用户名: 密码: 验证码:
模拟深水环境下双机械手协调作业关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用于作业级水下机器人之上的深水双机械手作业系统,在海洋油气开发中有着重要的作用。为了提高水下机器人的自动化程度和油气开发中的效率。本文采用了理论分析,计算机仿真实验研究的方法,对深水油气开发双机械手相关的作业任务分析、水动力学、协调作业规划、协调作用控制器及综合仿真实验进行了研究。
     首先,阐述了课题研究的背景,对水下机械手和双机械手系统的国内外现状进行了描述,通过调研并分步骤分析了水下机械手在墨西哥湾漏油事件处置中用途,分析了水下双机械手作业面临的难点。厘清了本文的研究对象和内容。
     其次,以华中科技大学设计的“华海6H”为对象,对其机器人运动学、约束条件下作业空间的快速计算方法,以及水动力学等问题进行了研究。首先采用相关的理论建立了华海6H水下机械手运动学模型。在此基础上设计了一种混合奇异曲面法和数值法的快速计算作业空间方法。针对水流环境,建立了机械手系统在收到水流环境干扰的情况下,其综合的动力学模型。并且运用数值计算的方法仿真分析了浮力和恒定水流对机械手动力学的影响,提出在“华海6H”的动力学问题中,需要充分考虑浮力因素。
     之后,以两台“华海6H”水下机械手为对象,研究了针对其在搬运同一物体作业时(闭链协调问题)的运动学和动力学问题,并建立了其闭链系统的运动学动力学模型。提出了一种优化的距离函数避障方法,并用于其作业的协调轨迹规划。该方法为一种选取双机械手杆件和关节上若干点为特征点,建立特征点间距离函数。并以之为最优特征函数,通过梯度投影法获得双机械手协调作业的各自轨迹规划。
     再后,针对双深水机械手协调搬运问题,对传统滑模控制器进行了一定的改进,对主机械手、从机械手设计了增益自适应模糊调节的滑模控制器,控制器利用了前面建立的系统水动力学模型知识但不对其精确性有要求。
     最后,针对目前实际情况,建立综合的双水下机械手协调搬运仿真模型,在半实物仿真平台上通过全数字仿真实验的形式分析全文研究内容的有效性。
The deep-water dual manipulator equipped with the serial of working underwatervehicle plays an important role in the offshore oil and gas mine. In order to improveautomation level for the ocean material mine with underwater vehicle and the efficiency ofthe emergency response work, a serial theories and methods are illustrated in the paperinclude theoretical analysis, computer simulation research methods, development ofdeep-sea oil and gas dual manipulator related work tasks analysis, hydrodynamics, andcoordination of operational planning, coordinating role of the controller and integratedsimulation study.
     First of all, the research background for underwater manipulator anddual-manipulators coordinate-operation are described in this part, especially the relatedresearch in china and abroad are presented. Through the reviewed research and analysis ofunderwater manipulator application in the Gulf of Mexico oil spill disposal, the difficultiesfor the dual-manipulators coordinated work in the deep-sea are illustrated. And ten, theresearch object and content of this paper are clarified from the analyses.
     Secondly, the Huahai-6H manipulator is taken as a research experiment which isdesigned by Huazhong University of Science and Technology. The kinematics, workspace, and hydrodynamic for this underwater manipulator are studied in this part. Throughestablished the dual-manipulators model, the rapid calculation of the singular surface of ahybrid method and numerical method work space are designed. For the workingcircumstance, a hydrodynamic model of the manipulator system is established. Buoyancyand a constant flow of manipulator dynamics simulation analysis using numerical methodsare proposed. In the deep-sea manipulator dynamics, the buoyancy factor should be takenin full account of the hydrodynamic modeling.
     And then, two Huahai-6H underwater manipulators are taken into a research object.The study of the kinematics and dynamics of the problem for the job in handling the samerigid body (closed chain coordination problems) are presented. Meanwhile, a closed chainsystem kinematics power learning model is established. An optimized distance functionobstacle avoidance, and for its operation coordinated trajectory planning are illustrated. The dual manipulator rod parts and joints on a number of points for a selected featurepoints, the feature point distance functions are established. And the optimal characteristicfunctions are obtained by the gradient projection method the respective trajectory planningdual-manipulators coordination working.
     Finally, the force and position controller is designed for the mechanical hand tightcoordination problems of this dual-manipulator. The current actual situation integratedunderwater manipulator coordinate handling simulation model is designed. Meanwhile, asliding mode fuzzy controller and ring inclusive position controller for the coremanipulator are presented. And the controllers are designed for previous hydrodynamicmodel knowledge but not for its accuracy requirements.
引文
[1]任克忍.海洋石油水下装备现状及发展趋势.石油机械.2008,7(09)
    [2]钱江.挺进南海更深处——中国海洋石油探秘.中国经济周刊.2010,6(37)
    [3]张一玲.我国“十一五”海洋科技发展规划蓝图绘就.中国海洋报.2006
    [4]徐峰.我国载人潜水器跨越3700米水深纪录成为第5个掌握大深度载人深潜技术国家.国防科技工业.2010,1(09)
    [5]刘峰,崔维成,李向阳.中国首台深海载人潜水器-蛟龙号.中国科学:地球科学,2010,40(12):1617~1620
    [6]我国“蛟龙号”深水载人潜水器在南海试验成功.海洋地质与第四纪地质.2010,(5):100
    [7] Smallwood D,Bachmayer R,Whitcomb L.A new remotely operated underwatervehicle for dynamics and control research.Proceedings of the11th
    [8] M.I.Shitsuka,K.I.Shi.Development of an underwater manipulator mounted for anAUV.Proc. of Oceans,2005:6~12
    [9] Chen-Chou Lin,Chung-Cheng Chang,Mu-Der Jeng,etal.Development of anintelligent underwater robotic manipulator system.MTS/IEEE Conference andExhibition,2001,2:1036~1040
    [10]杨喜荣.深海水下作业型机械手控制系统研究[硕士学位论文].杭州:浙江大学图书馆,2006:8~13
    [11]王成军.七功能水下机械手本体设计及自适应控制研究[硕士学位论文].哈尔滨:哈尔滨工程大学图书馆,2009:6~8
    [12]张奇峰,张艾群.基于能源消耗最小的自治水下机器人-机械手系统协调运动研究.机器人.2006,28(4):444~452
    [13] Liquan Wang,Caidong Wang,Wenming Wang,et al.A Novel Hybrid ControlMethod for the Underwater Manipulator.2008International Workshop onGeoscience and Remote Sensing.ETT and GRS2008,1:790~794
    [14]冯高.一种开放式深海机械手结构及其动力学优化研究[硕士学位论文].武汉:华中科技大学图书馆,2009:3~5
    [15]张琴,徐国华,向先波.HUST8F自动更换工具作业机械手运动学及计算机仿真系统研究.机械与电子,2003(3):67~71
    [16] Antonelli G., Chiaverini S. Fuzzy redundancy resolution and motion coordinationfor underwater vehicle-manipulator systems. IEEE Trans. on Fuzzy Systems.2003.11(1):109-120
    [17] Hu Y.R., Goldenberg A.A., Motion and force control of coordinated robots duringconstrained motion tasks. International Journal of Robotics Research,1995,14(4):351-365
    [18]丁希伦.容错冗余度双臂空间机器人系统的协调控制及遥操作研究——冗余度双臂协调控制技术研究.中国航空科技报告.2005
    [19]唐华斌.基于随机采样的机器人双臂协调运动规划.中国智能自动化会议论文集,北京.2005
    [20]丁希伦.拟人双臂机器人技术[M]:北京.2011
    [21] Carignan C.R., Lane J.C., Akin D.L. Control architecture and operator interface fora free-flying robotic vehicle. IEEE Trans. on Systems, Man, and Cybernetics, PartC: Applications and Reviews.2001,31(3):327-336
    [22] Tarn T.J., Yang S.P. Modeling and control for underwater robotic manipulators–an example. In Proc. of1997IEEE Int. Conf. on Robotics and Automation.1997,2166-2171
    [23] Dunnigan M.W., Lane D.M. Evaluation and reduction of the dynamic couplingbetween an ROV and manipulator. In Proc. of IEE Colloquium on Control andGuidance of Underwater Vehicles.1993,1-4
    [24] Leabourne K.N., Rock S.M. Model development of an underwater manipulator forcoordinated arm-vehicle control. In Proc. of Conf. OCEANS '98.1998,941-946
    [25] Dannigan M.W., Russell G.T. Evaluation and reduction of the dynamic couplingbetween a manipulator and an underwater vehicle. IEEE Journal of OceanicEngineering.1998,23(3):260-273
    [26] Ishitsuka M., Ishii K. Development of an underwater manipulator mounted for anAUV. In Proc. of OCEANS.2005,1811-1816
    [27] Chen-Chou L., Chung-Cheng C.,Mu-Der J. et al. Development of an intelligentunderwater robotic manipulator system. In Proc. of MTS/IEEE Conf. andExhibition OCEANS2001.2001,1036-1040
    [28] Jee-Hwan R., Dong-Soo K., Pan-Mook L. Control of underwater manipulatorsmounted on an ROV using base force information. In Proc. of IEEE Int. Conf. onRobotics and Automation.2001,3238-3243
    [29] Soylu S., Buckham B.J., Podhorodeski R.P. Development of a coordinatedcontroller for underwater vehicle-manipulator systems. In Proc. of OCEANS2008.2008,1-9
    [30] McMillan S., Orin D.E., McGhee R.B. Efficient dynamic simulation of anunderwater vehicle with a robotic manipulator. IEEE Trans. on Systems, Man andCybernetics,1995.25(8):1194-1206
    [31] Yuh J., Zhao S., Lee P.M. Application of adaptive disturbance observer control toan underwater manipulator. In Proc. of IEEE Int. Conf. on Robotics andAutomation.2001,3244-3249
    [32] McLain T.W., Rock S.M., Lee M.J. Experiments in the coordination of underwatermanipulator and vehicle control. In Proc. of OCEANS95.1995,1208-1215
    [33] Pan-Mook L., Yuh J. Application of non-regressor based adaptive control to anunderwater mobile platform-mounted manipulator. In Proc. of IEEE Int. Conf. onControl Applications.1999,1135-1140
    [34] Ishibashi S., Shimizu E., Ito M. Motion planning for a manipulator equipped on anunderwater robot. In Proc. of The27th Annual Conf. of Industrial ElectronicsSociety.2001,558-563
    [35] Antonelli G., Chiaverini S. A fuzzy approach to redundancy resolution forunderwater vehicle-manipulator systems. Control Engineering Practice.2003.11(4):445-452
    [36] Antonelli G., Caccavale F., Chiaverini S. Adaptive tracking control of underwatervehicle-manipulator systems based on the virtual decomposition approach. IEEETrans. on Robotics and Automation.2004,20(3):594-602
    [37] Clegg A.C., Dunnigan M.W., Lane D.M. Self-tuning position and force control ofan underwater hydraulic manipulator. In Proc. of IEEE Int. Conf. on Robotics andAutomation.2001,3226-3231
    [38] Soylu S., Buckham B.J., Podhorodeski R.P. A fault tolerant fuzzy logic basedredundancy resolution method for underwater mobile manipulators. In Proc. ofOCEANS2007.2007,1-9
    [39] He J., Wang J., Wang H. Tracking control based on fuzzy strategy for underwatermanipulator. In Proc. of Chinese Control Conference.2007,279-282
    [40] Dunnigan M.W., Lane D.M. Evaluation and reduction of the dynamic couplingbetween an ROV and manipulator. In Proc. of IEE Colloquium on Control andGuidance of Underwater Vehicles.1993,1-4
    [41] Leabourne K.N., Rock S.M. Model development of an underwater manipulator forcoordinated arm-vehicle control. In Proc. of Conf. OCEANS '98.1998,941-946
    [42] Ishitsuka M., Ishii K. Development of an underwater manipulator mounted for anAUV. In Proc. of OCEANS.2005,1811-1816
    [43] Luh J Y S, Zhang Y F. Constrained relations between two corordinated industrialrobots for motion control. International Journal of Robotics Research,1987,6(3):60-70
    [44] Zheng Y D, Luh J Y S. Optimal load distribution for two industrial robots handlinga single object. Proceedings of the IEEE International Conference on Robotics andAutomation,1988:344-349
    [45] Hu Y.R., Goldenberg A.A., Dynamic control of multiple coordinated redundantmanipulators with torque optimization. Proceeding of the IEEE InternationalConference on Robotics and Automation,1990:1000-1005
    [46] Yoshikawa T. Analysis and control of robot manipulators with redundancy. RobotResearch: First International Symposium, Cambridge: MIT Press,1984:735-748
    [47] Touati Y, Djouani K. Neuro-fuzzy based approach for hybrid force/position robotcontrol. Proceedings of the IEEE International Conference on Robotics andAutomation,2002:376-381
    [48] TESCON CO LTD, New Dual Arm Robotic Capability. Industrial Robot,1996,23(3):40-41
    [49] Motion and force control of coordinated robots during constrained motion tasks.International Journal of Robotics Research,1995,14(4):351-365
    [50]钱海东.双臂机器人时间最优轨迹规划研究.机器人,1999,21(2):98-103
    [51]何光彩.双臂自由飞行空间机器人自主控制系统研究.计算机仿真,1999,16(2):57-59
    [52]陈安军.双臂机构速度约束方程组的快速建立.信阳师范学院学报(自然科学版),1998,11(3):236-238
    [53]陈国锋.双臂机器人位姿的方向可操作性.机器人,1996,18(2):108-114
    [54]赵永生.多机器人协同的无内力抓取及动载的分配.光与精密工程,1999,7(2):50-56
    [55] Rob Buckingham. Multi-arm Robots. Industrial Robot,1996,123(1):16-20
    [56] Dodds Getal. Multi-arm Robotics: A Solution to Fast Reconfiguration forChanging Automated Tasks. IndustrialRobot,1996,123(1):22-26
    [57] Paul Brunn. Robot Collision Avoidance. Industrial Robot,1996,123(1):27-33
    [58] Nilanjan Sarkaretal. Dynamic Control of3-D Rolling Contactsin Two-ArmManipulation. IEEE Transactionson Robotics and Automation,1997,13(3):364-376
    [59] Yoerger D., Slotine J.J. Supervisory control architecture for underwaterteleoperation. In Proc. of IEEE Int. Conf. on Robotics and Automation.1987,2068-2073
    [60] Jun B.H., Shim H.W., Lee P.M. et al. Workspace control system of underwatertele-operated manipulators on ROVs. In Proc. of OCEANS2009-EUROPE.2009,1-6
    [61] Marani G., Choi S.K., Yuh J. Underwater autonomous manipulation forintervention missions AUVs. Ocean Engineering.2009,36(1):15-23
    [62] Qiaokang Liang, Dan Zhang, Quanjun Song,et al. A potential4-D fingertipforce sensor for an underwater robot manipulator. IEEE Journal of OceanicEngineering,2010,35(3):574-583
    [63] De Novi G., Melchiorri C.,García J.C. et al. New approach for a reconfigurableautonomous underwater vehicle for Intervention. IEEE Aerospace and ElectronicSystems Magazine,2010,25(11):32-36
    [64] Marani G., Song Choi. Underwater target localization. IEEE Robotics&Automation Magazine,2010,17(1):64-70
    [65] Palomeras N., Garcia J.C., Prats M. A distributed architecture for enablingautonomous underwater intervention missions. In Proc. of4th IEEE. SystemsAnnual Conference,2010,159-164
    [66] Kleeman L., Kuc R. mobile robot sonar for target localization and classification.The Int. Journal of Robotics Research.1995,14(4):295-318
    [67] LeMay J.B. Error minimization and redundancy management for a threedimensional ultrasonic ranging system. In Proc. of the IEEE/RJS Int. Conf. onIntelligent Robots and Systems.Raleigh NC:1992,837-844
    [68] Lowe D.G. Distinctive image features from scale-invariant key points.International Journal of Computer Vision.2004.60(2):91-110
    [69] McLauchlan P F M.D.W. A unifying framework for structure and motion recoveryfrom image sequences. In Proc. of ICCV95.1995,314-320
    [70] Azarbayejani P.A. Recursive estimation of motion, structure and focal length.IEEE Trans. on Pattern Analysis and Machine Intelligence.1995,17(6),562-575
    [71] Davison A J. Real-time simultaneous localisation and mapping with a singlecamera. In Proc. of IEEE Int. Conf. on Computer Vision.2003,1403-1410
    [72] Bouguet J.Y. Visual methods for three-dimensional modeling:[master degreethesis].California Institute of Technology. Pasadena: California,1999
    [73] Side Zhao J.Y. Experimental study on advanced underwater robot control. IEEETrans. on Robotics.2005,21(4):695-703
    [74] McLain T. W. R.S.M. Development and experimental validation of an underwatermanipulator hydrodynamic model. The International Journal of Robotics Research.1998,17(2):748-759
    [75] Armenio V. Dynamic loads on submerged bodies in a viscous numerical wave tankat small KC numbers. Ocean Engineering.1998,25(10):881-905
    [76] Shen L.C. Calculation of hydrodynamic forces acting on a submerged movingobject using immersed boundary method. Computers&Fluids.2009,38(3):691-702
    [77]王华,孟庆鑫与王立权.基于切片理论的水下灵巧手手指动力学分析.机器人,2007,29(2):160-166
    [78]刘金锟.机器人控制系统的设计与MATLAB仿真[M].北京:2011
    [79] Guohua X., Zhihu X., Guoyuan T., A new deep ocean electrical drivenmanipulator: working system, in Proc. of the Twentieth Int. Offshore and PolarEngineering Conference.2010
    [80] Paul R P,Shimano B E,Mayer G.Kinematic Control Equation for SimpleManipulators.IEEE Trans.SMC,1981,11(6):449~455
    [81] Diao X M,Ou M.Workspace analysis of a6-DOF cable robot for hardwarein-the-loop dynamic simulation.Proceedings of the2006IEEE/RSJ InternationalConference on Intelligent Robots and Systems,IROS,2006:4103~4108
    [82] Rastegar J,Fardanesh B.Manipulator workspace analysis using the Monte Carlomethod.Mechanism and Machine Theory.1990,25(2):233~239
    [83] Xu W F,Li L T,Liang Betal.Workspace analysis of space3R robot.Journal ofAstronautics,2007,28(5):1389~1394
    [84]崔玉洁,张祖立,范磊.基于蒙特卡洛方法的采摘机械手工作空间分析.农机化研究.2007(12):62~64
    [85]钟勇,朱建新.一种新的机器人工作空间求解方法.机床与液压,2004(4):66~67
    [86] Morison J.R. The force exerted by surface waves on piles. Petroleum transaction.1950,18(9):149-157
    [87] Chang, P. H. A closed-form solution for the control of manipulators with kinematicredundancy. In Proceedings of the IEEE International Conference on Robotics andAutomation.1986. IEEE, pp.9-14.
    [88] Cox, D. J., and Tesar D. Multilevel criteria for dual-arm robotic operations. InProceedings of the IEEE International Conference on Robotics andAutomation,1994. vol.2, IEEE, pp.1243-1249.
    [89] Fisher, M. Efficient path planning strategies for cooperating manipulators inenvironments with obstacles. In Proceedings of the IEEE International Conferenceon Robotics and Automation,1994. vol.3, IEEE, pp.2418-2423.
    [90] Glass, K., Colbaugh, R., Lim D., and Seraji H. On-line collision avoidance forredundant manipulators. In Proceedings of the IEEE InternationalConference onRobotics and Automation,1993. vol.1, IEEE, pp.36-43.
    [91] Hoyer, H., Gerke, M., and Borgolte, U. On-line collision avoidance for industrialrobots with six degrees of freedom. In Proceedings of the IEEE InternationalConference on Robotics and Automation,1994. vol.2, IEEE, pp.1258-1265.
    [92] Hsia, T. C., and Guo, Z. Y. Joint trajectory generation for redundant robots. InProceedings of the IEEE International Conference on Robotics and Automation,1989. vol.1, pp.277-282.
    [93] Koivo, A., and Bekey, G., Report of workshop on coordinated multiplemanipulators: planning, control and applications. IEEE Trans. Robot. Automat.1988.4(1):91-93.
    [94] Lee, S. Dual redundant arm configuration optimization with task oriented dual-armmanipulability. IEEE Trans. Robot. Automat.1989.5(1):78-97.
    [95] Canudas de Wit C., Olguin Diaz O., Perrier M. Nonlinear control of an underwatervehicle/manipulator with composite dynamics. IEEE Trans. on.Control SystemsTechnology,2000,8(6):948-960
    [96] Young K.D. Controller design for manipulator using theory of variable structuresystems. IEEE Trans. on Systems, Man, and Cybernetics.1978.101-109
    [97] Utkin V. Variable structure control optimalization.1993: Springer-Verlag
    [98] Slotine J.J. Tracking control of nonlinear systems using sliding surfaces withapplication to robot manipulator. International Journal of Control.1999
    [99] Kim C.,JaeHoon P., Tracking control of a robot manipulator using sliding modewith fast and accurate performance controller, In Proc. of Intern Conf onIntelligent Robots and Systems.1999
    [100] Belhocine M.Trajectory tracking for robot using variant structure control. IEEETrans. on Industrial Electronics.1998
    [101] Bartolini G., Sliding mode control of an underwater robotic manipulator", In Procof IEEE. Int. Conf on decision and control, Sydney, Australia.2000
    [102]琚亮,水下机械手位置伺服控制研究:[硕士学位论文],华中科技大学图书馆.2006
    [103]肖治琥,深水机械手动力学特性及自主作业研究:[博士学位论文],华中科技大学图书馆.2011
    [104] Sarpturk S. Z., Istefanopulos Y., Kaynak O. On the stability of discretet ime slidingmode control system. IEEE Transaction on Automatic Control,1987,32(10):930-932.
    [105] Gao W. B., Wang Y. F., Homaifa A Discret e-time variable structure controlsystems. IEEE Transact ion on Industrial Electronics,1995,42(2):117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700