用户名: 密码: 验证码:
基于多源数据的吉林省玉米生产力区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间信息获取及处理技术、计算机技术的发展、数理统计理论及方法的应用及深入,在面向全球变化、自然资源、生态、环境及人文等领域的对地观测系统数据丰富发展的情况下,将观测数据转化为区划相关的知识,将经典区划方法论与计算科学有机结合起来;在继承经典区划方法论的基础上,创造以计算机技术、空间信息技术等为代表的具有信息时代特点的区划新方法论,已经成为一种必然趋势和客观要求。
     本文以吉林省玉米为例,将空间分析技术、多源数据、地统计学理论、数理统计模型、作物生产潜力模型以及传统区划理论与方法等多种理论、技术及方法相结合,在地理信息系统和气象、土壤、农业统计等基础数据支持下,对研究区域的作物生产力区划展开研究。与国内外研究相比较,本文主要在以下两个方面有所创新:⑴在利用现代空间信息技术、基于定量分析的地统计理论、数理统计方法、作物模型与传统区划理论与方法相结合方面具有创新性;⑵在基于多源数据的区划要素空间化上进行了探索并取得了新进展,区划要素数据在获取、空间化及精度方面有所提高。主要结论有以下几点:
     ⑴玉米生产力区划指标体系
     根据作物生产力区划的基本理论及目的,遵循作物生产力区划的原则,参考学术界已有的研究成果,结合作物生产力的形成要素及过程,从基础地理要素类指标、作物各级生产潜力、作物现实生产力、自然灾害类指标、利用与管理类指标及作物品质类指标等方面构建指标体系。
     ⑵基于多源数据的区划要素获取及空间化
     ①气象要素数据空间化
     在对气象要素与经纬度、海拔、坡度、坡向、地形遮蔽度等地理要素进行的相关性分析的基础上,从克里金插值方法、协克里金插值方法以及多远回归+残差内插相结合的三种方法出发,分别采用三种方法进行气象要素的空间化研究,并且对其精度进行对比及验证,最后选择精度较高的方法作为应用于区划的1km×1km分辨率栅格的气象要素数据。
     ②土壤养分数据空间化
     利用ArcGIS软件的地统计模块,结合GIS的空间数据管理功能和分析功能,研究吉林省土壤中pH值、有机质、速效钾、碱解氮和速效磷元素的空间变异状况,并且在对这几种元素与土壤中其他土壤性质如有效硼(B),有效钙(Ca),有效镁(Mg),有效铜(Cu)和有效锌(Zn)等,以及与经纬度、海拔、坡度、坡向、地形遮蔽度、剖面曲率和平面曲率等地理要素进行相关性分析的基础上,通过克里金插值方法、基于土壤类型和微量元素的协克里金插值方法的比较,最终选择基于土壤类型和微量元素的协克里金插值方法绘制了1km×1km的五种土壤养分元素空间分布图。
     ③统计单产数据空间化
     结合吉林省农业综合分区,将研究区域划分为Ⅰ区(吉林省)、Ⅱ区(中部平原农业区和西部平原农牧区)、Ⅲ区(东部半山农林区和长白山地林农区);利用GIS软件,应用多元回归方法分别对Ⅰ区、Ⅱ区和Ⅲ区这三个不同区域中建立农业统计数据的玉米单产和这些环境要素之间的多元回归分析模型,应用多元回归方法进行吉林省粮食单产数据的空间化,生成1km×1km分辨率栅格的粮食单产,并采用统计单产的数据对其进行了修正。
     ④玉米生产潜力
     基于GIS平台以及由前面分析得到的气象要素、土壤要素方面的数据,对作物生产力逐步衰减模型中对温度、降水和土壤有效系数订正,并与ArcGIS空间分析中GRID建模相结合建立了作物生产潜力模型,在利用已建立的模型计算出吉林省作物各级生产潜力和资源有效系数的基础上,对吉林省作物生产潜力进行了分级。
     ⑶玉米生产力区划研究
     按照作物生产力区划的目的、原则、指标体系及方法,结合了作物生长机理和生态学理论中物质迁移和能量流动的特点、根据区域形成的自然地理过程和条件以及社会经济发展的差异,利用已有的自然、地形地貌、农业综合分区、气候等区划方案均作为本次分区过程中的辅助和校正材料,以地理信息系统、经验判别以及自上而下逐级划分和自下而上组合相结合的方法,将吉林省划分为6大区域:Ⅰ区(吉林省中部生产力最高区)、Ⅱ区(吉林省中部和东部生产力较高区)、Ⅲ区(吉林省西部和中部生产力中等区)、Ⅳ区(吉林省西部和中部生产力较差区)、Ⅴ区(吉林省东部半山农林区和长白山地林农区生产力较差区)、Ⅵ区(吉林省长白山地林农区生产力最低区)。相对潜力较高的地区主要分布在Ⅰ区和Ⅱ区,相对潜力较差的地区主要分布在其他地区;各级潜力系数的空间分布都比较分散。对不同类型区域,应选择其相应的适度开发对策,最终使吉林省玉米生产实现经济与生态的协调发展。
Along with the promotion and development of spatial information acquisition and data processing, computation technology and statistical theory, how to transform these space-based observation data, from various fields such as global change, natural resources, ecology, environment and humanity, etc. into knowledge or rule for regionalization, combine the classical theory and methodology of regionalization with the computation science to develop the integrated methodology of regionalization, have already become a kind of inexorable trend and current demand.
     Selected Jilin Province maize as a case study, this paper conducted the study on crop productivity regionalization, by integrating with the GIS technique, multiple-source based data acquisition, geostatistics theory, mathematical statistics model, crop potential productivity model and traditional regionalization theory and method. Compared with the related literature both at home and abroad, this paper mainly innovated in two respects:⑴The paper integrated the spatial information technology, geostatistical theory, statistical method, crop potential productivity model and traditional regionalization theory and method based on quantitative analysis method innovatively;⑵The paper explored and advanced the spatialization technology of the elements in regionalization based on multiple source data, the precision of the elements in regionalization have been improved in aspects of data acquisition and spatialization. The main conclusions of this paper are briefly described as below:
     ⑴Indicator system of regionalization of maize productivity
     As the first step toward our final goal, we first considered to develop an indicator system of maize regionalization. According to basic theories, purpose and principle of crop productivity regionalization, and the background of out quantitative knowledge of the environmental factors of maize productivity, the paper established an indicator system of regionalization of maize productivity, which included geographical environmental factors, crop potential productivity, current crop productivity, natural hazards index, utilization and the management index and crop type index, etc.
     ⑵Data acquisition and spatialization of the regionalization element
     ①meteorological conditions
     Through the correlation analysis among the environmental variables, such as meteorological variables, longitude, latitude, elevation, slope, aspect and hillshade, etc, the paper try to characterize the spatial distribution of the meteorological element. By contrast of the precision and validation of the result from three interpolation methods, including kriging, cokriging and multivariate regression with residues kriging, the paper chose the spatial interpolation method with highest precision to map spatial distribution of the meteorological element with a spatial resolution of 1km.
     ②soil nutrients
     Using GIS and geostatistics technique, the paper quantified the spatial variability characteristics of soil pH,soil organic matter, available K, available P and available NH4 in the soil in study area,at the same time , the correlation among these main soil nutrients and other soil properties were analyzed, such as available boron(B) ,available calcium(Ca), available magnesium(Mg), available copper(Cu), available zinc (Zn), etc, and the correlation with the geographical elements was also calculated, such as longitude, latitude, elevation, slope, aspect, plane curvature and profile curvature, etc. Then from the contrast of the results derived from the method of kriging and the cokriging applied to the soil type and microelements, the paper determined the cokriging as spatial interpolation method for the spatial distribution of five types of soil nutrient elements with each grid being 1km by 1km.③maize productivity
     According to the previous agricultural regionalization of Jilin Province, the paper first construct a framework of regionalization with the districtⅠ(Jilin province), districtⅡ(middle plain farming region and western plain farming and pastoral region), districtⅢ(agricultural forest zone of Mid-levels in the east and forest agricultural zone of Changbai Mountain). Then on a GIS platform, the multivariate regression model was developed to simulate the relationship between the statistics-based maize yield and the geographical environmental elements, while the correlation analysis were conducted to validate the result of modeling. Finally, the spatial distribution of maize yield was mapped with a spatial resolution of 1km .
     ④Maize potential productivity
     Using spatial analysis technique embedded in GIS platform, combined the variables of meteorological conditions and soil nutrient status, we developed a crop potential productivity model by an combination of the traditional crop productivity attenuating model and the GRID model in GIS, and to quantify the spatial distribution of the maize potential productivity.
     ⑶Maize productivity regionalization
     On the understanding basis of the purpose, principle, the above indicator system and method of crop productivity regionalization, fully considering the mechanism of crop growth and ecological theory on material movement and energy flow, spatial heterogeneity of physical geographic processes, condition and status of social economic development, the advancement of current natural, topographical, agricultural and climatic regionalization, the paper developed the methodology for maize productivity regionalization using GIS technique, experience criterion, in conjunction with the general rules of aggregation (from bottom to top with the partition and from top to bottom). According to the steps mentioned above, six different regions were divided in Jilin Province: DistrictⅠ(highest productivity of the middle and eastern region of Jilin Province), districtⅡ(Second highest productivity of middle and east region of Jilin Province), districtⅢ(moderate productivity of west and middle region of Jilin Province), districtⅣ(low-moderate productivity of west and middle region of Jilin Province), districtⅤ(lower productivity of agricultural forest zone of Mid-levels in the east and forest agricultural zone of Changbai Mountain in Jilin Province), districtⅥ(lowest productivity of forest agricultural zone of Changbai Mountain in Jilin Province). The higher relative potential productivity distributed mainly in the regions of districtⅠand districtⅡ,and the lowest relative potential productivity distributed in the other areas extensively; The spatial or geographic property of the coefficient of potentiality was scattered over the Jilin province. As a general conclusion, the corresponding appropriate countermeasure of agricultural development should be adopted according to the characteristic of different region, and some scientific-based support should be provided for maintaining and promotion the sustainable development of regional economic and ecological system.
引文
1.白军红,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用.农业环境保护,2001,20(5):311~314.
    2.白莉萍,陈阜.国内外作物生产潜力研究现状与评价.作物杂志,2002(1):7~9.
    3.卞有生,蔡博峰,赵楠.3S技术在区域生态功能区划中的应用-以河南省濮阳市为案例.中国工程科学.2005,7(12):54~60.
    4.蔡福,于贵瑞,祝青林等.气象要素空间化方法精度的比较研究-以平均气温为例.资源科学,2005,27(5):174~179.
    5.蔡博峰.利用3S技术进行小城镇生态功能区划-以北京市怀柔区北房镇为例.环境保护,2006,(2):35~39.
    6.曹慧,杨浩,赵其国等.太湖流域丘陵地区土壤养分的空间变异.土壤,2002(4):201~205.
    7.陈德清,万庆,万洪涛.社会经济统计数据空间化方法在洪水灾情评估中的应用探讨.地理研究,1998,17(增刊): 79~85.
    8.陈健飞.“3S”技术与资源可持续利用.资源科学,1998,20(6):20~21.
    9.陈晋,卓莉,史培军等.基于DMSP/ OLS数据的中国城市化过程研究—反映区域城市化水平的灯光指数的构建.遥感学报,2003,7(3):168~175.
    10.陈明荣等.中国气候生产潜力区划的探讨.自然资源,1983(3).
    11.陈楠.多源空间数据集成的技术难点分析和解决策略.计算机应用研究,2005,(10):206~208.
    12.陈奇伯,齐实,孙立达等.半干旱黄土丘陵区坡耕地径流损失对土地生产力影响研究.水土保持通报,2001,21(5):6~9.
    13.陈秋晓,骆剑承,周成虎等.基于多特征的遥感影像分类方法.遥感学报,2004,8(3):239~
    245.
    14.陈述彭.“数字城市”呼唤精益求精.地球信息科学,2006,8(3):22~23.
    15.陈亚新,史海滨,陈慧新等.盐溶质及其离子品位空间变异性的Co-Kriging估计.水利学报, 1998(6):35~40.
    16.程叶青,张平宇.生态地理区划研究进展.生态学报,2006,26(10):3424~3433.
    17.村田吉男.光合作用与水稻最高产量上限.农业技术,1966.
    18.党安荣,阎守邕,吴宏歧等.基于GIS的中国土地生产潜力研究.生态学报,2000,20(6):910~915.
    19.杜国明,张树文.基于遥感的城乡人口分布模拟.遥感学报,2007,11(2):252~256.
    20.范辽生,刘新安,于贵瑞等.东北地区辐射资源栅格化信息系统的建立.资源科学,2003,25(1):59~65.
    21.范中桥.地域分异规律初探.哈尔滨师范大学自然科学学报,2004,20(5):106~109.
    22.封志明,郑海霞,杨太保.基于GIS的甘肃省作物生产潜力分区.兰州大学学报(自然科学版),2005,41(1):12~18.
    23.冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较.气候与环境研究,2004,9(2):261~277.
    24.傅抱璞.不同地形下辐射各分量收支差异与变化.大气科学,1998,22(2):178~190.
    25.傅伯杰,陈利顶,刘国华.中国生态区划的目的、任务及特点.生态学报,1999,19(5);591~595.
    26.傅伯杰.农业生态区划几个问题初探.农村生态环境,1985(4):31~34.
    27.高群,毛汉英.基于GIS的三峡库区云阳县生态经济区划.生态学报,2003,23(1):74~81.
    28.高峻,黄元仿,李保国等.农田土壤颗粒组成及其剖面分层的空间变异分析.植物营养与肥料学报,2003,9(2):151~157.
    29.高鹭,陈素英,胡春胜等.喷灌条件下农田土壤水分的空间变异性研究.地理科学进展,2002,21(6):609~615.
    30.葛忠强,刘良云,赵春江等.基于DEM模型计算北京西部山区太阳直接辐射的空间分布.农业工程学报,2006,22(9):154~158.
    31.龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征.土壤学报,1998,35(l):10~15.
    32.郭来喜,陆大道.人地关系与经济布局理论创新与突破:庆贺吴传钧院士80华诞.地理科学紧张,1998,17(1):5~11.
    33.郭淑敏,马帅,陈印军.中国东北三省粮食生产的态势、优势、问题与对策.中国农学通报,2006,22( 12):488~493.
    34.郭旭东,傅伯杰,陈利顶等.河北省遵化平原土壤养分的时空变异特征-变异函数与Kriging插值分析.地理学报, 2000,55(5):555~566.
    35.郭娅,濮励杰,赵姚阳等.国内外土地利用区划研究的回顾与展望.长江流域资源与环境,2007,16(6):760~763.
    36.郭兆夏,朱琳,叶殿秀等.GIS在气候资源分析及农业气候区划中的应用.西北大学学报(自然科学版),2000,(8):357~359.
    37.何勇,张淑娟,方慧.基于人工神经网络的田间信息插值方法研究.农业工程学报,2004,20(3):120~123.
    38.何洪林,于贵瑞,刘新安等.中国陆地生态信息空间化技术研究-太阳辐射要素.自然资源学报,2004,19(5):679~687.
    39.何洪林,于贵瑞,牛栋.复杂地形条件下的太阳辐射资源方法研究.资源科学,2003, 25(1):78~75.
    40.何秀丽,张平宇,程叶青.东北地区粮食单产的区域差异及总体评价.农业系统科学与综合研究,2008,24(2):176~180.
    41.何艳芬,张柏,马超群.吉林省耕地动态变化及其对粮食生产的影响.资源科学,2004,26(4):119~125.
    42.侯光良等.我国气候生产潜力及其分区.自然资源,1985(3).
    43.侯学煜,姜恕,陈昌笃等.对于中国各自然区的农、林、牧、副、渔业发展方向的意见.科学通报,1963,(9):8~26.
    44.胡克林,李保国,陈德立等.农田土壤水分和盐分的空间变异性及其协同克立格估值.水科学进展,2001,12 (4):460~466.
    45.胡克林,李保国,林启美.农田土壤养分的空间变异性特征.农业工程学报,1999,15(3): 33~38.
    46.胡星池.农业区划的理论基础初探.北京农学院学报,1986(3):54~59.
    47.黄秉维.论中国综合自然区划.新建设,1965,(3):65~74.
    48.黄秉维.中国综合自然区划草案.科学通报,1959,18:594~602.
    49.黄秉维.中国综合自然区划纲要.地理集刊,1989,21:10~20.
    50.黄绍文,金继乡,杨俐苹等.乡(镇)级区域土壤养分空间变异与分区管理技术研究.资源科学,2002,24(2):76~82.
    51.黄绍文,金继运,杨俐萍等.乡(镇)级区域土壤养分空间变异与分区管理技术研究.资源科学, 2002,24(2); 76~82.
    52.黄绍文,金继运.土壤特性空间变异研究进展.土壤肥料,2002,(1): 8~14.
    53.黄杏元,马劲松,汤勤.地理信息系统概论.北京:高等教育出版社,2001.
    54.江爱良.论我国气候和农业生产潜力的关系.中国科学院地理所,1984.
    55.江东,杨小唤,王乃斌等.基于RS、GIS的人口空间分布研究.地球科学进展, 2002,17(5): 734~738.
    56.姜勇,梁文举,李琪.利用与回归模型相结合的克里格方法对农田土壤有机碳的估值及制图.水土保持学报,2005,19(5):97~126.
    57.金志凤,尚华勤.GIS技术在常山县胡柚种植气候区划中的应用.农业工程学报,2003,19(3):153~155.
    58.康相武,吴绍洪,戴尔阜等.区域社会经济财产数据空间化方法研究.中国软科学,2006,(8):104~108.
    59.李保国.分形理论在土壤科学中应用及其展望.土壤学进展,1994,22:l1~10.
    60.李彬,王志春.吉林省农业生态环境问题与对策分析.中国农学通报,2005,21(9):367~371.
    61.李海滨,林忠辉,刘苏峡.Kriging方法在区域土壤水分估值中的应用.地理研究,2001,20(4):446~452.
    62.李菊梅,李生秀.几种营养元素在土壤中的空间变异.干旱地区农业研究,1998,16(2):58~64.
    63.李奇峰,陈阜,李玉义等.东北粮食生产能力研究.作物杂志,2005,(4):3~6.
    64.李相玺,尹忠东,何长高.土地生产潜力研究综述.水土保持学报,2001,15(5):33~36.
    65.李晓燕,张树文.吉林省德惠市土壤速效钾的空间分异及不同插值方法的比较.水土保持学报,2004,18(4):97~100.
    66.李新,程国栋,卢玲.空间内插方法比较.地球科学进展,2000,15(3):260~265.
    67.李艳.基于空间变异特性的滨海盐土采样及管理分区研究[博士学位论文] .浙江:浙江大学,2006.
    68.李占清,翁笃鸣.一个计算山地地形参数的计算机模式.地理学报,1987,42(3):269~287.
    69.李正国,王仰麟,张小飞等.景观生态区划的理论研究.地理科学进展,2006,25(5):10~20.
    70.李正泉,于贵瑞,刘新安等.东北地区降水与湿度气候资料的栅格化技术.资源科学,2002,5(1): 72~77.
    71.梁荣欣.作物的光合潜力估算-叶面积订正方法的研究.东北农学院学报,1980(2).
    72.梁文举,施春健,姜勇.长期定位试验地耕层土壤氮素空间变异性及其应用.水土保持学报,2005,19(1):79~83.
    73.廖顺宝,李泽辉.基于GIS的定位观测数据空间化.地理科学进展,2003,22(1):87~93.
    74.廖顺宝,李泽辉.基于人口分布与土地利用关系的人口数据空间化研究—以西藏自治区为例.自然资源学报,2003,18(6):659~665.
    75.廖顺宝,李泽辉,游松财.气温数据栅格化的方法及其比较.资源科学,2003,25(6):83~88.
    76.廖顺宝,孙九林.基于GIS的青藏高原人口统计数据空间化.地理学报, 2003, 58(1): 025~033.
    77.林超.中国自然区划大纲(摘要).地理学报,1954,20(4):395~418.
    78.林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值.地理学报,2002,57(1):47~56.
    79.刘闯.中尺度对地观测系统支持下中国综合自然地理区划新方法论研究.地理科学进展,2004,23(6):1~9.
    80.刘国华,傅伯杰.生态区划的原则及其特征.环境科学进展,1998,6(6):67~72.
    81.刘海斌,吴发启.黄土塬区复合型生态农业土地生产力评价.农业工程学报,2006,22(6):77~81.
    82.刘红辉,江东,杨小唤等.基于遥感的全国GDP1km格网的空间化表达.地球信息科学,2005,7(2):120~123.
    83.刘纪远,徐新良,庄大方等.20世纪90年代LUCC过程对中国农田光温生产潜力的影响.中国科学D辑(地球科学),2005,35(6);483~492.
    84.刘纪远,岳天祥,王英安等.中国人口密度数字模拟.地理学报, 2003, 58(1):017~024.
    85.刘建栋,周秀骥,于强.FAO生产潜力模型中基本参数的修正.自然资源学报, 2001,16(3);240~247.
    86.刘伟东,Frédéric Baret,张兵等.高光谱遥感土壤湿度信息提取研究.土壤学报,2004,41(5):700~706.
    87.刘新安,于贵瑞,范辽生等.中国陆地生态信息空间化技术研究-温度-降水等气候要素.自然资源学报,2004,19(6):818~825.
    88.刘新卫,陈百明.黄土丘陵区安塞县县域粮食生产潜力及其开发.农业工程学报,2004,20(6):286~290.
    89.刘燕华,郑度,葛全胜等.关于开展中国综合区划研究若干问题的认识.地理研究,2005,24(3):321~329.
    90.龙斯玉.我国小麦气候生产力的地理分布.南京大学学报,自然科学版,1983(3).
    91.陆大道,郭来喜.地理学的研究核心-人地关系地域系统.地理学报,1998,53(2):97~105.
    92.鲁植雄,潘拯君.分维与土壤特性时空变异性研究进展.农业工程学报,1994,10(4):14~19.
    93.吕安民,李成名,林宗坚等.基于GIS的人口信息提取.清华大学学报(自然科学版),2005,45(9):1189~1192.
    94.吕安民,李成名,林宗坚等.人口统计数据的空间转换.干旱区地理,2002,25(2):170~175.
    95.吕一河,傅伯杰.生态学中的尺度及尺度转换方法.生态学报,2001,21(12):2096~2105.
    96.罗开富.中国自然地理分区草案.地理学报,1954,20(4):379~394.
    97.马树庆.东北区农业气候土壤资源潜力及其开发利用研究.地理科学,1995,15(3):243~252.
    98.秘晓东,张旭东,倾继祖等.应用“3S”技术制作张掖甘蓝型油菜区划方法初探.干旱地区农业研究,2004,22(3):19~22.
    99.莫治新,尹林克,文启凯.塔里木河中下游表层土壤盐分空间变异性研究.干旱区研究, 2004, 21 (3):250~253.
    100.尼玛扎西.西藏食物生产系统的区划研究.地理研究,2000,19(4):407~414.
    101.欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究.生态学报,1999,19(5):607~613.
    102.潘耀忠,龚道溢,邓磊等.基于DEM的中国陆地多年平均温度插值方法.地理学报,2004,59,(3):366~374.
    103.潘志强,刘高焕.面插值的研究进展.地理科学进展,2002,21(2):146~152.
    104.千怀遂.中国小麦遥感估产区划研究.自然资源学报,1997,12(2):97~104.
    105.切尔沙尼卡.大气中CO浓度倍增时植被生产力的变化.气象科技,1987,10(4).
    106.秦松,樊燕,刘洪斌等.地形因子与土壤养分空间分布的相关性研究.水土保持研究,2008,15(1):46~52.
    107.邱扬,傅伯杰,王军等.黄土丘陵小流域土壤物理性质的空间变异.地理学报,2002, 57(5): 587~594.
    108.任传友,于贵瑞,刘新安等.东北地区热量资源栅格化信息系统的建立与应用.资源科学, 2003,25(1):66~71.
    109.任美锷,包浩生.中国自然区域及开发整治.北京:科学出版社,1992.
    110.任美锷,杨纫章,包浩生.中国自然区划纲要.北京:商务印书馆,1979.
    111.任美锷,杨纫章.中国自然区划问题.地理学报,1961,27:66~74.
    112.尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律.生态学报,2001,21(5): 689~694.
    113.石朋,芮孝芳.降雨空间插值方法的比较与改进.河海大学学报(自然科学版),2005,33(4):361~365.
    114.石庆龙.发展吉林玉米经济战略的研究.黑龙江农业科学,2006,(4):83~84.
    115.舒守娟,喻自凤,王元等.西藏地区复杂地形下的降水空间分布估算模型.地球物理学报,2005,48(3):535~542.
    116.苏永秀,李政,秦亮曦等.基于组件式GIS的广西农业气候区划应用系统.计算机工程,2007,33(4):263~267.
    117.唐华俊,罗其友等.农业区域发展学导论.北京:科学出版社,2008.
    118.田永中,陈述彭,岳天祥等.基于土地利用的中国人口密度模拟.地理学报, 2004,59(2); 283~292.
    119.王春菊,汤小华.基于GIS的福建省人口统计数据空间化.地理与地理信息科学,2004,20(4):71~74.
    120.王国良.3S技术及其集成与现代自然地理学发展.陕西师大学报(自然科学版),1995,23(增刊):180~181.
    121.王军,傅伯杰,邱扬等.黄土高原小流域土壤养分的空间异质性.生态学报,2002,22(8); 1173~1178.
    122.王秀,苗孝可,孟志军等.插值方法对GIS土壤养分插值结果的影响.土壤通报,2005,36(6):826~830.
    123.王学锋,章衡.土壤有机质的空间变异性.土壤, 1995,27(2):85~89.
    124.王雪梅,李新,马明国.干旱区内陆河流域人口统计数据的空间化-以黑河流域为例.干旱区资源与环境,2007,21(6):39~47.
    125.王宗明,张柏,宋开山等.东北平原典型农业县农田土壤养分空间分布影响因素分析.水土保持学报,2007,21(2):73~77.
    126.王宗明,张柏,张树清.松嫩平原农业气候生产潜力及自然资源利用率研究.中国农业气象,2005,(1).
    127.瓮笃鸣.中国太阳直接辐射的气候计算及其分布特征.太阳能学报,1985,6(3):1~11.
    128.吴乐知,蔡祖聪.中国土壤有机质含量变异性与空间尺度的关系.地球科学进展,2006,21(9):965~972.
    129.席承藩,张俊民,丘宝剑等.中国自然区划概要.北京:科学出版社,1984.
    130.肖燕,钱乐祥.豫西山地生态经济综合区划-以洛宁县为例.经济地理,2006,26(6):926~930.
    131.徐吉炎,Webster R.土壤调查数据地域统计的最佳估值研究.土壤学报, 1983,20:419~430.
    132.徐继填,陈百明,张雪芹.中国生态系统生产力区划.地理学报,2001,56(4):401~408.
    133.徐四新,姚政,罗国安等.上海奉贤南十家村土壤养分空间变异分析初探.上海农业学报,2004,20(3):78~81.
    134.徐昔保,张建明,祁永安.基于3S的石羊河流域生态功能区划研究.干旱区研究,2005,22(1):41~44.
    135.徐英,陈亚新,史海滨.土壤水盐空间变异尺度效应的研究.农业工程学报,2004,20(3):1~5.
    136.许红卫,高玉蓉,王珂等.基于水稻冠层光谱信息的稻田土壤速效N的Cokriging插值研究.农业工程学报,2007,23(3):13~17.
    137.薛正平,杨星卫,段项锁等.土壤养分空间变异及合理取样数研究.农业工程学报,2002,18(4):6~9.
    138.严泰来,朱德海,张晓东.应用“3S”技术在农业科学研究中贯彻科学发展观.中国农业大学学报,2005,10(6):16~20.
    139.杨勤业,李双成.中国生态地域划分的若干问题.生态学报,1999,19(5):596~601.
    140.杨小唤,江东,王乃斌等.人口数据空间化的处理方法.地理学报, 2002, 57(增刊): 070~075.
    141.杨玉玲,田长彦,盛建东等.灌淤土壤有机质、全量氮磷钾空间变异性初探.干旱地区农业研究,2002(3):26~30.
    142.姚丽贤,周修冲,蔡永发等.香蕉园土壤养分空间变异性及适宜样本容量研究.土壤通报,2005(4):169~171.
    143.姚荣江,杨劲松,刘广明等.土壤盐分和含水量的空间变异性及其CoKriging估值—以黄河
    三角洲地区典型地块为例.水土保持学报,2006,20(5):133~138.
    144.易玲,熊利亚,杨小唤.基于GIS技术的GDP空间化处理方法.甘肃科学学报,2006,18(2):54~58.
    145.樱谷哲夫.旱地蒸散与生产力.农业气象,1988(4).
    146.游松财,李军.海拔误差影响气温空间插值误差的研究.自然资源学报,2005,20(1):140~144.
    147.张华,张甘霖.热带低丘地区农场尺度土壤质量指标的空间变异.土壤通报,2003, 34(4): 241~245.
    148.张晶,吴绍洪,刘燕华等.土地利用和地形因子影响下的西藏农业产值空间化模拟.农业工程学报,2007,23(4):59~65.
    149.张庆利,潘贤章,王洪杰等.中等尺度上土壤肥力质量的空间分布研究及定量评价.土壤通报,2003, 34(6):493~497.
    150.张有山,林启美,秦耀东等.大比例尺区域土壤养分空间变异定量分析.华北农学报,1998,13(1): 122~128.
    151.赵成义,王玉潮,李子良等.田块尺度下土壤水分和盐分的空间变异性.干旱区研究,2003,20 (4): 252~256.
    152.赵松乔.中国综合自然区划的一个新方案.地理学报,1983,38(1):1~10.
    153.赵之重.土壤有机质空间变异特征研究.青海大学学报,2004,22(1):13~15.
    154.郑度,葛全胜,张雪芹.中国区划工作的回顾与展望.地理研究,2005,24(3):330~344.
    155.郑度,杨勤业,赵名茶等.自然地域系统研究.北京:中国环境科学出版社,1997.
    156.周成虎,万庆,黄诗峰等.基于GIS的洪水灾害风险区划研究.地理学报,2000,55(1):15~24.
    157.周留根.农业生产力评价分析和优化系统研究[博士学位论文] .南京:南京农业大学,2005.
    158.周锁全,缪起龙,吴战平等.山区平均气温细网格插值方法的比较.南京气象学院学报,1994,17(4):488~492.
    159.朱安宁,张佳宝,张玉铭等.潮褐土土壤养分的空间分布特征.土壤通报,2004,35(2):97~101.
    160.朱会义,贾绍凤.降雨信息空间插值的不确定性分析.地理科学进展,2004,23(2):34~42.
    161.朱蕾,黄敬峰.基于GIS和空间插值技术的南方丘陵山区土地生产潜力估算.浙江大学学报(农业与生命科学版),2007,33(4):458~465.
    162.朱志辉.非水平面天文辐射的全球分布.中国科学(B),1988,(10):1100~1110.
    163.竺可桢.论我国气候的几个特点及其与粮食作物生产的关系.地理学报,1964,30.
    164.竺可桢.中国气候区域论.地理杂志,1930,3(2).
    165.左大康,周允华,朱志辉等.地球表层辐射研究.北京:科学出版社,1991.
    166. Anderson A NMcBratney A B,Crawford J W.Applications of fractals to soilstudies.Advances in Agronomy. 1998,63:1~76.
    167. Atkinson P M. Cokriging with airborne MSS imagery.Remote Sens Environ,1994,50:335~345.
    168. Bailey R G.Ecological regionalization in Canada and the UnitedStates.Geoforum,1985,6(3):265~275.
    169. Bailey R G.Ecoregions:The ecosystem geography of the oceans and continents.New York: Springer-Verlag,1998.
    170. Bailey R G.Ecosystem geography.NewYork. Berlin,Heideberg:Springer-Verlag, 1996.
    171. Bailey R G.Explanatory supplement to ecoregions map of the continents.Environment Conservation,1989,16(4):307~310.
    172. Baily R. G.Ecoregions of the United States.Ogden.UTUSDA Forest Service.Intermountain Region.1:7500000(Colored),1976.
    173. Basist A, Bell G D, Meentemeyer V.Statistical relationships between topography and precipitation patterns.Journal of Climate,1994,7(9):1305~1315.
    174. Basso B,Ritchie J T,Pierce F J,Braga R P,et al.Spatial validation of crop models for precision agriculture.Agricultural Systems,2001,68:97~112.
    175. Batchelor W D,Basso B,Paz J O.Examples of strategies to analyze spatial and temporal yield variability using crop models.Europ J Agronomy,2002,18:141~158.
    176. Bergstrom D W, Monreal C M, Millette J A,et al.Spatial dependence of soil enzyme activities along a slope.Soil Science Society of America Journal,1998,62:1302~1308.
    177. Bhatti A U,et al. Estimation of soil properties and wheatyields on complex erodes hills using geostatistics and the matic mapper images.Remote Sens Environ, 1991,37:181~191.
    178. Bo Sun,Shenglu Zhou,Qiguo Zhao.Evaluation ofspatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China.Geoderma,2003,115:85~99.
    179. Boehm M M,Anderson D W.A landscape-scale study of soil quality in three prairie farming systems.Soil Science Society of America Journal,1997,61:1147~1159.
    180. Buorruhg P A.Multiscale sources of spatial variability in soil variation 1-the application of fractal concepts to nested levels of soil variation.Journal of Soil Science,1983,34(3):577~597.
    181. Buorruhg P A.Soil variability: a late 20th century view.Soil and Fertilizers,1993,56(5):529~562.
    182. Burgess T M,Webster R.Optimal interpolation and isarithmic mapping of soil properties.The semivariogram and punctual kriging.J.Soil Sci,1980,31:315~331.
    183. Burrough P H.Soil variability:a late 20thcentury view.Soils and Fertilizers,1993,56(5):529~562.
    184. Campbell J B.Spatial variation of sand content and pH within single contiguous delineations of tow soil mapping units.Soil Science Society of America Journal,1978,42:460~464.
    185. Chien Yi ju, Lee Dar-yuan, Guo Homg-yuh.Geostatistical analysis of soil properties of mid-west Tai Wan soils.Soil Science,1997,162(4): 291~298.
    186. Christopher Daly,Wayne P Gibson,George H Taylor,et al.Aknowledge-based approach to the statistical mapping of climate.Climate Research,2002,22(1):99~113.
    187. Collins F C.Acomparison of spatial interpolation techniques in temperature estimation. http://www.ncgia.ucsb.edu/conf/santafe cd-rom/sf papers/collins fred/collins.html,1999.
    188. Dalal R C,Henry R J. Simultaneous determination of moisture,organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci SocAm J,1986,50:120~123.
    189. Daly C,Helmer E H,quinones M.Mapping the climate of puerto rico,vieques and culebra.International Journal of Climatology,2003,23:1359~1381.
    190. Dobson J E,Bright E A,Coleman P R,et al.LandScan:A Global Population Database for Estimating Populations at Risk.Photogrammetric Engineering & Remote Sensing,2000,66(7): 849~857.
    191. Dozier J,Frew J.Rapid calculation of terrain parametersfor radiation modeling from digital elevation data.IEEE Transaction on Geoscience and Remote Sensing,1990,28(5):963~969.
    192. Dubayah R.Estimating net solar radiation using LandsatThematic Mapper and digital elevation data. .WaterResource Research,1992,28:2469~2484.
    193. Duguay C R.Estimating surface reflectance and albedofrom Landsat-5 hematic Mapper over rugged terrain.Photogrammetric Engineering and Remote Sensing,1992,58:551~558.
    194. Elvidge C D,Baugh K E,Kig E A,et al.Relation Between Satellite Observed Visible-Near Infrared Emissions,Population,Economic Activity and Electric Power Consumption.International Journal of Remote Sensing,1997,18(6):1373~1379.
    195. Ettema C H,Wardle D A.Spatial soil ecology.Trends in Ecology and Evolution,2002,17:177~183.
    196. FisherRA.Statistical methods and Scientific Inference.Edinbugrh:Oliver&Boyd,1956.
    197. Goodale C L,Alber J D,Ollinger S V. Mapping monthly precipitation,temperature and solar radiation for Ireland with polynomialregression and digital elevation model.Climate Research, 1998,10:35~49.
    198. Goovaerts P and Webster R.Scale-dependent correlation between topsoil copper and cobalt concentrations in Scotland.Euro JSoil Sci, 1994,45:79~95.
    199. Goovaerts P.Geostatistics in soil science:tate-of-the-art and perspectives.Geoderma, 1999,89: 1~45.
    200. Gratton J D, Howarth P J, Marceau D J. Using Landsat-5 Thematic Mapper and digital elevation data to determinethe net radiation field of a mountain glacier.RemoteSensing of Environment, 1993,43:315~331.
    201. Hanks R J.Yield and Walter-Use Relationships:An Overvie.Tayloretal H M. Limitations to Efficient Water Use in Crop Production,1983.
    202. Harvey J T.Population Estimation Models Based on Individual TM Pixels.Photogrammetric Engineering & Remote Sensing,2002,68(11):1181~1192.
    203. Henderson F M,Zong-Guo X.SAR applications in human settlement detection,population estimation and urban land use pattern analsis:a status report.IEEE Trans. on Geoscience and Rem.Sens.,1997,35(1):79~85.
    204. HigginsGM,et al.Regional assessment of land Potential:A fallow uP to the FAO.Natureandresoures,1981,17(4):11~23.
    205. Hillel D.Research in soil physics:a review.Soil Science,1991,151:30~34.
    206. http://sedac.ciesin.columbia.edu/plue/gpw/index.html.
    207. http://www.ornl.gov/sci/gist/landscan/.
    208. http://www1.chkd.cnki.net/kns50/XSearch.aspx?KeyWord=%E5%9C%9F%E5%9C%B0%E7%94%9F%E4%BA%A7%E6%BD%9C%E5%8A%9B.
    209. Hutchinson M F,Dowling T I.A continental hydrological assessment of a new grid-based digital elevation model of Australia.Hydrological Processes,1991,5:45~58.
    210. Hutchinson M F,Gessler P E.Splines-more than just a smooth interpolator.Geoderma,1994,62:45~67.
    211. Hutchinson M F.The application of thin-plate smoothing splines to continent-wide data assimilation. In Jasper J D(ed.), Data Assimilation Systems.BMRC Res.Report No.27, Bureau of Meteorology,Melbourne,1991,104~113.
    212. Iisaka J,Hegedua E.Population Estimates from Landsat Imagery..Remote Sensing of Environment, 1982,12:259~272.
    213. Ishida T,Ando H.Use of disjunctive cokriging to estimate soil organic matter from Landsat Thematic Mapperimage.Int J Remote Sensing,1999,20(8):1549~1565.
    214. Javier,G.Corripio.Vectorial algebra algorithms foxcalculating terrain parameters from DEM and solar radiation modeling in mountain terrain.Geographical Infomation Science,2003,17(1):1~23.
    215. Jones P D.Hemispheric surface air temperature variation:a reanalysis and update to 1993.J.Clim.,1994,7:1794~1802.
    216. Jones P D,Osborn T J,Briffa K R.Estimating sampling errors in large-scale temperatureaverages.J.Clim.,1997,10:2548~2568.
    217. Jones P D,Raper S C B,Bradley R S,et al.Northern hemisphere surface air temperature variations.J.Clim..Appl Meteorol.,1986a,25:161~179.
    218. Jones P D.Southern hemisphere surface air temperature variations.J.Clim.Appl Meteorol., 1986b,25:1213~1230.
    219. Jones P G,Thornton P K.The potential impacts of climate change on maize production in Africa and Latin America in 2055.Global Environmental Change,2003,13:51~59.
    220. Jorge Marqui′nez,Javier Lastra,Pilar Garci′a. Estimation models for precipitation in mountainous regions:the use of GIS andmultivariate analysis.Journal of Hydrology,2003,270:1~11.
    221. K Ritz, J W McNicol, N Nunan.Spatial structure in soil chemical and micro-biological properties in an up-land grassland.FEMS Microbiology Ecology,2004,49:191~205.
    222. Klijn F,Udo de Haes H A.A hierarchical approach to ecosystem and it simplications for ecological land classification.Land scape Ecology.1994,9(2):89~104.
    223. Kumar L,Skidmore A K,Knowles E.Modelling topographic variation in solar radiation in a GIS environment.International Journal for Geographical Information Science,1997,(11):475~497.
    224. Lam,N.Spatial Intoxpolxtion Methods:A Roviow.The Amorican Cartographer,1983,10(2):129~149.
    225. Langford M,Harvey J T.The Use of Remotely Sensed Data for Spatial Disaggregation of Published Census Population Counts .IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban,2001,260~264.
    226. Legates D R,Willmott C J.Mean seasonal and spatial variability in global surface air temperature.Them.Appl Climatol.,1990,41:11~21.
    227. Leibig M A,Doran J W.Evaluation of point-scale assessments of soil quality.Journal of Soil and Water Conservation,1999,54(2):510~518.
    228. LiethH等.生物圈的第一性生产力.北京:科学出版社, 1985.
    229. Lo C P.Modeling the Population of China Using DMSP Operational Linescan System Nighttime Data.Photogrammetric Engineering & Remote Sensing,2001,67(9):1037~1048.
    230. LomisRS,WilliamsWA.Maxlimum crop productivity:An estimate.CroP Scienee,1963,3(1):67~72.
    231. Morris S J,Boerner R E J.Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests.Landscape Ecology,1998,13:215~224.
    232. N V Prasolova,Z H Xu,P G Saffigna,et al.Spatial-temporal variability of soil moisture, nitrogen availa-bility indices and other chemical properties in hoopin(e Araucaria cunninghamii)plantations of sub-tropical Australia.Forest Ecology and Manage-ment,2000,136(1):741~763.
    233. Nalder I A,Wei R W.Spatial interpolation of climate normals:test of a new method in the Canadian boreal forest Agric.For.Meteroral.,1998,92:211~225.
    234. Ndiaye Babalar and Isabel Deais.Geostatistical analysis of hydrogeology and agricultural land reclamation in senegal river delta.JAWRA,1999,35(2):265~276.
    235. Ninyerola M, Pons X, Roure J M.A methodological approach of climatological modelling of air temperature and precipitation throughGIS techniques.International Journal of climatology,2000,20(14):1823~1841.
    236. odumEp.生态学基础.北京:人民教育出版社,1981,42~61.
    237. Paul C S,Roberts D,Elvidge C,et al.Census from Heaven:an estimate of the global human population using night-time satellite imagery.International Journal of Remote Sensing,2001,22(16):3061~3076. .
    238. Perfect E,Kay B D.Applications of fractals in soil and tillage research:A review.Soil&Tillage Res.,1995,36(1-2):1~2.
    239. Price D T,Mickenny D W,Nalder I A.A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data.Agric For Meteorol,2000,101:81~94.
    240. Price DT,et al.A comparison of two statisticalmethodsfor spatial interpolation of Canadian monthly mean climate data.Agricul-tural and Forest Meteorology, 2000,101:81~94.
    241. Priya S,Shibasaki R.National spatial crop yield simulation using GIS-based crop production model.Ecological Modeling,2001,135:113~129.
    242. R Stenger,E Priesack,F Beese.Spatial variation of nitrate-N and related soil properties at the plot-scal.Geoderma,2002,105:259~275.
    243. Robert G,Bailey.Ecosystem Geography.Springer, 1995.
    244. Rowe J S,Sheard J W.Ecological land c1assification:a surve yapproach.Environ.Manage,1981,5(5):451~464.
    245. Slonoskya V C,Jones P D,Daviesc T D.Atmospheric circulation and surface temperature in Europe from 18th century to 1995.Int.J.Climatol,2001,21:63~75.
    246. UNEP/GRID - Sioux Falls Clearinghouse.http://grid2.cr.usgs.gov/datasets/datalist.php3.
    247. Van Ittersum M K,Leffelaar P A,van Keulen H,et al.On approaches and applications of the Wageningen crop models.Europ J Agronomy,2003,18:201~234.
    248. Walter H,Box E.Global classification of natural terrestrial lecosystem.Vegetation,1976,(32):75~81.
    249. Wang Jun,Fu Bojie,Qiu Yang,Chen Liding.Analysis on soil nutrient characteristics for sustainable land use in Da Nangou catchment of the Loess Plateau,China.Catena,2003,54(1):17~29.
    250. Wang Jun,Fu Bojie,Qiu Yang,et al.Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau,China.Environmental Geology,2001,41:113~120.
    251. Webster C J.Population and dwelling unit estimates from space.Third World Planning Review,1996,18(2):155~176.
    252. Webster R.Quantitative spatial analysis of soil in the field.Advance in Soil Science,1985,3: 1~70.
    253. Western A W,Bloschl G.On the Spatial scaling of soil moisture.Journal of Hydrology,1999,217:203~224.
    254. Wiken B,Gauthier,MarshallI,et al.A perspective on Canada's eocsystems.CCEA Occasional Papers (No.14),1996.
    255. Wiken E B.Ecozones of Canada.Environment Canada.Lands Directorate,Ottwa. Ontario(mimeo),1982.
    256. William E E,Albert W,Cynthia J H,et al.Spatial scales of climate information for simulating wheat and maize productivity:The case of the US Great Plains.Agricultural and Forest Meteorology,1998,90:51~63.
    257. Willmott C J,Kellji M.Smart interpolation of annually air temperature in the United States.J.Appl.Meteorol,1999,34:2557~2586.
    258. Willmott C J,Philpot W D.Small-scale climate maps:a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring.Amen Cartogr,1985,12: 5~16.
    259. Wotling G,Bouvier C,Danloux J,et al.Regionalization of extreme recipitation istribution using the principal components of thetopographical environment.Journal of Hydrology,2000,233:86~101.
    260. Xu J-Y,Wbster R.Optimal estimation of soil surveydata by geostatistical method-semivariogarm and block kriging estima-tion of topsoil nitrogen of Zhangwu county.Acta Pedol Sin,1983, 20(4):419~430.
    261. Yi-ju Chien,Dar-Yuan Lee,Horng-Yuh Guoet al.Geostatistical analysis of soil properties of mid-west Taiwan soils.Soil Sci,1997,162(4):291~298.
    262. Yi-ju Chien,Dar-Yuan Lee,Horng-Yuh Guoet al.Geostatistical analysis of soil properties of mid-west Taiwan soils.Soil Sci,1997,162(4):291~298.
    263. Yost R S,Uehara G,Fox R L.Geostatistical analysis of soil chemical properties of large land areas.I. Semi-variograms.Soil Science Society of America Journal,1982,46:1028~1032.
    264. Yost R S,Uehara G,Fox R L.Geostatistical analysis of soil chemical properties of large land areas: II.Kriging.Soil Science Society of America Journal,1982,46:1033~1037.
    265. Yue T,Y Wang,S P Chen,et al.Numerical Simulation of Population Distribution in China.Population and Environment,2003,25(2):141~163.
    266. Yun J I.Predicting regional rice production in South Korea using spatial data and crop-growth modeling.Agricultural Systems,2003,77:23~38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700