rhizosphere soil in the tropics.Appl Environ Microbiol 2003,69:3758-66
    [20]Grayston,S.J.,et al.Selective influence of plant species on microbial diversity in the rhizosphere.Soil Biology & Biochemistry.1998,30,369-378
    [21]Bossio,D.D.and Scow,K.M.Impact of carbon and flooding on the metabolic diversity of microbial communities in soils.Appl.Environ.Microb.1995,61,4043-4050.
    [22]Buyer,J.S.,Drinkwater,L.E.Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities.Journal of Microbiological Methods.1997,30,3-11.
    [23]Heiden MG,et al.,Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity.Nature,1998,396,69-71
    [24]Sugden AM.Ecology:diversity and ecosystem resilience,Science,2000,290:233-235
    [25]Yao H,He Z,Wilson M J and Campbell C D.Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use.Microbial Ecol.2000,40,223-237.
    [26]曹志强,等。参地土壤改良及永续栽参。人参研究,2002,14(1):29-35
    [27]郑殿家,等。人参、西洋参病害综合防治技术。人参研究,2006,1:36-38
    [28]黄俊斌,等。三种药用植物根腐病的病原鉴定。华中农业大学学报,1999,18(3):212-214
    [29]于荣利,等。中草药根部腐烂病害研究现状及展望。东北农业大学学报,2003,34.95-99
    [30]张辰露,等。连作对丹参生长的障碍效应。西北植物学报,2005,25(5):1029-1034
    [31] Woese, C, Bacterial evolution. Microbiol. Rev. 1987, 51:221-271
    
    [32] Cole , JR., et al., The Ribosomal Database Projiect (RDP-U):sequence and tools for high-throughout rRNA analysis. Nucleic Acids Res 2005 ,33;D294-296
    [33] Fischer,S.G. and L. S. lerman. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient:gels:correspondence with melting theory. PNAS 1983, 80:1579-83
    [34] Lerman, L. S. et al. Sequence-determined DNA separations. Annu Rev Biophys Bioeng 1999,13:399-423
    [35] Myers R.M., et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 1985,13:3131-45
    [36] Muyzer G. E., et al. Profiling of complex microbial population by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified genes coding for 16SrRNA. Appl Environ Microbiol 1993,59:695-700
    [37] Eicher, C.A., et a. Thermal gradient gel eletrophoresis analysis of bioprotection from pollutant shocks in the activated sliudge microbial community. Appl Environ Microbiol 1999, 65:102-9
    [38] Simpson, J.M., et al., Application of denaturant gradient gel electrophresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 2005, 36:167-79
    [39] Smalla, K.G., et al., Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 2001,67:4742-51
    [40] Handelsman J., et al.. Molecular biological acces to the chemistry of unkoown soil microbes: a new frontier for natural products. Chem. Biol. 1998, 5:R245-249
    [41] Brady SF., et al., Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA.Org Lett, 2001, 3:1981-1984
    [42] Henne A., et al., Construction of environmental DNA libraries in Esch coli and screening for the presence of gene conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol, 2000,65:3901-3907
    [43] Henne A., et al., Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Esch coli. Appl Environ Microbiol, 1999, 66:3113-3116
    [44] Knietsch A., et al., Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Esch coli. Appl Environ Microbiol, 2003, 69:1408-1416
    [45] Rondon MA., et al. Cloning the metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganismes. Appl Environ Microbiol, 2000, 66:2541-2547
    [46] Brady SF., et al., Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc, 2000, 122:12903-12904
    [47] Waters B., et al., Novel natural products from soil DNA libraries in a streptomycete host. Org Lett, 2000,2:2401-2404
    [48] Bach, H., et al., Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. Journal of Microbiological Methods 2002,49:235-245
    [49] Harms G., et al., Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant.Environ Sci Technol 2003,37;343-351
    [50]Gueimonde M.,et al.,New Real-time quantitative PCR procedure for quantification of biofidobacteria in human fecal samples.Appl Environ Microbiol 2004,70:4164-4169
    [51]Blume E,et al.,Surface and subsurface microbial biomass,community structure and metabolic activity as a function of soil depth and season.Appl Soil Ecol 2002,20:171-181
    [52]Justin BB,et al.,Root controls on soil microbial community structure in forest soils.Oecologia 2006,148(4):650-659
    [53]Bligh EG.,et al.,A rapid method of total lipid extraction and purification.Can.J.Biochem.Physiol 1959,37:911-917
    [54]Santosh RM.,et al.,Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils.Appl Environ Microbiol 2006,72(2);1346-1354
    [55]Campbell,C.D.,et al.,Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities.J.Microbiol.Methods.1997,30,33-41.
    [56]Schutter,M.and Dick,R.Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates.Soil Biology &Biochemistry.2001,33,1481-1491.
    [57]Patrick DS and J handelsman Biotechnological prospects of from metagenomics.Current Opinion in Biotechnology.2003,14:303-310.
    [58]Scott O.Rogers and Arnold J.Bendich,Extraction of total cellular DNA from plant,algae and fungi.Plant Molecular biology Manual,1994,D 1:1-8,1994.
    [59]Roy A.et al.,Evaluation of genetic diversity in jute(Corchorus species) using STMS,ISSR and RAPD markers.Plant Breeding,2006,125,292-297.
    [60]Barrett BA,et al.,Comparison of AFLP and pedigree based genetic diversity asscssment methods using wheat cultivars from the Pacific Northwest.Crop Science,1998,3 8(5):1271 - 1278
    [61]Renganayaki,K.,et al.,Genetic diversity among Texas bluegrass genotypes revealed by AFLP and RAPD markers.Theor.Appl.Genet.2001,102:1037-1045
    [62]Russell,JR.,et al.,Direct comparison of levels of genetic variation among barley accessions detected by RFLPs,AFLPs,SSRs,and RAPDs.Theor.Appl.Genet.1997,95:714-722
    [63]Shasany AK,et al.,Use of RAPD and AFLP markers to identify inter- and intraspecific hybrids of Mentha.Journal of Heredity 2005,96(5):542-549
    [64]Gottlieb AM.,et al.,Molecular analysis of the genus Ilex in Southern South America,evidence flora AFLP and ITS sequence data.American Journal of Botany 2005,92(2):352-369
    [65]Marhoid K.,et al.,Comparative ITS and AFLP analysis of diploid Cardamine taxa from closely related polyploidy complexes.Annals of Botany 2004,93:507-520
    [66]Basu A.,et al.,Analysis of genetic diversity in cultivated jute determinged by means of SSR markers and AFLP profiling Crop Science,2004,44:678-685
    [67]Williams JGK,et al.,DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl.Acids Res.1990,18(6):6231-6235
    [68]刘万水,等。雷公藤3种植物遗传关系与遗传多样性的RAPD分析。中国中药杂志,2007.32(6):1615-1618
    [69]丁鸽,等。铁皮石斛野生居群遗传多样性RAPD分析与鉴别。药学学报,2005,11:234-239
    [70]Vos P,et al.,AFLP:a new technique for DNA fingerprinting.Nucleic Acids Research.23:4407-4414
    [71]陶莉,等。AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别.武汉植物学报,2005,23(1):77-80
    [72]杜鹃,等。半夏不同种质资源AFLP指纹系谱分析及其应用.中国中药杂志,2006,13(1):30-33
    [73]张磊,等。中国红花遗传多样性的AFLP分子标记.药学学报,2006,41(1):91-96
    [74]Weir BS.Genetic data analysis.Methods for discrete genetic data.Sinauer Associates,Inc.,Sunderland.Mass.p.125
    [75]Fay M.,et al.,The effects of nuclear DNA content on the quality and utility of AFLP fingerprints.Annals of Botany 2005,95:237-246
    [76]Gabriella S,et al.ITS sequence analysis and phylogenetic inference in the genus Lens Mill.Annals of Botany,2003,91:49-54
    [77]Arnheim N,et al.,Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomers in man and apes.PNAS,1983,77:7323-7327
    [78]Amouche AK,et al..,Phylogenetic relationships in Lupinus based on internal transcribed apscer sequences of nuclear ribosomal DNA.American Journal of Botany,1999,86:590-607
    [79]Kollipara KP,et al.,Phylogenetic and genomic relationships in the genus Glycine Wild based on sequences from the ITS region of nuclear rDNA.Genome 1997,40:57-68
    [80]Neves SS,& Watson MF,Phylogenetic relationships in Bupeurum based on nuclear ribosomal DNA ITS sequence data.Annals of Botany,2004,93:379-398
    [81]汪强 等 丹参及鼠尾草属植物的rDNA ITS2序列分析。中草药2005,36(9):1381-1384
    [82]王东 等不同产地山药rDNA ITS2序列分析。时珍国医国药,2007,18(1):54-55
    [83]李先恩,等。地黄种质资源形态及生物学性状的观察与比较.植物遗传资源学报,2007,8(1);95-98
    [84]李先恩,陈士林,魏淑秋,等.地黄适生地分析及等级划分.中国中药杂志,2006,31(4):15-16.
    [85]鞠会艳,丛登立.连作大豆根分泌的对根瘤菌病病原菌的化感作用.应用生态学报,2002,13(6):723-727.
    [86]Cao ZH,et al.,Soil quality evolution after land use change from paddy soil to vegetable land.Environ Geochem Health,2004,26(2-3):97-103
    [87]Bossio D A,et al..Soil microbial community response to land use change in an agricultural landscape of western Kenya.Microb Ecoi,2005,49(1):50-62.
    [88]Girvan M S,et ai..Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils,2003,69(3):1800-9.
    [89]温远光,等。连栽对桉树人工林下物种多样性的影响.应用生态学报,2005,16(9):1667-71
    [90]Klironomos J N.Feedback with soil biota contributes to plant rarity and invasiveness in communities.Nature,2002,417,67-70.
    [91]Robert M and Chenu C.Interactions between soil minerals and microorganisms.In Soil biochemistry.Eds.G Stotzky and J M Bollog.1991,pp.307-379.Dekker Marcel,New York.
    [92]Kennedy A C and Smith K L.Soil microbial diversity index and the sustainability of agricultural soils.Plant Soil,1995,170,75-86.
    [93]Garland J L.Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization.Soil Biol.Biochem,.1996,28,213-221.
    [94]Agnelli A,et al.Distribution of microbial communities in a forest soil profile investigated by microbial biomass,soil respiration and DGGE of total and extracellular DNA.Soil Biol.Biochem,2004,36(5),859-868.
    [95]Salles J F,et al.,.Multivariate analyses of burkholderia species in soil:effect of crop and land use history.Appl.Environ.Microb,2004,70(7),4012-4020.
    [96]Pennanen T,et al.Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests.Appl Environ Microbiol.1996,62:420-428
    [97]Bossio D A,et al.Determinants of soil microbial communities:effects of agricultural management,season and soil type on phospholipid fatty acid profiles.Microb Ecol,1998,36:1-12.
    [98]Shibahara F and Inubushi K.Effect of organic matter application on microbial biomass and available nutrients in various type of paddy soils.Soil Sci.Plant Nutr,1997,43(1),191-203.
    [99]Zhang J E and Liao Z W.Discussion on soil ecological fertility and its cultivation.Soil Environ.Sci.2000,9,253-256.
    [100]Yao H,et al.,.Substrate utilization pattern,biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils.Geoderma 2003,115,139-148.
    [101]Li WQ,et al.,.Characteristics and regulation of greenhouse soil environment.Chin.J.ecol.2004,23:192-197.
    [102]Vance ED,et al.,An extraction method for measuring soil microbial biomass C.Soil Biology &Biochemistry,1987,19,703-707.
    [103]Bligh EG,Dyer WJ.A rapid method of total lipid extraction and purification.Can J Biochem Physiol.1959,37,911-917.
    [104]Frosteg(?)rd,(?),et al.,.Phospholipid fatty acid composition,biomass,and activity of microbial communitied from two soil types experimentally exposed to different heavy metals.Appl Environ Microbiol,1993,59,3605-3617.
    [105]Olsson PA.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil.FEMS Microbiol Ecol,1999,29,303-310.
    [106]Hamel C,et al.Negative feedback on a perennial crop:Fusarium crown and root of asparagus is related to changes in soil microbial community structure.Plant and Soil,2005,268:75-87.
    [107]阮维斌.根际微生态系统理论在连作障碍中的应用.中国农业科技导报1999,1(4):53-58.
    [108]阮维斌,等.根际微生态系统中的大豆孢囊线虫.植物病理学报,2002,32(2):200-213.
    [109]Bais H P,et al.,How plants communicate using the underground information superhighway.Trends in Plant Science 2004,9,26-32.
    [110]Curl EA,and B.Truelove 1986:The rhizosphere.Vol.15.Springer-Verlag,G iessen,Germany.
    [111]Small K,et al.,Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-depentedt enrichment and seasonal shifts revealed.Appl Environ Microbiol.2001,67:4742-4751
    [112] Lottmann, J, et al.,. Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic popatoes and their effect on the bacterial community. FEMS Microbial. Ecol. 2000, 33:41-49
    [113] Gomes, NCM, et al., bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 2001, 232:167-180.
    [114] Filion M, et al., Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol., 2004,70(6):3541-3551
    [115] Buckley DH, Schmidt TM 2001: The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology., 42:11-21
    [116] Haack, S. K., et al., Analysis of factors affecting the accuracy, reproducibility and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microb. 1995, 61, 1458-1469
    [117] Garland, J. L. and Mills, A. L., Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Appl. Environ. Microb. 1991,57,2351-2359.
    [118] Ibekwe, A. M. and Kennedy A. C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology. 1998.26,151-163.
    [119] Lin X G et al. Changes of soil microbiological propertied caused by land use changing from rice-wheat rotation to vegetable cultivation. Environmental Geochemistry and Health. 2004, 26: 119-128.
    [120] Set(a|¨)l(a|¨) H, Mclean M A Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia., 2004, 138,98-107
    [121] Yao H, et al., Soil microbial community strucuture and diversity in a turfgrass chronosequence: Land-use change versus turfgrass management. Applied Soil Ecology., 2006, 34 (2-3):209-218.
    [122] Steenwerth K L, et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem, 2002, 34:1599-1611.
    [123] Zhang, H., and G L. Zhang. Microbial biomass carbon and total organic carbon of soils as affected by rubber cultivation. Pedosphere, 2003,13:353-357.
    [124] Stenberg M, et al., Effects of reduced tillage and liming on microbial activity and soi properties in a weakly-structured soil. Appl. Soil Ecol., 2000,14, 135-145.
    [125] Wardle, DA Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct. Ecol.,\993, 7, 346-355
    [126] Brookes PC The use of microbial parameters in monitoring soil pollution by heavy metals. Bio. Fertile.Soils, 1995, 19:269-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700