用户名: 密码: 验证码:
单螺杆泵螺杆—衬套副型线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵举升技术发展的时间不长,经过理论研究和实践探索,在举升机理理论分析和配套技术方面取得了一定的进展,但是这种新型的水力机械的特点和潜力还远未被充分认识和利用,还有许多深层次理论问题有待解决,这些问题严重制约了单螺杆泵在采油方面优势的发挥,阻碍了对螺杆泵应用潜力进一步的挖掘。同时,油田开发的实际需要,对螺杆泵举升又提出新的更高的要求。只有对螺杆泵进行深入的应用基础理论研究,才能从根本上解决这些问题。
     本文主要研究单螺杆泵截面型线,从研究内摆线型单螺杆泵骨线及其等距曲线的形成原理入手,对内摆线型单螺杆泵的等距曲线进行运动分析。重点分析、比较了普通内摆线型单螺杆泵固定接触点在定子等距线转折点和定子内凸中点处接触角的变化,探讨了接触角的大小对螺杆泵使用寿命的影响。
     研究了内摆线型单螺杆泵转子与定子截面型线的啮合原理,探讨了内摆线型单螺杆泵啮合运动与内摆线骨线形成运动之间的关系,分析了单螺杆泵的固定接触点、流动接触点的运动规律,推导出内摆线型单螺杆泵固定接触点相对滑动速度、流动接触点相对滑动速度的计算公式。研究了变幅系数对螺杆-衬套副型线的影响,结果表明:变幅系数大,则等距曲线容易打扣,导致转折点处磨损很快;而变幅系数小,则定子上流动接触点可到达的区域向定子内凸中点集中,使定子内凸中点处磨损严重。因此,变幅系数的选取原则是在保证定子等距线不打扣的情况下,尽量接近1。
     根据丁晴橡胶的磨损规律,确定了定子磨损的主要影响因素之一是流动接触点相对滑动速度。得出结论认为:提高流动接触点最小相对滑动速度有利于延长单螺杆泵的使用寿命。
     单螺杆泵性能评价指标的确定对于单螺杆泵的设计具有很大影响,本文以过流面积、流动接触点最小相对滑动速度、固定接触点最大综合曲率、变幅系数四个指标作为单螺杆泵性能评价指标,研究了单参数变化对它们的影响;给出了普通内摆线和短幅内摆线螺杆-衬套副过流面积、流动接触点最小相对滑动速度、固定接触点最大综合曲率的计算公式;建立了短幅内摆线型单螺杆泵优化设计的数学模型,编制了单螺杆泵优化设计的计算机程序,并得到了综合性能优良的单螺杆泵模型。
     研究了基于UG的CAD系统二次开发技术,采用UG Open GRIP与VB.Net相结合的方式开发了单螺杆泵CAD系统。应用该系统对螺杆-衬套副进行了参数化建模,进而实现运动仿真和有限元分析。结果表明:采用本文所提出评价指标进行优化设计,得到设计参数应用在螺杆泵的型线设计上,具有明显的优越性。
It’s not a long time since the progressing cavity pump(PCP) has been developed. Now there is some development in the lifting theory and match technology, but the characters and potentials of this new hydraulic mechanism aren’t been discovered sufficiently, so quite a few academic questions need to be solved, these questions restrict the further application of PCP. Simultaneously, the developments of the oil fields require that the PCP has more excellent lifting capability. To solve these questions, we need to go deep into application research and theoretic study of PCP.
     In this paper, by means of researching the forming principle of the hypocycloid PCP’s horizontal cross section, the analysis of motion of the isometric profiles was developed. At the same time, the changing rules of the contact angle of the turning point and the midpoint, how the contact angle of turning point influencing the PCP’s performance were also discussed especially. Here, the contact angle is a value, obtained by subtracting between the angle when the rotor leaves a point and the angle when the rotor begins to contact this point.
     Furthermore, the engagement process of the hypocycloid PCP was researched, and the relationship between the engagement motion and the molding motion of the primary line style were discovered. Accordingly, the rule of motion and comparatively slide velocity formula of fixation contact point and the floating contact point were obtained. The research findings of how the radius variation ratio influences the line-stye of shaft-housing pairs shows that: when the radius variation ratio is a comparatively bigger value, the isometric profiles isn’t very good, so the turning zone is frayed rapidly. On the other hand, when the radius variation ratio is very small, such as 0.2, the floating contact area centralizes to the midpoint, the midpoint zone will be frayed rapidly. So the conclusion is that the finer radius variation ratio should be close to 1 under the circumstances that the isometric profiles has no drape on it.
     According to nitrile-butadiene rubber(NBR) tribological rules, of which the minimum value of the comparatively slide velocity of the floating contact point will influence the stator abrasion mostly, we can conclude that the minimum value of the comparatively slide velocity of the floating contact point should be increased in order to prolong PCP’s working lifetime.
     A set of excellent performance indexes is very important for the design of PCP. This paper confirms the flow area, the minimum value of the comparative slide velocity of the floating contact point, the maximum integration curvature, and the radius variation ratio as the performance indexes, discussed how the single parameter such as the number of the lobe influences the performance indexes, deducted the formulas of these performance indexes of the hypocycloid PCP. Subsequently, optimal design program of the hypocycloid PCP was set up, by resolving mathematical model, PCP’s conjugate curve with excellent performance was obtained.
     Finally, secondary development technology of CAD system based on UG was researched, a new way to build a CAD system for the hypocycloid PCP, which combined UG/Open GRIP with VB.net, was selected. Using this CAD system, parameterized and three-dimensional model, kinematics simulation, and the finite element analysis of hypocycloid PCP were established orderly. The results show that the performance indexes are appropriate and the hypocycloid PCP optimization design is unsatisfactory, the model of shaft-housing pairs, which comes from optimized parameters, has distinct advantages accordingly.
引文
[1]万邦烈.苏联电动潜油单螺杆泵发展和应用[J].世界石油科学,1988,(3):89~96.
    [2] K1ein.S. En hancements expand use of progressing cavity pumps[J].American Oil and Gas Reporter,1993,36(6):46-48.
    [3] Klein S.Advouces expand alications for progressing cavity pumps[J].American Oil and Gas Reporter,1995,38(6):83-85.
    [4] Saveth K J.Field study of efficiencies between progressing cavity[J]. Reciprocating and Electric Submersible Pump,1993,SPE 25448.
    [5] Lea J F, Winkler H W. What’s new in articial lift[J]. World Oil,1997, 218(4):53-56.
    [6] Cozeen K, Tetzlaff S.Using ESPCP reduces lifting costs[J]. The American Oil&Gas Reporter,1998,41(6):134-137.
    [7]张建伟.井下采油单螺杆泵的现状及发展[J].石油机械,2000,28(8):56~58.
    [8]王志敏、胡风涛,关于推广应用螺杆泵采油的建议[J].石油机械,1995, 23(2):46~48.
    [9] Gaymard B.The progressing cavity pump in European oil production[J]. World Oil,1989, 268(l):11-15.
    [10] Lea J F.Optimization of PProgressive Cavity Pump Systems in the Clearwater Heavy Oil Reservoir[J].JCPT,1988,27(1): 58-66.
    [11] Wright D W.Progressive cavity pumps prove more efficient in mature waterflood tests[J].Oil And Gas Journal, 1993,91(32):43-47.
    [12] Hott M.Attributes of progressing cavity pumps earn aroval in market[J]. American Oil and Gas Reporter,1994,37(11): 64-67.
    [13]张连山.克罗德地面驱动单螺杆泵的特性与应用[J].石油机械,1993,22(10):33~36.
    [14]郑伟城、许汇文.采油螺杆泵在低压低渗井排液求产中的应用[J].试采技术,1992, 13 (4): 30~33.
    [15]王劲松,吴宁,等.聚合物驱机采设备应用探讨[J].石油机械,1996,24(1),增刊:52~56.
    [16]张连山,魏庆深,等.地面驱动单螺杆泵的设计与应用[J].石油矿场机械,1992, 21 (3):10~16,24.
    [17]刘潮勇,孙延安,等.小排量高扬程螺杆泵设计与应用探讨[J].石油机械,1996,24 (1),增刊:87~89,147.
    [18]万邦烈.单螺杆式水力机械[M].北京:石油大学出版社,1993,9.
    [19]万邦烈.单螺杆式水力机械的研究与开发[J].石油矿场机械,1995,24(3): 14~18.
    [20]北京石油机械厂技术科.单螺杆泵的基本原理[J].石油钻采机械通讯,1974(1):3~17.
    [21]谢竹庄.单螺杆马达的普通线型[J].石油学报,1997, 18(2):98~103.
    [22]万邦烈,葛占玉.单螺杆式水利机械的啮合理论及其作用力研究[J].石油学报,1989 (3):97~108.
    [23]张健伟.单螺杆泵的空间啮合原理[J].石油机械,1991,19(10):1~7,16.
    [24]苏义脑,谢竹庄.螺杆钻具马达线型分析基础及研究方法[J]石油钻采机械,1985,13 (6):10~20,6.
    [25]甘行平.单螺杆井底马达线型理论的研究[J].石油机械,1988,16(4):1~9.
    [26]万邦烈,曹玉德.短幅内摆线型单螺杆式水力机械的啮合原理[J].华东石油学院学报,1987 (4) :28~42.
    [27]谢竹庄,苏义脑。单螺杆钻具马达内外摆线法线型分析[J].石油机械,1986,14 (7):32~45.
    [28]王忠杰,易先忠.单头单螺杆式水力机械共扼线型分析[J].石油机械,1997,25 (7):1~4.
    [29]万邦烈.单螺杆式水力机械的研究和开发[J].石油矿场机械,1995,24(3):14~18.
    [30]万邦烈,曹玉德,短幅内摆线型单螺杆式水力机械螺杆-衬套副的评价指标及参数优选[J].石油矿场机械,1989,18(2):17~27.
    [31]葛占玉,万邦烈.单头单螺杆式水力机械螺杆-衬套副的啮合理论及其作用力[J].石油大学学报,1990,14(5):33~39.
    [32]魏继德,师国臣.试验介质温度、粘度对螺杆泵容积效率的影响[J].石油机械,1993, 21(9):15~20.
    [33]万邦烈,曹玉德,等.单螺杆泵输送不同粘度液体时的外特性及汽蚀特性[J].华东石油学院学报,1987,11(1):39~54.
    [34]林凡夫,张其印.使用微机控制的螺杆泵试验台[J].液压与气动,1993,70(1):31~32.
    [35]陈良才,方子严,等.确定不同温度下螺杆泵装置临界汽蚀转速的方法[J].水泵技术,1993,(6):43~45.
    [36] Majid Delpassand.Designing PC pumps for abrasive alications[A].1996 Progressing Cavity Pump Workshop[C],SOCIETY OF PETROLEUM ENGINEERS, Tulsa,Oklahoma.
    [37] David Stuart,Majid Delpassand.New PCP design,material cut wear[J].THE AMERICAN OIL&GAS REPORTER,JUNE 1997:104-109.
    [38] Majid Delpassand. Progressing cavity pump design optimization for abrasive alications[J].JPT,JULY 1997:731-732.
    [39]姜民政.单螺杆泵特性试验[J].石油机械,1999,27(2):30~33.
    [40]郁文正.螺杆泵定子橡胶的新发展[J].国外石油机械,1997,8(4):41~47.
    [41]江虹.橡胶压缩疲劳温升试验在螺杆泵定子橡胶研究中的应用[J].特种橡胶制品,1995, 16(3):51~53.
    [42] Saveth K J.The progressing cavity pump principle capabilities[J]. 1989,SPE 18873.
    [43]韩修廷,王秀玲,等.螺杆泵采油原理及应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [44]杨玉生.高压单头螺杆泵定子端面线型参数的确定[J].石油矿场机械,1995,24 (6):15~17.
    [45]梁肇基,崔平正.单螺杆泵定子磨损的分析及改善措施[J].流体工程,1991,19(7):27~30.
    [46]韩修廷等.螺杆泵定、转子主要参数及定子模芯设计[J].佳木斯大学学报,1999, (3): 274~279.
    [47]李永东等.Moyno理论在油田抽油螺杆泵设计中的应用[J].哈尔滨工程大学学报,2000,21(4):85~89.
    [48]白新理等.不可压缩超弹性材料大变形接触分析[J].四川大学学报,2001, (1):16~19.
    [49]罗恒木,罗文丽.自封式封井器胶芯大变形分析[J].石油大学学报,1997,21(3):68~72.
    [50]徐立,吴桂忠.有限元分析中橡胶应变能函数的若干形式[J].橡胶工业,1999,46(12): 707~711.
    [51]史守峡,刘建百.近于不可压缩非线性橡胶材料的有限元分析[J].哈尔滨工程大学学报,1998,19(6):53~59.
    [52]危银涛等,橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(4): 281~289.
    [53]史守峡,杨嘉陵.罚函数法分析:一类不可压缩橡胶的大变形[J].应用基础与工程科学学报,1999,(2):185~191.
    [54]史守峡,杨嘉陵.平面应变不可压缩橡胶圆柱的大变形[J].固体力学学报,1999,20(4): 290~296.
    [55]郑明军,谢基龙.压缩状态下橡胶件大变形有限元分析[J].北方交通大学学报,2001,25(1):76~79.
    [56]史守峡等.混合法分析平面应变橡胶材料的大变形[J].应用力学学报,2000,17(1): 142~145.
    [57]魏泳涛,于建华.橡胶有限元分析之研究.四川联合大学学报[J],1997,(5):78~83.
    [58]师国臣.采油螺杆泵工作特性分析及其配套技术研究[D].哈尔滨:哈尔滨工业大学,2002.
    [59]胡博仲,海宗兴.对螺杆泵举升工艺技术配套的探讨[J].大庆石油地质与开发,1995,14 (2):34~37,41.
    [60]王玉山,师国臣等.采油工程[M].北京:石油工业出版社,1995.
    [61]史宝光等,螺杆泵及配套工艺在稠油开采中的应用[J].油气采收率技术,1998, 5(3): 71~74.
    [62] D J Wiltse.Wliminuting sucker rod couplings can reduce PCP operating costs[J]. SPE 24954.
    [63]隋少波.螺杆泵抽油杆的摩擦力矩计算[J].石油机械,1988,16(11) :37~43.
    [64]杨玉生.螺杆泵抽油杆轴向力的计算[J].石油矿场机械,1991,20(1):27~29.
    [65]路铁民.也谈螺杆泵抽油杆柱的摩擦力矩计算[J].石油机械,1990, 18(3):35~41、43.
    [66]魏继德,师国臣,等.螺杆泵抽油杆柱负载扭矩计算[J].石油机械,1995, 23(9): 38~43.
    [67]李增亮,王旱祥.井口驱动螺杆泵抽油杆柱载荷计算[J].石油机械,1997,25 (7): 5~7, 21.
    [68]陈宪侃,叶利平.有杆螺杆泵杆柱强度设计初探[J].石油钻采工艺,1995,17 (4): 78~83.
    [69]张军等.地面驱动螺杆泵采油系统管道内流体摩阻分析[J].石油机械,1999, 27(8): 35~38.
    [70]张军等.螺杆泵转速选择应考虑的几个问题[J].石油钻采工艺,1998,20(2):88~90.
    [71]卢怀宝等.螺杆泵杆柱系统的稳定分析[J].大庆石油学院学报,1998,22(1):50~53.
    [72]卢怀宝.螺杆泵杆柱系统自振频率分析[J].油气田地面工程,1997, 16 (6):67~70.
    [73]陈德春等.地面驱动螺杆泵采油系统抽油杆柱运动模型[J].石油大学学报,1999, 23(1):42~44.
    [74]杨春秋等.油田用新式螺杆泵抽油杆大变形综合分析[J].力学与实践,1995, (3): 15~18.
    [75] Cholet.H,La Pompe Rodemip[J].Forages,1986(111),33~43.
    [76]张军,陈听宽,罗毓珊,金友煌.地面驱动螺杆泵转速与杆径对摩擦压降的影响[J].西安交石油学院学报〔自然科学版),2001,16(1):47~49.
    [77]刘巨保,罗敏,李淑红.地面驱动螺杆泵抽油杆柱动力学分析技术及其应用[J].石油学报,2005,26(1):121~124.
    [78]师国臣,陈卓如,吴晓东,王世展.地面驱动螺杆泵抽油杆柱弯曲的力学模型[J].石油大学学报(自然科学版),2003,27(2):44~46.
    [79]李淑红,付军梅,金力杨.螺杆泵抽油杆柱的动态受力分析与工艺设计[J].钻采工艺,2003,26(2):61~64.
    [80] D J Wiltse,Wliminuting Sucker Rod Couplings Can Reduce PCP Operating Costs[J].SPE 24954.
    [81]郁文正,地面驱动采油螺杆泵设计中的若干问题[J].石油机械,1992, 20(6):5~10.
    [82]付亚荣、陈善峰,地面驱动采油螺杆泵工作制度的确定[J].新疆石油学院学报,2000,12(2): 38~42.
    [83]吴晓东等,地面驱动螺杆泵井节点系统优化设计技术[J].石油大学学报,1999, 23(5): 46~53.
    [84]李晶等,螺杆泵优选软件的开发与应用[J].石油钻采工艺,1999,21(6) : 81~85.
    [85]吴仕贵、冯小泉,螺杆泵优化设计及应用[J].石油钻采工艺,1997, 19(1):73~77.
    [86]张延廷等,地面驱动螺杆泵油井生产系统的优化设计[J].石油矿场机械,2000,29(1): 24~26.
    [87] Jim McCoy.Analysis and optimization of progressing cavity pump systems by total well management[A]. 1996 Progressing Cavity Pump Workshop[C],SOCIETY OF PETROLEUM ENGINEERS,Tulsa,Oklahoma.
    [88] Tom Bandy.Optimizing artificial lift operations through use of wireless conveyed real time bottom hole data[A]. 1996 Progressing Cavity Pump Workshop[C],SOCIETY OF PETROLEUM ENGINEERS,Tulsa,Oklahoma.
    [89]张连山,赵摘斗.地面驱动单螺杆泵使用中出现的问题及失效形式[J].石油机械,1992,20(4):34~36.
    [90]崔金榜等.螺杆泵工况测试技术研究[J].石油钻采工艺,1999,21(6):88~89.
    [91]万秋玉等.采油螺杆泵的测量系统[J].哈尔滨理工大学学报,1997,2(1):8~11.
    [92]田景文,高美娟.螺杆泵采油系统自动测控仪[J].石油仪器,1999,13(2):21~23.
    [93]陈镭.螺杆泵采油井光杆转矩和轴向拉力双参数测试技术[J].石油钻探技术,2000,28(5):50~52.
    [94]张来斌等.螺杆泵油井工况诊断技术研究[J].石油矿场机械,1999,27(4):34~36.
    [95]万邦烈,李继志等编.石油工程流体机械[M].北京:石油工业出版社,1999,8.
    [96]苏义脑.螺杆钻具研究及应用[M].北京:石油工业出版社,2001.
    [97]吕仁国,李同生,黄新武.不同速度下丁晴橡胶摩擦特性[J].合成橡胶工业,2002,25(2):33~36.
    [98]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998,3.
    [99]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2003,1.
    [100]夏天,吴立军.UG二次开发技术基础[M].电子工业出版,2005.9:1.
    [101]温后珍,孟碧霞,徐小力.基于DCOM技术的烟气发电机组远程在线监测系统的实现[J].机床与液压,2007,35(2):157~158, 42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700