用户名: 密码: 验证码:
珍贵树种针叶分解对外源物质的响应及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凋落物的分解对生物地球化学循环起着重要的作用,是树木生长所需养分的重要来源,每年释放的营养可满足69%-87%的森林生长需要。长苞铁杉、南方铁杉、南方红豆杉、三尖杉、柳杉、水杉、福建柏都是起源古老的孑遗植物,为我国特有的国家级珍贵保护植物,现有资源甚少,具有重要的经济价值和研究价值。由于其生境特殊,一旦受到破坏,极难以恢复和更新,有沦为渐危状态的危险,其中凋落物难分解在一定程度上是限制种子发芽与幼苗生长的重要原因。可见,这7种针叶在其生态系统养分循环和自然更新中有着重要意义,因此,对其针叶分解进行探讨研究,建立针叶快速分解机制,促进营养物质的更新利用具有十分重大的意义。但目前仅零星见几篇柳杉、水杉和福建柏凋落物分解的报道,而对其他4种珍贵树种凋落物分解尚未见有关报道,而从内源物质和外源物质探讨凋落物分解的研究未见报道。
     本文采用野外分解袋法来研究外源物质(N肥、烟草秸秆)对7种珍贵树种针叶分解的影响,分5个处理水平来施加外源物质,即CK(对照)、N1(2.5gN肥)、N2(5gN肥)、JG1(10g烟草秸秆)、JG2(20g烟草秸秆)处理。首次提出采用氨化、碱化理念促进这7种珍贵树种针叶的分解,探讨外源物质(N肥、烟草秸秆)对内源物质(木质素、全N等)含量的影响,进而影响针叶分解速率,建立针叶快速分解的机制;并首次对应用烟草秸秆来实现促进森林凋落物分解的影响进行探讨,为秸秆的综合利用开辟一条新途径。同时,本文也第一次尝试用起伏型时间序列模型来对针叶分解过程的养分含量动态进行模拟,应用神经网络法及支持向量机法对针叶分解率与基质质量关系进行模拟预测,应用柯布-道格拉斯生产函数来建立外源物质对珍贵树种针叶分解的促进机制并进行敏感性分析,模拟及预测的效果比较理想。
     文章主要对7种珍贵树种的5个不同处理的针叶在13个月分解过程中的失重规律、养分动态和针叶分解与基质质量关系进行探讨,初步获得以下主要结果和结论:
     1.外源物质的添加在一定程度上促进了针叶的分解
     经过13个月的分解,长苞铁杉针失重率大小顺序为JG2>JG1>N2>N1>CK;南方铁杉针叶失重率大小顺序为JG2>CK>N1>JG1>N2;南方红豆杉针叶失重率大小顺序为JG2>CK>JG1>N2>N1;三尖杉针叶失重率排序为CK>JG2>N1>JG1>N2;水杉针叶失重率大小顺序为:JG2> N2>JG1>CK>N1;柳杉针叶失重率大小顺序为JG1>JG2>N2>CK>N1;福建柏针叶失重率大小顺序为JG2>JG1>CK>N1>N2。从整个分解过程看,跟对照针叶相比,基本上烟草秸秆处理的对针叶的分解促进作用相对比N肥处理的要明显,但从研究过程的早期分析,N肥处理的在早期对针叶的分解有显著的促进分解作用。在早期,添加外源N使针叶的C/N等基质质量发生变化、影响微生物活性及N矿化速率及硝化速率等,从而影响针叶的分解;在分解后期,木质素/N比对针叶分解影响更为重要,添加烟草秸秆在分解后期与针叶产生木质素碱化效应从而促进其分解。
     2.不同树种针叶基质质量不一样是导致相同处理针叶分解率不一样的主要原因
     经过13个月的分解,CK处理的不同树种针叶分解率排序为:三尖杉>南方铁杉>柳杉>水杉>南方红豆杉>福建柏>长苞铁杉;N1处理的不同树种针叶分解率排序为:三尖杉>柳杉>南方铁杉>水杉>福建柏>南方红豆杉>长苞铁杉;N2处理的不同树种针叶分解率排序为:水杉>柳杉>三尖杉>南方铁杉>长苞铁杉>南方红豆杉>福建柏;JG1处理的不同树种针叶分解率排序为:柳杉>水杉>三尖杉>南方铁杉>福建柏>南方红豆杉>长苞铁杉;JG2处理的不同树种针叶分解率排序为:水杉>南方铁杉>福建柏>三尖杉>南方红豆杉>柳杉>长苞铁杉。结果表明,不同树种针叶的分解率是不一样的,这与各树种针叶本身的基质质量有很大的关系;添加不同水平的外源物质对针叶分解的影响程度各不相同;但不同处理的分解率结果都表明,长苞铁杉针叶的分解率都是最低的,这与长苞铁杉针叶的质地有很大关系。
     3.除水热等环境条件对针叶分解有重要影响外,其他因素对针叶分解也起重要作用
     从月失重率分析,在分解的不同月份(2008年1月-12月)都出现过月失重率的高峰值,对大部分树种和处理而言,5-11月份出现月失重率的高峰值比较多,此时正值研究区研究期的高温多雨天气,说明分解过程中水热等环境条件对不同树种针叶的分解有很大程度的影响;但在取样的不同月份不同树种、不同处理也出现过月失重率的最低值,说明影响针叶分解的除水热条件外还有其他影响因子。另外,在分解的第6-9个月即2008年的5-8月份在分解袋里发现较大型的土壤动物蚯蚓、蚂蚁等,很显然土壤动物及微生物对针叶的分解也相当程度的影响。
     4.不同处理不同树种的分解率在分解过程中总体差异显著
     对不同处理不同树种的分解率动态进行方差分析,结果表明,不同树种间、不同外源水平处理间、不同时间的分解率差异都比较显著,且不同树种与处理间、树种与时间间、处理与时间间的交互作用的分解率方差分析差异也显著,说明不同树种的分解速率是不一样的,不同水平的外源物质对针叶分解的影响也是不同而且效果显著,分解速率随时间变化是明显的,而且不同树种与处理间、树种与时间间、处理与时间间的交互作用对针叶的分解影响也是显著的。分析结果也进一步表明可以利用外源N肥和烟草秸秆来促进珍贵树种针叶分解,对珍贵树种针叶物质营养循环、更新利用和珍贵树种生产力的长期维护以及烟草秸秆的利用具有一定的实践意义。
     5.在分解过程中,不同养分含量变化规律不同,同一元素在不同树种针叶和不同处理间的含量变化也不一致
     对7种珍贵树种针叶的5个不同处理的分解过程的C、N、P、K、Na、Ca、Mg、Zn和Mn和木质素进行研究分析,分析结果显示,不同养分含量、释放量、净释放量、残留率及净释放率在整个分解过程基本上都呈升-降-升-降的起伏型变化趋势。其中,N、Mn经过13个月的分解含量都比初始高,呈富集状态,K、Na的含量基本呈持续下降趋势,其他元素在分解过程及经过13个月的分解时都出现不同程度的释放和富集。
     经过13个月的分解,除长苞铁杉和南方铁杉针叶外,其他5种针叶的不同处理的C含量都出现下降;不同处理的P含量在长苞铁杉、南方红豆杉、水杉和福建柏针叶分解过程呈下降趋势;不同处理的Ca含量在长苞铁杉、南方铁杉和水杉针叶经过13个月分解呈富集状态;不同处理的Mg含量在长苞铁杉和南方铁杉针叶经过13个月分解呈富集状态,在水杉针叶中呈释放状态;不同处理的Zn含量除福建柏针叶外都呈富集状态。
     经过13个月的分解,基本上,在长苞铁杉、南方铁杉和三尖杉针叶中,外源处理的C含量都比CK处理要高,除三尖杉针叶外,N肥处理的C含量比烟草秸秆处理的高;南方红豆杉针叶的C含量:烟草秸秆处理>CK处理>N肥处理;水杉、柳杉、福建柏针叶中,CK处理的C含量比外源处理的要高,烟草秸秆处理的含量高于N肥处理的。在长苞铁杉、南方铁杉、三尖杉和水杉针叶中,外源处理的N含量都比对照要高,除长苞铁杉针叶外,N肥处理的N含量比烟草秸秆处理的高;南方红豆杉和福建柏针叶中CK处理的N含量比外源处理的高;柳杉针叶的N含量:N肥处理>CK处理>烟草秸秆处理。7种针叶的P含量CK处理的含量都高于外源处理的,长苞铁杉、南方铁杉、水杉、柳杉针叶N肥处理的P含量比烟草秸秆处理的高。
     经过13个月的分解,基本上,除三尖杉针叶的K含量为:烟草秸秆处理>CK>N肥处理外,其他针叶的K含量CK处理大于外源处理。Na含量,N肥处理的高于烟草秸秆处理的,CK处理的居中。Ca含量烟草秸秆处理的含量高于N肥处理的,南方红豆杉、三尖杉和福建柏针叶CK处理的含量高于外源处理的,水杉针叶CK处理的含量低于外源处理,而其他针叶CK处理含量居中。长苞铁杉、南方铁杉和柳杉针叶的Mg含量CK处理大于外源处理,其他针叶CK处理的Mg含量居中,且基本上烟草秸秆处理的Mg含量大于N肥处理的。
     经过13个月的分解,基本上,Zn含量在长苞铁杉、南方铁杉、南方红豆杉和柳杉针叶中,CK处理的大于外源处理的,在三尖杉针叶中,CK处理的Zn含量居中,且基本上都是N肥处理的高于烟草秸秆处理的;在水杉和福建柏针叶中,外源处理的含量大于CK处理的,烟草秸秆处理的含量高于N肥处理的。Mn含量在长苞铁杉、三尖杉和福建柏针叶中,外源处理的含量大于CK处理的,南方铁杉、南方红豆杉和柳杉针叶中,CK处理的大于外源处理的,水杉针叶中,CK处理的含量居中,除南方铁杉和柳杉针叶外基本上都是烟草秸秆处理的含量高于N肥处理的。
     经过13个月的分解,基本上,木质素含量在长苞铁杉和南方红豆杉针叶中,CK处理的大于外源处理的,而在其他针叶中基本上都是外源处理的含量大于CK处理的,且在南方红豆杉、三尖杉和福建柏针叶中,烟草秸秆处理的含量高于N肥处理的。
     可见,添加外源物质对不同针叶、不同元素的含量变化的影响是不同的。
     6.不同针叶的分解率与不同基质质量指标关系不同,但基本上与N含量呈线性正相关,与C/N比、木质素/N呈线性负相关
     长苞铁杉针叶的分解速率与N含量、C/P比、Ca含量呈线性正相关,与P含量、C/N比、木质素/N呈线性负相关。南方铁杉针叶的分解速率与N含量、P含量呈线性正相关,与C/N比、C/P比、木质素/N比和Ca含量呈线性负相关。南方红豆杉针叶的分解速率与N含量、C/P比、木质素、Ca含量呈线性正相关,与C/N比、P含量、木质素/N比呈线性负相关。三尖杉针叶的分解速率与N含量、木质素含量呈线性正相关,与C/N比、木质素/N比呈线性负相关。水杉针叶的分解速率与N含量、Ca含量呈线性正相关,与C/N比、P含量和木质素/N比呈线性负相关。柳杉针叶分解率与N含量呈非常显著的线性正相关,与C/N比呈非常显著的线性负相;与N1处理的P含量呈显著的线性正相关,与JG2处理的P含量呈非常显著的线性负相关;与JG1处理的C/P呈显著的线性负相关,与JG2处理的C/P呈显著线性正相关;与木质素含量呈线性正相关;柳杉针叶分解率与木质素/N呈线性负相关。福建柏针叶分解速率与N含量、C/P、Ca含量呈线性正相关,与C/N比、P含量和木质素/N比呈线性负相关。
     对7种珍贵树种针叶的分解率(y)与基质质量(C、N、P、木质素、Ca含量)进行多元线性回归分析,分析结果表明,无论是对5个不同处理的7种珍贵树种针叶的分解率与基质质量的多元线性回归还是不分处理对总体所进行的多元线性回归分析,结果都表明,所建立的多元线性回归模型比较理想,相关系数较高且线性相关性都非常显著(p<0.01),7种珍贵树种针叶的分解率都与C和P含量呈负相关,与N、木质素和Ca含量呈线性正相关。
     CK处理的7种树种针叶的分解常数(k)与初始C、N、P、K、Na、Ca和Mg含量呈正相关,与初始Zn、Mn、木质素含量和木质素/N、C/N及C/P比呈负相关。其中,分解常数与木质素含量呈显著线性负相关(P=0.02201<0.05),与木质素/N比呈非常显著线性负相关(P=0.0086<0.01)。
     7.建立的外源物质对珍贵树种针叶分解的促进机制表明,减少外源N肥的施加量或增加烟草秸秆的施加量都能促进针叶的分解
     以7个树种为总体,应用多元线性回归模型和柯布-道格拉斯生产函数来建立分解常数与外源物质之间的关系,即,外源物质对珍贵树种针叶分解的促进机制,结果表明,不同树种针叶分解常数与外源N呈非常显著线性负相关,与外源烟草秸秆呈非常显著线性正相关,即减少外源N肥的施加量或增加烟草秸秆的施加量都能促进针叶的分解,这与研究期结束时不同树种不同处理的分解率结果基本相符;柯布-道格拉斯生产函数边际效应分析表明,在现有条件下,当其他条件不变,每增加1gN肥,针叶分解常数就减少0.0034;每增加1g烟草秸秆,针叶分解常数就增加0.0025。但在研究过程中,对不同处理的针叶分解率的分析表明,施加N肥对早期针叶的分解也起到积极的促进分解的作用。
Litter decomposition plays an important role in biogeochemical cycling. The nutrients it released is an important nutrient resources for trees’growth and would provide 69%-87% nutrients needed by forest growth. Tsuga longibracteata, Tsuga Tchekiangensis, Taxus chinensis var. mairei,Cephalotaxus fortunei, Cryptomeria fortunei Hooibrenk ex Otto et Dietr, Metasequoia glyptostroboides Hu et Cheng, Fokienia hodginsii(Dunn)Henry et Thomas are ancient relic plants which are precious rare endemic national protected species and have important values on economic and research. Due to their special habitats, once the species destroyed, they were hard to restored and would be in endangered. The hard decomposition of litter fall was one of the important limiting reason for seeds germination and seedling growth to a certain extent, which means that the conifer leaves played important roles in ecological nutrients cycling and their natural regeneration. Therefore, it is very important to study their leaves decomposition and establish a fast decomposition mechanism in order to promote nutrients recycling use. But up to now, there were hardly any report about the decomposition of the 7 conifer leaves except a few papers on Cryptomeria fortunei Hooibrenk ex Otto et Dietr, Metasequoia glyptostroboides Hu et Cheng and Fokienia hodginsii(Dunn)Henry et Thomas leaves, and there is no report to study the 7 conifer leaves decomposition in the view of endogenous and exogenous substances.
     The effects of exogenous substance on precious conifer leaves decomposition were studied by nylon bags method with 5 different treatments: CK(contrast), N1(2.5g nitrogen fertilizer),N2(5.0g nitrogen fertilizer), JG1(10g tobacco straw), JG2 (20g tobacco straw). Ammoniation and alkalization concepts were first put forward to promote decomposition of the precious conifer leaves and to study the effects of exogenous substances (nitrogen fertilizer, tobacco straw) on endogenous substances (lignin, nitrogen and ect ),which would thereby affect conifer leaves decomposition, and to establish conifer leaves fast decomposition mechanism. Tobacco straw was firstly added to forest litter to promote litter decomposition which explored a new way for tobacco straw comprehensive utilization. And in this paper, wave-type time series model was firstly applied to simulate the dynamic nutrient contents of conifer leaves. The conifer leaves decomposition ratios were simulated and predicted by applying neural network method and support vector machine method to analyse the relationship between conifer leaves decomposition ratios and substrate qualities for the first time. Cobb-Douglas production function was also firstly applied to establish the conifer leaves decomposition mechanism by analysing the effects of exogenous substance on conifer leaves decomposition, and the sensitivity was analyzed basing on the decomposition mechanism. The results showed that the simulated and predicted effects of those model were acceptable.
     In this paper, the weight loss regularity, nutrient dynamics and the relationships between the conifer leaves decomposition and their substrate qualities were mainly discussed for 7 conifer leaves with 5 different treatments under 13-month decomposing, the results and conclusions were as follows:
     1.Adding exogenous substances promoted the conifer leaves decomposition to different degrees.
     After 13-month decomposing, the weight loss ratios order of Tsuga longibracteata leaves was: JG2>JG1>N2>N1>CK; the weight loss ratios order of Tsuga Tchekiangensis leaves was: JG2>CK>N1>JG1>N2;the weight loss ratios order of Taxus chinensis var. mairei leaves was: JG2>CK>JG1>N2>N1;the weight loss ratios order of Cephalotaxus fortunei leaves was: CK>JG2>N1>JG1>N2;the weight loss ratios order of Metasequoia glyptostroboides Hu et Cheng leaves was:JG2>N2>JG1>CK>N1; the weight loss ratios order of Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves was: JG1>JG2>N2>CK>N1;the weight loss ratios order of Fokienia hodginsii(Dunn)Henry et Thomas leaves was: JG2>JG1>CK>N1>N2.As a whole, compared to CK treatment, the tobacco straw treatments had more influence on conifer leaves’decomposition than nitrogen fertilizer treatments did basically, however, nitrogen fertilizer treatments greatly promoted leaves decomposition in the early stage. The possible reason was that adding nitrogen fertilizer would cause changes of substrate qualities such as C/N ratios which would affect microbial activities and mineralization and nitrification rate of nitrogen, and ect, and therefore affected the conifer leaves decomposition in the early stage. But in later stage, lignin nitrogen ratios had more influence on conifer leaves decomposition, and adding tobacco straw to conifer leaves would generate alkalinization effect, therefore promoted conifer leaves decomposition.
     2.Various conifer leaves had different substrate qualities which were the main causes of different decomposition ratios of conifer leaves under the same treatment.
     After 13-month decomposing, the decomposition ratios order of conifer leaves under CK treatment was: Cephalotaxus fortunei>Tsuga Tchekiangensis>Cryptomeria fortunei Hooibrenk ex Otto et Dietr>Metasequoia glyptostroboides Hu et Cheng>Taxus chinensis var. mairei>Fokienia hodginsii(Dunn)Henry et Thomas > Tsuga longibracteata; the decomposition ratiosorder under N1 treatment was: Cephalotaxus fortunei>Cryptomeria fortunei Hooibrenk ex Otto et Dietr>Tsuga Tchekiangensis>Metasequoia glyptostroboides Hu et Cheng>Fokienia hodginsii(Dunn)Henry et Thomas>Taxus chinensis var. mairei>Tsuga longibracteata; the decomposition ratios order under N2 treatment was: Metasequoia glyptostroboides Hu et Cheng> Cryptomeria fortunei Hooibrenk ex Otto et Dietr > Cephalotaxus fortunei > Tsuga Tchekiangensis > Tsuga longibracteata > Taxus chinensis var. mairei > Fokienia hodginsii(Dunn)Henry et Thomas; the decomposition ratios order under JG1 treatment was: Cryptomeria fortunei Hooibrenk ex Otto et Dietr>Metasequoia glyptostroboides Hu et Cheng>Cephalotaxus fortunei>Tsuga Tchekiangensis>Fokienia hodginsii(Dunn)Henry et Thomas>Taxus chinensis var. mairei>Tsuga longibracteata; the decomposition ratios order under JG2 treatment was: Metasequoia glyptostroboides Hu et Cheng>Tsuga Tchekiangensis>Fokienia hodginsii(Dunn)Henry et Thomas > Cephalotaxus fortunei > Taxus chinensis var. mairei > Cryptomeria fortunei Hooibrenk ex Otto et Dietr>Tsuga longibracteata. The results showed that different conifer leaves had different decomposition ratios which had much to do with their substrate qualities. Different exogenous substances had different influences on the conifer leaves decomposition ratios, but the results showed that Tsuga longibracteata leaves had the lowest decomposition ratios under each treatment which had much to do with its texture.
     3.Beside environmental conditions such as water and heat, other factors also played important roles in conifer leaves decomposition.
     By analysing monthly weight loss ratio, the results showed that peak values of weight loss ratio appeared in every month(Jan-Dec 2008) either in different leaves or under different treatments. But for most conifer leaves and treatments, May-Nov emerged more peak values than other periods when it was hot and rainy, which indicated that environmental conditions, such as water and heat had great influences on decomposition. But the lowest decomposition ratios values also appeared in every month among different conifer leaves or treatments which indicated that beside the water and heat, other factors also had great influences on conifer leaves decomposition. Beside, angleworms and ants were found in the nylon bags among May-Aug,2008, which indicated that soil animals and microorganism also played important roles in leaves decomposition.
     4.Conifer leaves decomposition ratios were significant different among various treatments and different conifer leaves during decomposing process.
     The results of ANOVA of dynamic decomposition ratios of 7 precious conifer leaves under various treatments showed significant differences among different conifer leaves, various treatments, periods. And the differences also emerged between specie and treatment, specie and period, treatment and period which indicated that different species had different decomposition ratios, various treatments had different effects on conifer leaves decomposition and the results were distinct, decomposition ratios changed by the time, and interactions between species and treatments, species and periods, treatments and periods had great influences on conifer leaves decomposition. The results also indicated that it was practically viable to use exogenous nitrogen fertilizer and tobacco straw to accelerate conifer leaves decomposition, which had practical significances on nutrients cycling and reusing, precious rare trees’long-term productivity maintaining and tobacco straw’s utilization.
     5. During decomposing process, different nutrient contents had different change regularities, the change regularities of the same nutrient content were different among different conifer leaves and treatments
     By analyzing the carbon, nitrogen, phosphorus, kalium, natrium, calcium, magnesium, zinc, manganese and lignin of 7 conifer leaves under 5 treatments, the results showed that the change tendencies of nutrient content, release, net release, remaining ratio and net releasing ratio were in fluctuant styles. After 13-month decomposing, the contents of nitrogen and manganese were higher than initial contents which were in enrichment state, kalium and natrium contents decreased continuously, other nutrients were either in release state or in enrichment state to various degrees during decomposing process.
     After 13-month decomposing, except Tsuga longibracteata and Tsuga Tchekiangensis leaves, the carbon contents of other 5 conifer leaves decreased in various treatments. The phosphorus contents decreased in Tsuga longibracteata leaves, Taxus chinensis var. mairei leaves, Metasequoia glyptostroboides Hu et Cheng leaves and Fokienia hodginsii (Dunn) Henry et Thomas leaves under various treatments during decomposing process. The calcium contents were in enrichment state in Tsuga longibracteata leaves, Tsuga Tchekiangensis leaves and Metasequoia glyptostroboides Hu et Cheng leaves after 13-month decomposing. The magnesium contents were in enrichment state in Tsuga longibracteata leaves and Tsuga Tchekiangensis leaves after 13-month decomposing, but were in releasing state in Metasequoia glyptostroboides Hu et Cheng leaves. The zinc contents were all in enrichment state except Fokienia hodginsii (Dunn) Henry et Thomas leaves.
     After 13-month decomposing, in Tsuga longibracteata leaves, Tsuga Tchekiangensis leaves and Cephalotaxus fortunei leaves, the carbon contents were higher in exogenous substances treated leaves than CK treated leaves, and except Cephalotaxus fortunei leaves, the carbon contents were higher in nitrogen fertilizer treated leaves than in tobacco straw treated leaves, the carbon contents order of Taxus chinensis var. mairei leaves was: tobacco straw treatments > CK treatment > nitrogen fertilizer treatments, in Metasequoia glyptostroboides Hu et Cheng leaves, Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves and Fokienia hodginsii(Dunn)Henry et Thomas leaves, the carbon contents were higher in CK treated leaves than in exogenous substances treated leaves, the carbon contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves. In Tsuga longibracteata leaves, Tsuga Tchekiangensis leaves, Cephalotaxus fortunei leaves and Metasequoia glyptostroboides Hu et Cheng leaves, the nitrogen contents were higher in exogenous substances treated leaves than CK treated leaves, except Tsuga longibracteata leaves, the nitrogen contents were higher in nitrogen fertilizer treated leaves than in tobacco straw treated leaves, in Taxus chinensis var. mairei leaves and Fokienia hodginsii(Dunn)Henry et Thomas leaves, the nitrogen contents were higher in CK treated leaves than in exogenous substances treated leaves, the nitrogen contents order of Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves was: nitrogen fertilizer treatments > CK treatment > tobacco straw treatments. For 7 conifer leaves, the phosphorus contents were higher in CK treated leaves than in exogenous substances treated leaves, and in Tsuga longibracteata leaves,Tsuga Tchekiangensis leaves,Metasequoia glyptostroboides Hu et Cheng leaves and Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves, the phosphorus contents were higher in nitrogen fertilizer treated leaves than in tobacco straw treated leaves.
     After 13-month decomposing, except in Cephalotaxus fortunei leaves,the kalium contents order was: tobacco straw treatments > CK treatment > nitrogen fertilizer treatments, in other conifer leaves, the kalium contents were higher in CK treated leaves than in exogenous substances treated leaves. For natrium contents, the contents were higher in nitrogen fertilizer treated leaves than in tobacco straw treated leaves, the contents were higher in CK treated leaves than in tobacco straw treated leaves. For calcium contents, the contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves, the contents of CK treated leaves were in the middle of them. In Tsuga longibracteata leaves, Tsuga Tchekiangensis leaves and Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves, the magnesium contents were higher in CK treated leaves than in exogenous substances treated leaves, but for other leaves, the magnesium contents of CK treated leaves were in second place, and basically, the magnesium contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves.
     After 13-month decomposing, basically, in Tsuga longibracteata leaves, Tsuga Tchekiangensis leaves, Taxus chinensis var. mairei leaves and Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves, the zinc contents were higher in CK treated leaves than in exogenous substances treated leaves, in Cephalotaxus fortunei leaves, the contents of CK treated leaves were between tobacco straw treated leaves and nitrogen fertilizer treated leaves, and basically, the contents were higher in nitrogen fertilizer treated leaves than in tobacco straw treated leaves, in Metasequoia glyptostroboides Hu et Cheng leaves and Fokienia hodginsii(Dunn)Henry et Thomas leaves, the contents were higher in CK treated leaves than in exogenous substances treated leaves, and the contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves. For manganese contents, the contents were higher in exogenous substances treated leaves than in CK treated leaves in Tsuga longibracteata leaves,Cephalotaxus fortunei leaves and Fokienia hodginsii(Dunn)Henry et Thomas leaves, in Tsuga Tchekiangensis leaves, Taxus chinensis var. mairei leaves and Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves, the contents were higher in CK treated leaves than in exogenous substances treated leaves, in Metasequoia glyptostroboides Hu et Cheng leaves, the contents of CK treated leaves were between tobacco straw treated leaves and nitrogen fertilizer treated leaves, except Tsuga Tchekiangensis leaves and Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves, the contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves basically.
     After 13-month decomposing, basically, in Tsuga longibracteata leaves and Taxus chinensis var. mairei leaves, the lignin contents were higher in CK treated leaves than in exogenous substances treated leaves, but in other conifer leaves, the lignin contents were higher in exogenous substances treated leaves than in CK treated leaves, and in Taxus chinensis var. mairei leaves, Cephalotaxus fortunei leaves and Fokienia hodginsii(Dunn)Henry et Thomas leaves, the contents were higher in tobacco straw treated leaves than in nitrogen fertilizer treated leaves. The result showed that adding exogenous substances had different impacts on the nutrient contents of different conifer leaves and different nutrients.
     6.Different conifer leaves decomposition ratios had different relationships with different substrate qualities, but basically had positive linear correlativity with nitrogen content, and had negative linear correlativity with carbon nitrogen ratio and lignin nitrogen ratio The decomposition ratios of Tsuga longibracteata leaves had positive linear correlativity with nitrogen contents, carbon phosphorus ratios and calcium contents, and had negative linear correlativity with phosphorus contents, carbon nitrogen ratios and lignin nitrogen ratios. Tsuga Tchekiangensis leaves decomposition ratios had positive linear correlativity with nitrogen content s and phosphorus contents, and had negative linear correlativity with carbon nitrogen ratios, carbon phosphorus ratios, lignin contents and calcium contents. Taxus chinensis var. mairei leavesdecomposition ratios had positive linear correlativity with nitrogen contents, carbon phosphorus ratios, lignin contents and calcium contents, and had negative linear correlativity with carbon nitrogen ratios phosphorus contents and lignin nitrogen ratios. Cephalotaxus fortunei leaves decomposition ratios had positive linear correlativity with nitrogen contents and lignin contents, and had negative linear correlativity with carbon nitrogen ratios and lignin nitrogen ratios Metasequoia glyptostroboides Hu et Cheng leaves decomposition ratios had positive linear correlativity with nitrogen contents and calcium contents, and had negative linear correlativity with carbon nitrogen ratios, phosphorus contents and lignin nitrogen ratios. Cryptomeria fortunei Hooibrenk ex Otto et Dietr leaves decomposition ratios had a distinctly positive linear correlativity with nitrogen contents, and had a distinctly negative linear correlativity with carbon nitrogen ratios, and had a distinctly positive linear correlativity with phosphorus contents in N1 treated leaves, and had a distinctly negative linear correlativity with phosphorus contents in JG1 treated leaves; had a distinctly negative linear correlativity with carbon phosphorus ratios in JG1 treated leaves; had positive linear correlativity with lignin contents; had negative linear correlativity with lignin carbon ratios. Fokienia hodginsii(Dunn)Henry et Thomas leaves decomposition ratios had positive linear correlativity with nitrogen contents, carbon phosphorus ratios and calcium contents, and had negative linear correlativity with carbon nitrogen ratios, phosphorus contents and lignin nitrogen ratios.
     The result of multilinear regression analysis about 7 precious conifer leaves decomposition ratios and substrate qualities(carbon content ,nitrogen content, phosphorus content, lignin content and calcium content ) showed that, whether analyzing every single treatment or as a whole, the multilinear regression models were satisfactory, and correlative coefficients were high and the linear relationships were very distinct. 7 precious conifer leaves decomposition ratios had negative linear correlativity with carbon contents and phosphorus contents, and had positive linear correlativity with nitrogen contents, lignin contents and calcium contents.
     In CK treatment, 7 precious conifer leaves decay constants (k) had positive correlativity with initial carbon contents, nitrogen contents, phosphorus contents, kalium contents, natrium contents , calcium contents and magnesium contents, and had negative linear correlativity with initial zinc contents, manganese contents, lignin contents, lignin nitrogen ratios, carbon nitrogen ratios and carbon phosphorus ratios. Among them, decay constant (k) had a distinctly negative correlativity with initial lignin contents, and had a very distinctly negative correlativity with initial lignin nitrogen ratios.
     7.Conifer leaves decomposition promoting mechanism established by analyzing the effect of exogenous substances on conifer leaves decomposition showed that reducing exogenous nitrogen fertilizer or increasing exogenous tobacco straw would accelerate conifer leaves decomposition The relationship of decay constant and exogenous substances was established by multilinear regression model and Cobb-Douglas production function treating 7 conifer leaves as a whole, which indicated that decay constant had a very distinctly negative correlativity with exogenous nitrogen fertilizer treatments, and had a very distinctly positive correlativity with exogenous tobacco straw treatments, namely, reducing exogenous nitrogen fertilizer or increasing exogenous tobacco straw would accelerate conifer leaves decomposition. The result matched with the decomposition ratios of different species under various treatments. Marginal analysis of Cobb-Douglas production function showed that ,on current conditions, other conditions being equal, decay constant would decrease 0.0034 by adding 1g nitrogen fertilizer and increase 0.0025 by adding 1g tobacco straw. However, the analysis of conifer leaves decomposition during the decomposing process showed that adding nitrogen fertilizer to conifer leaves had accelerated the decomposition in early stage.
引文
[1]王凤友.森林凋落量研究综述[J].生态学进展, 1989,6(2):82-89.
    [2] Manson C F. Decomposition Studies in Biology[J]. Edward Arnold, 1979. No.74.
    [3]周存宇.凋落物在森林生态系统中的作用及其研究进展[J].湖北农学院学报,2003,23(2):140-145.
    [3]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [4]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    [5]林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [6]许晓静,张凯,刘波,等.森林凋落物分解研究进展[J].中国水土保持科学,2007,5(4):108-114.
    [7]刘海岗,刘一,黄忠良.森林凋落物研究进展[J].安徽农业科学,2008,36(3):1018-1020.
    [8] Ebermayer E. Die qesamte Lehre der woldstreu mit Rucksicht auf die chemische statik woldbaues [M]. Berlin:Julius Springer,1876,116.
    [9]陈佐忠,江诗平.中国典型草原生态系统[M].北京:科学出版社. 2000.
    [10]Waring RH and Sch lesingerWH. Forest ecosystems: concepts and management[M]. Academic Press,New York,U SA.1985.
    [11]Edwards PJ.Studies of mineral cycling in montane rain forests in New Guinea[J].Jouranl of Ecology,1982,70(3):807-827.
    [12] Berg B, Berg M P,Bottner P. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality[J].Biogeochemistry,1993,20:127-153
    [13]Edmonds RL,et al.Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest,Olympic National Park,Washington[J],Canadian Journal of Forest Research,1995,25:1049~1057.
    [14]Tenney F G, Waksman SA. 1929. Composition of natural organic materials and their decomposition in the soil : IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials under aerobic conditions[J ]. Soi l Sci ,1929,28:55-84.
    [15] Berg B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management,2000,133:13-22.
    [16]莫江明,布朗,孔国辉,等.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J].植物生态学报,1996,20(6):534-542.
    [17] Lisanework N ,Michelsen A. Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland[J].Forest Ecology and Management,1994,65:149-164.
    [18]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态[J].林业科学, 1996,32(5):393-402.
    [19] Xuluc-Tolosa F J,Vester H FM,Ramírez-Marcial N,et al.Leaves decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche,Mexico[J]. Forest Ecology and Management,2003,174:401-412.
    [20]Bubb KA , Xu Z H , Simpson J A. Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southern Queensland , Australia. Forest Ecology and Management,1998,110:343-352.
    [21]Berg B,McClaugherty 2003 C, Osono T,Takeda H .Polassium,calcium and magnesium dynamics during litter decomposition in a cool temperate forest[J].For Res,2004,9 :23-31.
    [22] Vitousek P M.Nutrient Cycling and Limitaion:Hawaii as a model system.Princeton University Press,2004.
    [23]Laskowski R,Niklinska M,Marvanski M .The dynamics of chemical elements in forest litter[J]. Ecology,1995,76:1393-1406.
    [24] Xu X N ,Hirata E,Enoki T,eL al .Leaves decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. PlanL Ecol,2004,173: 161-170.
    [25]Rustad L E,Cronan CS.Element loss and retention during litter decay in a red spruce stand in Maine.Can J For Res,1988,18:947-953.
    [26] Melillo J M,Aber J D,Muratore J F.Nitrogen and lignin control of hardwood leaves decomposition dynamics.Ecology,1982,63:621-626.
    [27]Gallardo A,Merino J.Leaf decomposition in two mediteranean ecosystems of Southwest Spain:influence of substrate quality[J].Ecology,1993,74:152-161.
    [28]Melin E.Biological decomposition of some types of litter from North American forests[J].Ecology,1930,11:72-101.
    [29] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test[J]. Ecology, 1989,70:97-104.
    [30]GertNyberg,Alf Ekblad,Roland Buresh.Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforestry trees[J]. Biology and Fertility of Soils,2002,36:18-25.
    [31]Xu X N,Hirata E.Decomposition pattern of leaves of seven common canopy species in a subtropical forest:N and Pdynamics[J].Plant Soil,2005,273:279-289.
    [32]Aerts R.Climate,leaves chemistry and leaves decomposition in terrestrial ecosystem:a triangular relationship[J].Oikos,1997,79:439-449.
    [33]Meentemeyer V. Macroclimate and lignin control of litter decomposition rates.Ecology,1978,59:465-472.
    [34]Vitousek P M,Turner D R,Parton WJ,et al.Litter decomposition on the Mauna Loa environment matrix, Hawaii I :patterns,mechanisms, and models.Ecology,1994, 75 (2):418-429.
    [35]Hornsby D C,Lockaby B G,Chappelka A H.19951 Influence of microclimate on decomposition in loblolly pine stands : a field microcosm approach[J]. Canadian Journal of Forest Research , 25(10) : 1570– 1577.
    [36] Singh P K, Tripathi S K. 19991 Litterfall , litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli , India[J]. Biology and Fertility of Soil , 29 : 371– 378.
    [37] Mondini C , Contin M, Leita L , et al . 20021 Response of microbial biomass to air-drying and rewetting in soils and compost . Geoderma , 105 : 111– 124.
    [38] Pausas J G, Casals P , RomanyàJ . 20041 Litter decomposition and faunal activity in Mediterranean forest soils : effects of N content and the moss layer. Soil Biology and Biochemistry , 36 : 989– 997.
    [39] Swift MJ,Heal OW,Anderson JM. Decomposition in terrestrial ecosystem.Oxford:Blackwell Scientific Publication,1979,56~57.
    [40] Berg B.Nutrient release from litter anlhumus in coniferous forest soil-a mini review. Scand J For Res,1986,1:359~369.
    [41]Ineson P and Mctiernan K.Decomposition of foliar litter mixtures:a microcosm experiment.In:Teller,A.et al.eds. Responses of Forest Ecosystems to Environmental Changes. Elsevier Applied Science,Barking,1992, 703-706.
    [42] Williams BL,et al.Interactions on missing litters from beneath Sitka spruce and Scots pine and the effects on microbial activity and N mineralization. Soil Biol. Biochem.,1991,23: 71-75.
    [43] Robinson C H,Kirkham J B,Littlewood R. Decomposition of root mixtures from high arctic plants:a microcosm study.Soil Biol Biochem,1999,31:1101-1108.
    [44]Bross EL,et al.Quality and decomposition of black locust and alfalfa mulch for temperate alley cropping systems.Agroforestry Systems,1995,29(3):255-264.
    [45]Briones M J I and Ineson P.Decompositionof eucalyptus leaves in litter mixtures.Soil Biol.Biochem.,1996, 28:1381-1388.
    [46]Gartner T B,Cardon Z G.Decomposition dynamics in mixedspecies leaves.Oikos,2004,104:230-246.
    [47] Hansen R A,Coleman DC.Litter complexity and composition are determinants of the diversity and species composition of orabatid mites in liiterbags[J].Appl Soil Ecol,1998,9:17-23.
    [48]Hector A,Beale A,Minns A,et al.Conseqences of the reduction of plant diversity for litter decomposition:effects through litter quality and microenvironment[J].Oikos,2000,90:357-371.
    [49]Wardle D A,Bonner K I,Nicholson K S. Biodiversity and plant litter:experimental evidence which does not support the view that enhanced richness improves ecosystem functioning[J].Oikos,1997,79:247-258.
    [50] Quested H M,Press M C,Callaghan T V,Cornelissen J H C. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities.Oecologia,2002,130:88–95.
    [51] Blair JM,et al.Decay rates,nitrogen fluxes and decomposer communities of single and mixed species foliar litter.Ecology,1990,71(5):1976-1985.
    [52] Fyles JW, et al.Interaction of Douglas-fir with red alder and salal foliage litter during decomposition. Canadian Journal of Forest Research,1993,23(3):358-361.
    [53]Nilsson M C,Wardle D A,Dahlberg A.Effects of plant-soil system.Oikos,1998,86:16-26.
    [54]Klemmedson J O.1992.Decomposition and nutrient release from mixtures of gambel oak and ponderosa pine leaves.Forest Ecol Manag,47:349-361.
    [55]Prescott C E,Zabek L M,Staley C L,Kabzems R.2000.Decomposition of broadleaf and needle litter in forestsof British Columbia:influences of litter type,forest type,and litter mixtures[J].Can J Forest Res,30:1742-1750.
    [56]Anderson J M,Hetherington S L.1999.Temperature,nitrogen availability and mixture effects on the decomposition of heather[Calluna vulgaris(L.)Hull]and bracken[Pteridium aquilinum(L.)Kuhn]litters.Funct Ecol,13(Suppl 1):116-124.
    [57]Dutta R K,et al.Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils.Pedobiologia,2001,45(4):298-312.
    [58]Finzi A C,Canham C D. Non-additive effects of litter mixtures on the net N mineralization in a southern New England forest.Forest Ecol Manag,1998,105:129-136.
    [59]Bardgett R D,Shine A.1999.Linkages between plant litter diversity,soil microbial biomass and ecosystem function in temperate grasslands.Soil Biol Biochem,31:317-321.
    [60]Kaunzinger C M K,Morin P J.1998.Productivity controls food chain properties in microbial communities.Nature,395:495-497.
    [61]Strain B R,Bazaaz F A.Terrestrial plant communities// Lemon E R.CO2 and Plants.Boulder,CO:Westview Press,1983:177-222.
    [62]Norby R J,Cotrufo F M,Ineson P,et al.Elevated CO2, litter chemistry, and decomposition: a synthesis.Oecologia,2001,127:153-165.
    [63]Weatherly H E,Ziter S F,Coleman J S, et al.In situ litter decomposition and litter quality in a Mojave Desert ecosystem:effects of elevated atmospheric CO2 and interannual climate variability.Glob Change Biol,2003,9:1223-1233.
    [64]Cotrufo M F,Raschi A,Lanin M, et al .Decomposition and nutrient dynamics of Quercus pubescens leaves in a naturally enriched CO2 Mediterranean ecosystem.Funct Ecol,1999,13: 343-351.
    [65]Finzi A C,Schlesinger W H .Species control variation in Litter decomposition in a pine forest exposed to elevated CO2.Global Change Biol,2002 ,8: 1217-1229.
    [66]Angelis P D, Kesari S C, Giuseppe E SM. Litter quality and decomposition in a CO2- enriched Mediterranean forest ecosystem[J]. Plant Soil, 2000,224: 31 - 41.
    [67]World Meteorological Organization. Scientific assessment of ozone depletion.1998.Report no.44.WMO,Geneva. 1999.
    [68]Rozema J, TosseramsM, Nelissen H JM, et al . Stratos pheric oz one reduction and ecosystem processes : enhanced UV-B radiation affects chemical quality and decompositi on of leaves of the dune grassland s pecies Calam agrostis epigeios . Plant Ecology, 1997, 128: 284 - 294.
    [69]Austin A T, Vivanco L. Plant litter decompositi on in a semi-arid ecosystem controlled by phot odegradation . Nature, 2006, 442: 555– 558.
    [70] Gehrke C, Johans on U, Callaghan T V, et al . The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic . Oikos, 1995, 72: 213 - 222.
    [71]Moody S A, Paul N D, Bjorn L O, et al . The direct effects of UV-B radiation on B etula pubescens litter decomposing at four European field sites .Plant Ecology, 2001, 154: 29 - 36.
    [72]Pancotto V A, Sala O E, CabelloM, et al . Solar UV-B decreases decomposition in herbaceous plant litter in Tierradel Fuego, Argentina: potentialr ole of an altered decomposer community . Gl obal Change Biology, 2003, 9: 1465 - 1474.
    [73]Cybulski IIIW J, Peterjohn W T, Sullivan J H. The influence of elevated ultraviolet-B radiation (UV-B) on tissue quality and decomposition of bblolly pine ( Pinus taeda L. ) needles . Environmental and Experimental Botany, 2000, 44: 231 - 241.
    [74]Newsham K K, Sp latt P, Coward P A, et al . Negligible influence of elevated UV-B radiation on leaves quality of Quercusrobur . SoilBiology and Biochemistry, 2001, 33: 659 - 665.
    [75]Hoorens B, Aerts R, Stroetenga M. Elevated UV- B radiation has no effect on litter quality and decomposition of two dune grassland species :evidence from a long-term field experiment。Global Change Biology, 2004, 10: 200– 206.
    [76]Olson J S.Energy storage and the balance of producers and decomposition in ecological systems.Ecology,1963, 44:332-341.
    [77]Wittaker R H.Communities and Ecosystems,2nd ed.MacMillan,N Y,1975.
    [78]Aderson T M. Ecology for environmental sciences: biosphere, ecosystem and man. Edward Arnold,1981,415-416.
    [79]Berg B ,Ekbohm G. Litter mass-loss rates and decomposition patterns in some needle and leaves types. Long -term decomposition in a Scots pine forestⅦ. Canadian Journal of Botany ,1991 , 69 : 1449-1456.
    [80]Paustian K, Agren G I , Bosatta E. Modeling litter quality effects on decomposition and s oil organic matter dynamics. In : Cadisch G, G iller K E , eds.Driven by mature : plant litter quality and decomposition. CAB International , walling ford , UK, 1997. 313-335.
    [81]Hill H H. Decomposition of organic matter in soils. Journal of Agricultural Research , 1926 , 33 :77-79.
    [82]Cromack KJr , Litter production and decomposition in a mixed hardwood watershed and in a white pine watershed at Coweeta Hydrologic Station , North Carolina. Doctoral thesis. University of Georgia , Athens , Georgia , USA , 1973.
    [83]Van der Drift J . The disappearance of litter in mull and mor in connection with weather condition and the activity of the macrofauna. In : Doeksen J , Vander Drift J , eds. Sol organisms. North2Holland Publishing C ompany , Amsterdam , Holland , 1963,124-432.
    [84]Coulson J C and Butter field J . An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. Journal of Ecology , 1978 ,66 :631-650.
    [85]Schlesinger W H and HaseyMM. Decomposition of chaparral shrub foliage : losses of organic and inorganic constituents from deciduous and evergreen leaves.Ecology , 1981 ,62 : 762-774.
    [86]Field C B , Chapin F , Mats on S , et al . Responses of terrestrial ecosystems to the changing atmosphere : a resource-based approach. Annual Review of Ecology and Systematics ,1992 ,23 :201-235.
    [87]Aerts R and Caluwe H D. E ffects of nitrogen supply on canopy structure and leaf nitrogen distribution in Carex species. Ecology ,1994 ,75 :1482-1490.
    [88]Pastor J , Stillwell M A , Tilman D. Nitrogen mineralization and nitrification in four Minnes ota old fields. Oecologia ,1987 ,71 : 481-485.
    [89]Berg B and Matzner E. Effect of N deposition on decomposition of plant litter and s oil organic matter in forest systems. Environ Rev. ,2000,5:1-25.
    [90]Crossley D A , and Hoglund M P. A litter-bag method for the study of microarthropods inhabiting leaves. Ecology , 1962 ,43 :571-573.
    [91]Vossbrinck C R , C oleman D C , Woolley T A. Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology ,1979 ,60 :265-271.
    [92]Zlotin R I. Invertebrate animals as a factor of the biological turnover. In : IV Colloquium Pedobilogiae , Dijon. 14 /19-IX -1970 , Institute Nation dela Recherche Agronomique , Paris , France , 1971. 455-462.
    [93] Sinsabaugh R L and Linkins A E. Statistical modeling of litter decomposition from integrated cellulose activity[J]. Ecology ,1993 ,74 (5) :1594-1597.
    [94]Sinsabaugh R L ,Antibus R K, and Linkins A E. An enzymic approach to the analysis of microbial activity during plant litter decomposition[J]. Agriculture ,Ecosystems and Environment , 1991 ,34 :43-54.
    [95]Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews ,1988 ,63 :433-462.
    [96]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    [97]黄建辉,陈灵芝,韩兴国.几种常微量元素在辽东栎枝条分解过程中的变化特征.生态学报,2000,20(2):229-234.
    [98]郑郁善,荣俊冬,陈礼光,等.沿海沙地小叶龙竹林凋落物分解及养分归还动态[J].2008,37(5):487-490.
    [99]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-10.
    [100]王立新,王瑾,黄建辉.辽东栎叶片凋落物在不同气候带下的分解及其主要元素释放的比较(英文)[J]. Acta Botanica Sinica,2003,45(4):399-407.
    [101]廖利平,马越强,汪思龙,等.杉木与主要阔叶造林树种凋落物的混合分解[J].植物生态学报,2000,24(1):27-33.
    [102]方华,莫江明.氮沉降对森林凋落物分解的影响.生态学报,2006,26(9):3127-3136.
    [103]李考学.氮沉降对长白山两种主要针叶树种凋落物分解的影响.东北林业大学学报,2007,35(2):17-19.
    [104]周才平等,2003周才平等.中国森林生态系统的土壤净氮矿化研究.植物生态学报,2003,27(2) : 170-176.
    [105]刘勇,李国雷.不同林龄油松人工林叶凋落物分解特性[J].林业科学研究,2008, 21 (4) : 500-505.
    [106]于贵瑞,李家永,梁涛,等.井冈山森林凋落物分解动态及磷、钾释放速率[J].应用生态学报,2007,18(2):233-240.
    [107]刘强,彭少麟,毕华,等.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32.
    [108]李雪峰,韩士杰,胡艳玲,等.长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J].应用生态学报,2008,19(2):145-251.
    [109]陈印平,潘开文,吴宁,等.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响[J].应用与环境生物学报,2005, 11 (2) : 146-151
    [110]宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响[J].生态学报,2008,28(9):4414-4423.
    [111]张雪萍,黄初龙,李景科.赤子爱胜蚓对森林凋落物的分解效率[J].生态学报,2005,25(9):2427-2433.
    [112]杨玉盛,陈光水,郭剑芬,等.杉木—观光木混交群落N、P养分循环的研究[J].植物生态学报,2002,26(4):275-282.
    [113]陈永亮,李淑兰.胡桃楸、落叶松纯林及其混交林下凋落物分解与养分归还的比较研究[J].林业科技,2004,29(5):9-12.
    [114]肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J] .土壤学报,2002,39(5):763-767.
    [115]张彦东,王庆成,李清林.水曲柳、落叶松纯林与混交林的枯叶分解动态[J].东北林业大学学报,1999,27(4):5-8.
    [116]张丽萍,刘增文,高祥斌,等.不同森林凋落叶混合分解试验研究[J].西北林学院学报,2006,21 (2) :57-60.
    [117]林开敏,章志琴,曹光球,等.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738.
    [118]廖利平,D. K. Lindley,杨永辉.森林叶凋落物混合分解的研究I.缩微(Microcosm)实验[J].应用生态学报,1997,8(5):459-464.
    [119]刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6): 1993-2000.
    [120]张德强,叶万辉,余清发,等.鼎湖山演替系列中代表性森林凋落物研究[J] .生态学报, 2000, 20 (6) : 938- 944.
    [121]钟哲科,王人潮,江波.森林土壤有机质层中多酚类物质的生态反馈意义.应用生态学报,2003,14(3):341-344.
    [122]林成芳,李震,牛志鹏等.福建柏人工林凋落物的养分动态特征.福建农林大学学报(自然科学版),2005,34(1):63-66.
    [123]杨玉盛,陈银秀,何宗明等.福建柏和杉木人工林凋落物性质的比较.林业科学,2004,40(1):3-11.
    [124]Aerts R, Verhoeven JT A, Whigham D F. Plantmediated controls on nutrient cycling in temperate fens and bogs. Ecology, 1999, 80: 2170-2181.
    [125]EdwardsP J. Studies ofmineral cycling in amontane rain forest in New Guinea. Journal of Ecology, 1977, 65: 971-992.
    [126]EdwardsP J. Studies ofmineral cycling in a montane rain forest in New GuineaⅤ. Rates of cycling in throughfall and litter fal.l Journal of Ecology, 1982, 65: 971-992.
    [127]林开敏,洪伟,俞新妥,等.杉木与伴生植物凋落物混合分解的相互作用研究[J].应用生态学报,2001,12(3):321-325.
    [128]吴承祯,洪伟,姜志林.杉木生长的起伏型时间序列模拟研究[J].应用生态学报,2001,12(5):659-662.
    [129]吴承祯,洪伟.武夷山杉木林凋落物动态初探[J].热带亚热带植物学报2002,10(3):201-206.
    [130]毕晓丽,覃德华,葛剑平. NDVI起伏型时间序列模型初探[J].应用与环境生物学报,2004,10(4):399-401.
    [131]毕晓丽,王辉,葛剑平.植被归一化指数(NDVI)及气候因子相关起伏型时间序列变化分析[J].应用生态学报,2005,16(2):284-288.
    [132]魏凤英,曹鸿兴.长期预测的数学模型及其应用[M].北京:气象出版社,1990,107-115.
    [133]Gustafson F G. Decomposition of the leaves of some forest trees under field conditions[J]. Plant Physiol., 1943,18:704-707.
    [134]吴承祯,洪伟.杉木数量经营学引论[M].中国林业出版社,2000,180-220.
    [135]吴新余.人工神经网络的研究方法及运用[J].电子工程师,1999,3:4-6.
    [136]吴承祯,洪伟,何东进.基于神经网络的土壤侵蚀预报系统的研究[J].水土保持学报,2000,14(6):101-106.
    [137]何东进,洪伟,吴承祯.人工神经网络在毛竹枯梢病预测预报中的应用研究[J].植物病理学报,1998,28(4):353-358.
    [138]刘燕德,应义斌.BP神经网络在农产品生产与检测中的应用[J].生物数学学报,2003,18(4):439-444.
    [139]胡喜生,洪伟,吴承祯.基于BP神经网络的福建省耕地预测模型[J].福建农林大学学报(自然科学版),2008,37(4):425-427.
    [140]刘乃森,刘福霞,鄢贵龙,等.BP人工神经网络在植物病虫害预测中的应用[J].安徽农业科学,2007,35(25):7765-7766.
    [141]Vapnik V. Statistical learning theory[M ]. New York: John Wiley & Sons, 1998 .
    [142]罗雪晖,李霞,张基宏.支持向量机及其应用研究[J].深圳大学学报(理工版),2003,20(3):40-46.
    [143]宋召青,崔和,胡云安.支持向量机理论的研究与进展[J].海军航空工程学院学报,2008,23(2):143-149.
    [144]冼广铭,曾碧卿,冼广淋.支持向量机在分类和回归中的应用研究[J].计算机工程与应用,2008,44(27):134-136.
    [145]邓小文,张岩,韩士杰,等.外源氮输入对长白山红松凋落物早期分解的影响[J].北京林业大学学报,2007,29(6):16-22.
    [146]BERGB,MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [ J ] .Environmental Review,1997,5: 1-25.
    [147]刘增文,潘开文,杜红霞,等.外源性C、N干扰对森林凋落叶分解的影响[J].水土保持学报,2006,20(4):160-162.
    [148] Adams,M. A. and Attill,P.M.Patterns of nitrogen mineralization in 23-year old pine forest following nitrogenfertilizing[J].For. Ecol . Manage. ,1984 ,7 (3) :241-248.
    [149]苏波,韩兴国,渠春梅.森林土壤氮素可利用性的影响因素研究综述[J].生态学杂志,2002,21 (2):40-46.
    [150]Run Cang Sun,J M Fang , J Tomkinson.Delignification of rye straw using hydrogen peroxide[J].Industrial Crops and Products,2000,12:71-83.
    [151]Bertrand I,Chabbert B,Kurek B,et al,Can the biochemical feature and histology of wheat residue exoplain their decomposition in soil?[J].Plant Soil,2006,281:291-307.
    [152]GOH A T.Back-propagation neural networks for modeling complex systems[J]. Artifical Intelligence in Engineering,1995,9:143-151.
    [153]罗伟,习华勇.基于最小二乘支持向量机的降雨量预测[J].人民长江,2008,39(19):29-31.
    [154]Gladys Loranger,Jearr Francois Ponge,Daniel Imbert,et al.Leaf decomposition in two semi-evergreen tropical forests : in fluence of litter quality. Biol Fertil Soils,2002,35: 247-252.
    [155]程煜.中亚热带木荷马尾松林恢复过程的群落及凋落物特征研究[D].福建农林大学博士学位论文,2006.
    [156]杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应[J].生态学报,2007,18(12):2889-2895.
    [157]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.
    [158]代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化[J].生态环境,2004,13(2):207-210.
    [159]王希华,黄建军,闫恩荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28 (4): 457-467.
    [160]谭芳林.木麻黄防护林生态系统凋落物及养分释放研究[J].林业科学,2003,39(1):21-26.
    [161]Vestgarden L S , Carbon and nitrogen turnover in the early stage of Scots pine ( Pinus sylvestris L. ) needle litter decomposition : effects of internal and external nitrogen. S oil Biology &Biochemistry , 2001 , 33 : 465-474.
    [162]Magill A H , Aber J D. dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology &Biochemistry ,2000 , 32 : 603-613.
    [163]Kuperman R G. Litter decomposition and nutrient dynamics in oak2hickory forests along a historic gradient of nitrogen and sulfur deposition. Soil Biology &Biochemistry , 1999 , 31 : 237-244.
    [164]莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(7):1413-1420.
    [165]Micks P, Downs M R , Magill A H. Decomposition litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation. Forest Ecosystem and Management ,2004,196:71-87.
    [166]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    [167]Witkamp M.1966. Decomposition of leaves in relation to environment,microflora,and microbial respiration[J].Ecology,47:194-201.
    [168]Thomas WA. Decomposition of loblolly pine needles with and without addition of dogwood leaves[J] .Ecology, 1968,49 (3) :568-571.
    [169]Wiegert RG.Litterbag studies on microarthropod populations in three South Carolina old fields [ J ] . Ecology, 1974, 55: 94-102.
    [170]杨细明.马尾松人工林凋落物分解及养分释放规律[J].福建林学院学报,2002, 22(1):1-3.
    [171]樊后保,刘文飞,徐雷,等.氮沉降下杉木人工林凋落叶分解过程中C、N元素动态变化[J].生态学报,2006,28(6):2546-2553.
    [172]陈秋凤.杉木人工林林木养分和凋落物分解对模拟氮沉降的响应[D].福建农林大学硕士学位论文,2006.
    [173]刘苹.克氏针茅草原植物凋落物分解特及其对环境变化的响应[D].中国科学院研究生院博士学位论文,2006.
    [174]刘忠宽,汪诗平,韩建国,等.内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究[J].草业学报,2005,14(1):24-30.
    [175]Aerts R,Caluwe HD.Nutritional and plant mediated controlson leaves decompositon of Carex species[J]. Ecology,1997,78(1):244-260.
    [176]黄耀,沈雨,周密,等.木质素和氮含量对植物残体分解的影响[J].植物生态学报,2003,27(2):183-188.
    [177]Cortez J,Demard JM,Bottner P,et al. Decomposition of mediterranean leaves:a microcosm experiment investigating relationship between decomposition rates and quality[J]. Soil Biol. Biochem.1996,4(5):443-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700