用户名: 密码: 验证码:
非线性波动模型的相干结构及其相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Coherent Structures and Interactions of Nonlinear Wave Models
  • 作者:张解放
  • 论文级别:博士
  • 学科专业名称:流体力学
  • 学位年度:2004
  • 导师:刘宇陆
  • 学科代码:080103
  • 学位授予单位:上海大学
  • 论文提交日期:2003-12-01
摘要
孤立波,作为一种特殊的相干结构,反映了一类稳定的自然波动现象。本学位论文以源于实际水波和其它物理问题的2+1维(二个空间变量,一个时间变量)非线性波动模型(方程)为研究对象,深入研究了它们的求解问题,揭示出2+1维非线性波动模型不仅蕴涵比1+1维非线性波动模型更加丰富的相干结构,而且具有多种不同方式的相互作用性质。主要工作如下:
     第一部分:研究2+1维非线性波动模型的求解问题。在三个方面展开了工作:(1) 利用Hirota双线性方法进一步研究了2+1维Schrdinger方程,2+1维Maccari方程和2+1维破裂非线性波动方程,获得了具有不同特征并带有任意函数的广义dromion结构。(2) 反散射方法可以看成是非线性波动问题中的Fourier变换法,但分离变量法对非线性波动问题的推广直到最近才有所突破。变量分离法有效地解决了2+1维非线性波动模型的求解问题。我们分别利用Painlevé截断展开方法和齐次平衡方法实现了多类2+1维非线性波动模型,如2+1维Nizhnik-Novikov-Veselov方程,2+1维色散长波方程,2+1维长波短波共振作用方程,2+1维长色散波方程,2+1维广义Nizhnik-Novikov-Veselov方程等的变量分离求解,给出了一些新的结果,(3) 直接代数法在孤立波的求解中具有重要的地位,由于计算机符号软件的广泛应用,对直接代数法的完善、发展和应用起了很好的作用。我们对近年创立的Jacobi椭圆函数方法和形变映射方法作了介绍和讨论,并具体研究了多类2+1维非线性波动模型,如2+1维Nizhnik-Novikov-Veselov方程,2+1维长短波共振方程,2+1维破裂孤子方程,2+1维非线性Burgers方程,2+1维Wu-Zhang方程,2+1维Schr(o|¨)dinger方程,2+1维Boussinesq方程,给出了双周期波结构和迭加椭圆函数周期解。
     第二部分:研究不同类型的2+1维相干结构的构造和它们相互作用问题。在诸多专家学者相关研究工作的启示和基础上,从2+1维非线性波动方程的变量分离通用解表示出发,通过适当地选择这些任意函数,构造起2+1维非线性波动模型具有十分丰富的相干结构,包括多线孤立波解,多lump解,多solitoff解,多dormion解,多compacton解,多peakon解,多foldon解,格子dormion解,振荡型dormion解,环孤子解,运动和静止呼吸子解,瞬子解,双周期波斑图结构,混沌斑图结构,分形斑图结构等等。通过利用Maple,Mathematica等符号软件处理复杂的求解运算,极大地提高了研究工作的深入和效率。借助图形分析和数学解析法,对各种相干结构进行了分析研究,总结归纳了已经揭示的各类相干结构的特征和数学机理,而且许多是1+1维情形所没有的现象。Dromion为
    
    所有方向都呈指数衰减的相千局域结构,可以由直线孤子,也可以由曲线孤子
    形成,不仅局域在直线或曲线的交点,也可以存在与曲线的近邻点上.Solito仔是
    非局域的,除了一个特定方向外,其他所有方向都为指数衰减,二直线孤子由
    于共振的影响变为一半直线孤子一sollto任解.Dro而on格子为多dromion点阵.振
    荡形dromion解在空间某一方向上产生振荡.多团解,环孤子为非点状的局域激
    发,环孤子解在闭合曲线的内部不为零,闭合曲线外部指数衰减呼吸子无论幅
    度、形状、峰间的距离,峰的数目都进行了呼吸.瞬子的幅度随时间的变化而变
    化.周期性孤子解在空间分别呈现周期性特征.尖峰孤立子解在波峰处有一个尖
    点,其一阶导数不连续.紧孤立子解就是那些在某个有限区域上高度不为零,而
    在这个有限区域之外其高度为零的一类特殊行波.褶皱孤立波,可以在两个方向
    同时褶皱,也可以在一个方向褶皱.双周期波斑图结构在两个空间方向都表现为
    周期性,而且发现周期、振幅都可以变化.混沌斑图结构和分形斑图结构展示出
    孤立波形态中的混沌和分形特征.通过图形分析方法,本文还考察了多种2斗一1维
    相干结构之间的相互作用过程,发现2十1维相干结构的相互作用性质要比1+1维
    孤子丰富的多,其相互作用可以是弹性碰撞、非弹性碰撞和完全非弹性碰撞,
    并具有产生、湮没、分裂和聚合等等现象.
Solitary wave, which is a special coherent structures, describes a kind of stable nature wave phenomena. In this dissertation, the exact solutions of the 2+1-dimensional ( two spatial- dimensions and one time dimension) nonlinear wave models (equations) which originate from practical water wave and other physical problems are investigated by means of symbolic computation and the more abundant localized and non-localized coherent structures in 2+1-dimensional nonlinear wave models are revealed as well as the rich interaction properties for these structures are discussed.
    Part I devoted to investigated exact solutions of 2+1-dimensional nonlinear wave equations. (1) The Hirota bilinear method is improved and investigated several 2+1 dimensional nonlinear wave models, such as 2+1-dimensional Schrodinger equation, 2+1-dimensional Maccari equation and 2+1-dimensional breaking soliton equation, the generalized dromion structures with arbitrary functions are obtained and some characteristics are found. (2) The variable separation method is established to deal with 2+1-dimensional nonlinear wave models. The Painlevetruncated expansion approach and homogenous balance approach are employed respectively to explore the variables separation solution of 2+1-dimensional nonlinear wave models , such as 2+1-dimensional Nizhnik-Novikov-Veselov equation, 2+1-dimensional dispersive long wave equation, 2+1-dimensional resonant interaction between long and short wave equation, 2+1-dimensional long dispersive wave equation, 2+1-dimensional generalized Nizhnik-Novikov-Veselov equation, and a quite
     "universal " variable separation solution formula with several arbitrary function which is valid for a large classes of 2+1- dimensional nonlinear wave models is obtained. (3) The direct algebraic methods are generalized to solving 2+1-dimensional nonlinear wave models. The Jacobi elliptic function method and formal mapping method are introduced and discussed respectively and several class of 2+1-dimensional nonlinear wave models , such as 2+1-dimensional breaking soliton equation, 2+1-dimensional resonant interaction between long and short wave equation, 2+1-dimensional Nizhnik-Novikov-Veselov equation^ 2+1-dimensional Burgers equation, 2+1-dimensional Wu-Zhang equation, 2+1-dimensional Schrodinger equation, 2+1-dimensional Boussinesq equa-
    
    
    
    tion are studied by making use of Maple and mathematica. Their doubly periodic wave structures and line superposition periodic solutions of Jacobi elliptic functions which will change in their amplitudes, shapes and period are obtained.
    Partll is devoted to reveals the abundant coherent structures and interaction properties contained in 2+1-dimensional nonlinear wave equations. Prom the 'universal'variable separation solution of 2+1-dimensional nonlinear wave models and by introducing suitably these arbitrary functions, we constructed the considerable abundant coherent structures, including multi-line solitary wave solutions, multi-lump solutions, multi-solitoff solutions, multi-dromion solutions, multi-compacton solution, multi-peakon solution, multi-foldon solution, lattice dromiln solution, oscillating dromion solutions, ring-soliton solutions, motive and static breather solutions, instanton solutions, doubly periodic wave solutions, chaos pattern structures, fractal pattern structures and so on. The development of computer algebra and the application of Maple and Mathematica improve our study and enhance efficiency greatly. Based on the plots and mathematical analysis, we explored all this exotic coherent structures. Dromions are localized solutions decaying exponentially in all directions, which can be driven not only by straight line solitons but also by curved line solitons and can be located not only at the cross points of the lines but also at the closed points of the curves. The solitoff solution decays exponentially in all directions except for a preferred one, two straight line soliton become only one half straight line soliton because of the resonance effect. The dromion lattice is
引文
[1] G.B.惠瑟姆著,庄峰青,岳曾元译,线性与非线性波,科学出版社,(1986).
    [2] 郭秉荣编著,线性与非线性波导轮,气象出版社,(1990).
    [3] 梅强中著,水波动力学,科学出版社,(1984).
    [4] 陶明德编著,水波引论,复旦大学出版社,(1990).
    [5] 谷内俊弥,西原功休著,徐福元等译,非线性波动,原子能出版社,(1981).
    [6] V.I.Karpman, Nonhnear waves in dispersive media, Oxford Pergamon, (1975).
    [7] 倪皖荪,魏荣爵编著,水槽中的孤立波,上海科技教育出版社,(1997).
    [8] 郭柏灵编著,非线性演化方程,上海科技教育出版社,(1995).
    [9] 刘式达,刘式适编著,物理学中的非线性方程,北京大学出版社,(2000).
    [10] D.K.Campbell,非线性科学—从范例到实用,力学进展,1989,192.
    [11] R. Z. Sagdeev, Nonlinear Physics, London: HarwordAcademic Publishers, (1988).
    [12] Lui Lam, Introduction to Nonlinear Physics, Springer-Verlag Berlin Heildelberg New York,(1997)
    [13] 成思危,复杂性科学探素,民主与建设出版社,(1999)
    [14] 陆同兴,非线性物理概论,中国科学技术大学出版社,(2002).
    [15] 谷超豪等著,孤立子理论与应用,浙江科学技术出版社,(1990).
    [16] 李翊神编著,孤子与可积系统,上海科技教育出版社,(1999).
    [17] 刘式达,刘式适编著,孤波和湍流,上海科技教育出版社,(1997).
    [18] 刘式达,刘式适,谭本馗编著,国防工业出版社,(1996).
    [19] 黄念宁,孤子理论与微扰方法,上海科技教育出版社,(1997).
    [20] 谷超豪,胡and生,周子翔著,孤立子理论中的达布变换及其几何意义,上海科学技术出版社,(1990).
    [21] 陈陆君,梁昌洪,孤立子理论及其应用,西安电子科技大学出版社,(1997).
    [22] M. J. Ablowitz and H. Segur, Soliton and the Inverse Scattering Transform, SIAM, Philadelphia, (1981).
    
    
    [23] E.Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge: Cambridge University Press(1990).
    [24] M. Remoissent, Waves Called Solitons, Springer-Verlag, Berlin Heildelberg New York (1999)
    [25] P. G. Drazin and R. S. Johnson, Solitons:An Intruduction, Cambridge University Press(1989).
    [26] V. B. Matveev and M. A. Salle. Darboux transformation and solitons. Berlin: SpringerVerlag,(1991).
    [27] 何玉彬、李新忠,神经网络控制技术及其应用,科学出版社,2000.
    [28] M. J. Ablowitz, P. A. Clarkson. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge Unibersity Press,(1991).
    [29] A. Hasegawa and Y. Kodama, Solitons in Communications,Clarendon Press, Oxford,(1995); A. S. Davydov, Solitons in Molecular Systems, Kluwer Academic Publishers,(1991).
    [30] J. S. Russell, Report of the committee on waves, Rep. Meet, Brit. Assoc. Adv. Sci. 7th Livepool(1837)417, London, John Murray.
    [31] J. S. Russell, Report on Waves, Rep. 14th. meet. Brit. Assoc. Adv. Sci. York, London: John Murray (1844):311 London, John Murray.
    [32] G. G. Stockes, On adiffuiculty in the theory of sound, Phil. Mag., 23(1848): 349.
    [33] B. Reemann Uber die fortpflanzung ebener Luftwellen yon endlicher Schwingungsweite, Gttingen Abhandlungen, 8 (1858)4:3.
    [34] J. Boussinesq, Theorie de l'intumescencs liquid appelee ondesolitaire ou de translation, se propageant dans un canalrectangulaire, Comptes Rendus Acad. Sci. Paris,72 (1871) 755.
    [35] Lord Rayleigh, On Waves, Phil. Mag. 1(1876)257.
    [36] D. J. Korteweg and G. de Vries, On the Chang of form of long waveadavancing in a rectangular canal and on a new-type of long stationary waves, Phil. Mag. 39(1895)422.
    [37] R. M. Miura, Backlund transformations, Vol. 515 in Lecture Notes In Math, SpringerVerlag(Berlin),1976.
    [38] E. Fermi, J. Pasta and S Ulam, Studies of Nonlinear Problems, in collected papers of E. Fermi Vol. 2(1940)978, Univ. of Chicago Press(Chicago), 1962.
    [39] C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behaviour of collision free hydrodynamic waves and water waves, Courant Inst. Math. Sci. Res. Rep. NYO-9082, New York University, New York.
    
    
    [40] J. K.Perring and T.H.R.Skyrme,A model unified field equation, Nucl. Phys.31(1962)550.
    [41] N. J. Zabusky and M. D. Kruskal, Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15(1965)240.
    [42] M. Toda, Wave propagation in anharmonic lattices, J.Phys.. Soc. Jpn.23(1967)501.
    [43] A. C. Scott, F.Y.F.Chu and D.W.Mclaughlin, The soliton-A new concept in applied science, Proc. IEEE,61(1973) 1443.
    [44] D. H. Peregrine, Water waves, nonlinear SchrSdinger erquations andtheir solutions, J. Austral. Math. Soc. Ser. B, 25(1983)16.
    [45] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 72(1993)11:1661.
    [46] R. A. Kraenkel and A Zenchuk, Camassa-Holm equation:transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J.Phys. A:Math. Gen., 32(1999) 4733.
    [47] M. C. Ferriera, R. A.Kraenkel and A. Zenchuk, Soliton-Cuspon interaction for the Camassa-Holm equation, J. Phys. A: Math. Gen. 32(1999) 8665.
    [48] R. Beals, D. H. Sattinger and J.Szmigielski, Peakon-Antipeakon interaction, J. Of Nonlinear Math. Phys., 8(2001)23-27.
    [49] T. F. Qian and M. Y. Tang, Peakonsand periodic cus waves in ageneralized CamassaHolm equation, Chaos, Solitons and Fractals, 12(2001)1347.
    [50] Z. R. Liu and T. F. Qian, Peakonsof the Camassa-Holm equation, Appl. Math. Modelling, 26 (2002)473.
    [51] J. Schiff, The Camassa-Holm equation: a loop group approach, Phys. D, 121(1998)24.
    [52] J. P. Boyd, Peakonsand coshoidal waves: travelling wave solutions of the Camassa-Holm equation, Appl. Math. Comput., 81(1997) 173.
    [53] F. Cooper and H. Shepard, Solitons in the Camassa-Holm shallow water equation,Phys. Lett. A,194(1994)246.
    [54] P. Rosenau and J. M. Hyman, Compactons: Solitons with finite wavelength, Phys. Rev. Lett., 1993, 70(5): 564.
    [55] F. Cooper, P. Rosenau and J. M. Hyman, Compacton solutions in a class of generalized fifth-order KdV equation, Phys. Rev. E, 64(2001)026608.
    [56] P. Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett., 73(1994):1737.
    [57] M. Eleftheriou, B. Dey and G.P. Tsironis, Compactlike breather: Bridging the contin-
    
    uous with the anticontinuous limit, Phys. Rev. ,62(2000)7540.
    [58] P. Rosenau, Compact and compact dispersive patterns, Phys. Lett. A, 275(2000)193.
    [59] A. M. Wazwaz, Compactons and solitary patterns structures for variants of the KdV and the KP nequations, Appl. Math. Comput.,139(2003) 37.
    [60] A. M. Wazwaz, Compactons dispersive structures for variants of the K(n,m) and the KP nequations, Chaos, Solitons and Fractals, 13(2002) 1053.
    [61] A.M. Wazwaz, New solitary-wave special solutions with compact support for the nonlinear dispersive K(n,m) equations, Chaos, Solitons and Fractals, 13(2002)321.
    [62] Z. Y. Yan, New families of exact solitary pattern solutions for the nonlinearly dispersive R(m,n) equations, Chaos, Solitons and Fractals, 15(2003)891.
    [63] Z.Y. Yan, New families of solitons with compact support for Boussinesq-like B(m,n) equations with fully nonlinear dispersion, Chaos,Solitons and Fraetals, 14(2002)1151.
    [64] K. Konno, Y. H. Ichikawa and M. Wadati, Aloop soliton propagating long a stretched rope, J. Phys. Soc. Japn. 50(1981)1025
    [65] V. O. Vakanenko and E. J. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11(1998), 1457.
    [66] A. J. Morrison, V. O. Vakanenko and E.J. Parkes, The N loop soliton solution of the Vakhnenko equation, Nonlinearity, 12(1999), 1427.
    [67] H. Kahuhata and K. Konno, J. Phys. Soc. Jpn., 69(1999)757.
    [68] S. Matsutani, Mod. Phys. Lett. A, 10(1995)717; J. Geom. Phys., 43(2002) 146.
    [69] M. Schleif and R. Wunsch, Eur. Phys. J. A,1(1998)171; M. Schleif, R. Wunsch and T. Meissner, Int. J.Mod. Phys. E,7(1998)121.
    [70] C. S. Garner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving Korteweg-de Vries equation, Phys. Rev. Lett., 19(1967)1095.
    [71] P. D. Lax, Integrals of nonlinear equations of evolution and solitary wave, Comm. Pure Appl. Math., 21(1968)467.
    [72] V. E. Zakharov and A B. Shabat, Exact theory of two dimensional self vfocusing and one-dimensional self modulation of waves in the noonlinear media, Soviet Phys. J. E. T. P.,34(1972) 62.
    [73] M. Wadati, J. Phys. Soc. Jpn., 32(1972)1681.
    [74] M. J. Ablowitz, D.J. Kaup, A. c. Newell and H. Segur,The initial value solution for the Sine-Gordon equation, 30,(1973)1261; 31(1973)125.
    [75] H.D. Waklquit and F. B. Estabrook, J. Math. Phys., 16(1975)1; 17(1976) 1293.
    [76] M. J. Abolowitz, A. Ramani and H. Segur, J. Math. Phys., 21(1980) 715; 1014.
    
    
    [77] J. Weiss, M. Tabor and Carnevale, J. Math. Phys., 24(1983)522.
    [78] P. A. Clarkson, New similarity solutions of the modified Boussinesq equation, J. Phys. A: Math. Gen. 22 (1989)2355;
    P. A. Clarkson and M. D. Kruskal, New similarity solutions of the Boussinesq equation, J. Math. Phys. 30 (1989)2201;
    P. A. Clarkson, Painlevéanalysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, IMA J. Appl.Math. 44(1990)27;
    P. A. Clarkson, New exact solutions of the Boussinesq equation, Euro. J. Appl. Math. 1 (1990)279;
    P. A. Clarkson and P.Winternitz, Nonclassical symmetry reductions for the Kadomtsev Petviashvili equation,Physica D 49 (1991)257;
    P. A. Clarkson, Nonclassical similarity reductions and exact solutions of a generalized nonlinear SchrSdinger equation, Nonlinearity,5(1992)453;
    M. C. Nucci and P. A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions: an example of the Fitzhugh-Nagumo equation, Phys. Lett. A,164 (1992)49;
    P. A. Clarkson and S. Hood, Nonclassical symmetry reductions of the Zabalotskaya Khoklov equation, Euro. J. Appl. Math. 3 (1992)381;
    P. A. Clarkson and S. Hood, Symmetry reductions of a cylindrical nonlinear Schrdinger equation, J. Phys. A: Math. Gen.26 (1993)133;
    P. A. Clarkson and S. Hood, New Symmetry reductions and exact solutions of the Davey-Stewartson equations, Ⅰ, reductions to ordinary differential equations, J. Math., Phys. 35(1994)255.
    [79] S. Y. Lou, A note on the new similarity reductions of the Boussinesq equation, Phys. Lett. A, 151(1990) 133;
    S. Y. Lou, H.Y. Ruan, D. F. Chen and W. Z. Chen, Similarity reductions of the KP equation by a direct method, J. Phys. A: Math. Gen, 24(1991) 1455;
    S. Y. Lou,Similarity solutions of the Kadomtsev-Petviashvili equation, J. Phys. A; Math. Gen., 23(1990)L649;
    S. Y. Lou, H.Y. Ruan, D-f Chen and W-z Chen, Similarity reductions of the KP equation by a direct method,J. Phys. A: Math. Gen. 24(1991) 1455;
    S. Y. Lou, Generalized Boussinesq equation and KdV equation: Painlevéproperty, B?clund transformation and Lax pair, Scientia Sinica, 34 (1991) 1098;
    S. Y. Lou and H. Li, Similarity analysis for dispersive wave equations in shallow water,
    
    Commun. Theor. Phys. 18(1992) 165;
    S. Y. Lou, Nonclassical symmetry reductions for the dispersive wave equations in shallow water, J. Math. Phys. 33(1992) 4300;
    H. Y. Ruan and S. Y. Lou, Symmetry reductions of the Whitham-Broer-Kaup equations in shallow water, Acta Physica Sinica, 41(1992) 1213 (in Chinese);
    J. F. Zhang and J. Lin, Similarity solutions of the CNKG equation, Inter. J. Theor. Phys., 33(1993)39;
    H. D. Yu and J. F. Zhang, Similarity reduction of the super KdV equations, Appl. Math. Mech.,16(1995) 901;
    J. F. Zhang, Y. J. Zhu and J. Lin, Similarity reductions for the KZ equation, Commun. Theor. Phys., 24(1995)69;
    J. F. Zhang, X. J. Xu and D. S. Cheng, Symmetry Reductions of the Combined KdVmKdV Equation, Chinese Quarterly Journal of Mathematics, 10(1995)102;
    郑春龙,张解放,(2+1)维Camassa-Holm方程的相似约化和解析解,物理学报,51(2002)2426.
    [80] Y. Cheng and Y. S. Li, Phys. Lett. A,157(1991)22;
    J. Phys. A: Math. Gen., 25(1992)415;
    B. Xu and Y. S. Li, J. Phys. A: Math. Gen.,25(1992)2957;
    Y.B. Zeng, Physica D, 73(1994)171;
    B. Konopelchenko and Strampp, J. Phys. A: Math. Gen., 25(1992)4399;
    S. Y. Lou and X. Y. Tang, Conditional Similarity Reduction Approach: Jimbo-Miwa equation, Chinese Phys., 10(2001)897;
    X. Y. Tang and S. Y. Lou, Conditional similarity solutions of(2+1)-dimensional general nonintegrable KdV equation, Commun. Theor. Phys., 37(2002)139.
    [81] S. Hood, New exact solutions of Buegers's equation-anextension to the direct method of Clarkson and Kruskal, J. Math. Phys., 36(1995)1971.
    [82] A. V. Bcklund, Universitets Arsskrift10,(1885)
    [83] H. D. Wahlquist and F.B. Estabrook, Phys. Rev. Lett., 31(1973)1386.
    [84] G. Darboux, Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences, Paris, 94(1882) 1456.
    [85] M. Wadati et al., Prog. Theor. Phys., 53(1975)418.
    [86] C. H. Gu,11 (1986) 31; 3251;
    C. H. Gu and Z. X. Zhou, Lett. Math. PHYS., 13(1987) 179; 32(1994) 1.
    [87] M. L.Wang, The solitary wave solutions for variant Boussinesq equations.
    
    Phys. Lett. A, 199(1995) 169;
    M. L. Wang, Exact solutions for the RLW-Burgers equation,Mathematica Application,8 (1995) 51;
    M. L. Wang, Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A, 213(1996) 279-287;
    M. L. Wang, Y. B. Zhou, Z. B. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A, 216(1996) 67;
    M. L. Wang, Y. B. Zhou, Z. B. Li, A nonlinear transformation of the dispersive long wave equations in (2+1) dimensions and its application. J of Nonlinear Math. Phys., 5(1998) 120;
    王明亮,周宇斌,一个非线性波动方程的精确解,物理学报,32(1996)1.
    [88] Y. T. Gao and B. Tian, J. Phys. A: Math. Gen., 29(1996)2895; Compu. Math. Appl., 30(1995)97.
    [89] E. G. Fan, Two application of the homogeneous balance method, Phys. Lett.A, 245(1998)353;
    E. G. Fan and H. Q. Zhang, New exact solutions to a system of coupled equations. Phys. Lett. A, 245 (1998) 389;
    范恩贵,张鸿庆,非线性波动方程的孤波解,物理学报,46(1997)1254;
    范恩贵,张鸿庆,非线性孤子方程的齐次平衡法,物理学报,47(1997)0353;
    范恩贵,齐次平衡法,Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间的联系,物理学报,491409;
    徐炳振,李悦科,阎循领,一类五阶非线性演化方程的新孤波解,物理学报,范恩贵,47(1998)1946.
    [90] 张解放,长水波近似方程的多孤子解,物理学报,47(1998)1416-20;
    J.F.Zhang,Multiple soliton solutions of the dispersive long way equations, Chin. Phys. Lett.,16(1999)4; J. F. Zhang, New solitary wave solution of the combined KdV and mKdV equation. Int. J. Theor. Phys, 1998; 37: 1541.
    [91] C.W.Cao, X. G. Geng, in :C.H. Gu, Y. S. Li, G. Z. Tu, (Eds.), Nonlinear Physics, Research Reports in Physics, Springer, Berlin, (1990)68;
    C. W. Cao, Sci. Sci. China A, 33(1990)528;
    C. W. Cao and X. G. Geng, J. Phys. A:math. Gen., 23(1990)4117;
    M. Antonpwiwicz and S. Rauch-Wojciechowski, J. Phys. A: Math. Gen., 24(1991) 5043;
    J. Math. Phys., 33(1992)2115.
    [92] Y. Cheng and Y. S. Li, The constraint of the KP equation and its special solutions, Phys.
    
    Lett. A, 157(199122;
    J. Phys. A: Math. Gen., 25(1992)419;
    Y.B. Zeng,Physica D,73(1994)45;
    Y. Cheng, Constraint ofintegrable systems:from higher to lower dimensions, Phys. Lett. A,166(1992)217;
    B. Konopelchenko and V. Dubrovsky, Phys. Lett. A,157(1991)17;
    B. Konopelchenko and W. Strampp, Phys. Lett. A, 102(1984)17;
    B. Konopelchenko and W. Strampp, J. Phys. A: Math. Gen., 25(1992)4399.
    [93] L. L. Chen and S.Y. Lou, Explicit solutions of the KdV-Burgers and Modified KdVBurgers equations with background interactions,Acta Sinica Physica,8(1999)285;
    S.Y. Lou and L.L. Chen, Formally variable separation approach for nonintegrable models, J. Math. Phys.40(1999)6491;
    S.y. Lou, X.Y. Tang and J. Lin, Exact solutions of the coupled KdV system via a formally variable separation approach, Commun. Theor. Phys.,36 (2001)145.
    [94] C. Z. Qu, S. L. Zhang, and Q. J. Zhang, Integrability of Models Arising from Motions of Plane Curves, Z. Naturforsch, 58a (2003) 75;
    S.L. Zhang, S. Y. Lou and C. Z. Qu, Variable separation and exact solutions to generalized nonlinear diffusion equations, Chin. Phys. Lett., 19 (2002) 1741;
    P.G. Estévez, C.Z. Qu, and S. L. Zhang, Separation of variables of a generalized porous medium equation with nonlinear source, J. Math. Anal. Appl. 275 (2002)44.
    [95] S. Y. Lou and J.Z. Lu, Special solutions from variable separation approach: DaveyStewartson equation, J. Phys. A: Math. Gen. 29 (1996) 4209;
    S. Y. Lou, On the coherent structures of the Nizhnik-Novikov-Veselovequation, Phys. Lett. A, 277(2000)94.;
    S. Y. Lou and H. Y. Ruan, Revisiation of the localized excitations of the (2+1)dimensional KdV equation, J. Phys. A: Math. Gen., 34(2001) 305.
    [96] J. F. Zhang, Exotic Localized Coherent Structures of the (2+1)-Dimensional Dispersive Long-Wave Equation, Commun. Theor. Phys., 37(2002)277;
    张解放,韩平(2+1),维 Broer-Kaup方程的局域相干结构,物理学报,51(2002)705.
    [97] S. Y. Lou, Dromions, dromions lattice, breathers and instantons of the DaveyStewartson equation, Physica Scripta, 65(2002)7;
    S. Y. Lou, X. Y. Tang and J. Lin, Exact solutions of the coupled KdV system via a formally variable separation approach,Commun.Theor. Phys. 36 (2001) 145;
    H. Y. Ruan and X. Y. Chen, Ring solitons,dromions,breathers and instantons of the NLS equation, Acta Physica Sinica, 50(2001)586;
    
    
    S. Y. Lou, J. Lin and X. Y. Tang, Painlevéintegrability and multi-dromion solutions of the 2+1 dimensional AKNS system, Eur. Phys. J. B, 22 (2001) 473;
    H. Y. Ruan, Y. X. Chen and S. Y. Lou, General symmetry approach to solve variablecoefficient nonlinear equations, Commun. Theor. Phys. 35 (2001) 641;
    X. Y. Tang, C. L. Chen and S. Y. Lou, Localized solutions with chaotic and fractal behaviours in a (2+1)-dimensional dispersive long-wave system, J. Phys. A: Math. Gen.,35 (2002) L293;
    S. L. Zhang, B. Wu and S.Y. Lou, Painlevéanalysis and special solutions of generalized Broer-Kaup equations, Phys. Lett. A, 300(2002) 40;
    X. Y. Tang and S. Y. Lou, Abundant coherent structures of the dispersive long-wave equation in(2+1)-dimensional spaces, Chaos, Solitons and Fractals 14 (2002) 1451;
    S. Y. Lou, X. Y. Tang and C. L. Chen, Practal solutions of the Nizhnik-Novikov-Veselov equation, Chin. Phys. Lett.,19 (2002)769;
    S. Y. Lou, C. L. Chen and X. Y. Tang, (2+1)-dimensional (M+N)-component AKNS system: Painlevéintegrability, infinitely many symmetries and similarity reductions, J. Math. Phys. 43(2002)4078;
    X. Y. Tang and S. Y. Lou, A variable separation approach for integrable and nonintegrable models: coherent structures of 2+1 dimensional KdV equation, Commun. Theor. Phys.38 (2002) 1;
    X. Y. Tang, S. Y. Lou and Y. Zhang, Localized exicitations in (2+1)-dimensional systems, Phys. Rev. E, 66 (2002) 046601;
    C. L. Chen, X. Y. Tang and S. Y. Lou, Exact solutions of (2+1)-dimensional dispersive long wave equation, Phys. Rev. E, 66 (2000) 036605;
    S. L. Zhang, S. Y. Lou and C. Z. Qu, Variable separation and exact solutions to generalized nonlinear diffusion equations, Chin. Phys. Lett. 19 (2002) 1741;
    S. Y. Lou, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, J. Phys. A: Math. Gen. 35 (2002)10619;
    J. Lin, Dromion and multi-soliton Structures of the (2+1)-dimensional higher-order Broer-Kaup system, Chin. Phys. Lett. 19(2002)765;
    S. Y. Lou, X. Y. Tang, X. M. Qian, C. L. Chen, J. Lin and S. L. Zhang, New Localized Excitations in (2+1)-Dimensional Intergrable Systems, Mod. Phys. Lett. B, 28 and 29(2002) 1075;
    J. Lin and H.M. Li,Painleve Integrability and Abundant Localized Structures of (2+1)dimensional Higher-Order Broer-Kaup System, Z. Naturforsch., 57a(2002)929;
    
    
    C. L. Chen and S. Y. Lou, Soliton excitations and periodic waves without dispersion relation in shallow water system, Chaos, Solitons and Fractals, 16 (2003) 27;
    X. Y. Tang and S. Y. Lou, Variable separation solutions for the (2+1)-dimensional Burgers equations, Chin. Phys. Lett., 3 (2003) 335;
    X. Y. Tang, S. Y. Lou and Y. Zhang,(1+1)-dimensional turbulent and chaotic systems reduced from (2+1)-dimensional Lax integrable dispersive long wave equation, Commun.Theor. Phys. 39 (2003)129;
    S. Y. Lou, Localized excitations of the (2+1)-dimensiona sine-Gordon system, J. Phys. A: Math. Gen, 36 (2003) 3877;
    J. Lin and X. M. Qian, The interactions of localized coherent structures for a (2+1)dimensional system, Phys. Lett. A. 313(2003) 93;
    X. Y. Tang and S. Y. Lou, Folded Solitary Waves and Foldons in (2~1) Dimensions, Commun. Theor. Phys. 40 (2003) 62;
    X. Y. Tang, What will happen when a dromion meets with a ghoston? Phys. Lett. A, 314 (2003) 286.;
    H. C. Hu, S. Y. Lou and Q.P. Liu, Darboux transformation and variable separation approach: the Nizhnik-Novikov-Veselov equation, Chin. Phys. Lett. 20(2003)1413;
    X. Y. Tang and S. Y. Lou, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems, J. Math. Phys. 44 (2003) 4000;
    J. F. Zhang, W. H. Huang and C. L. Zheng, Exotic localized coherent structure of new(2+1)-dimensional soliton equation, Commun. Theor. Phys., 38(2002)517;
    C. L. Zheng and J. F. Zhang, General solution and fractal localized structures for the (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system, Chinese Physics Letters, 19(2002) 1399;
    张解放,黄文华,郑春龙,一个新(2+1)维非线性演化方程的相干结构,物理学报,51(2002)2676;
    C. L. Zheng, W. H. Huang and J. F. Zhang, General solution and localized coherent soliton structures of (2+1)-dimensional GDS equation,Commun. Theor. Phys., 38(2002)653;
    C. L. Zheng and J. F. Zhang, Exact excitation and abundant localized coherent structures of the (2+1)-dimensional perturbed AKNS system, Commun. Theor. Phys., 39(2003):9;
    C. L. Zheng, J. F. Zhang and Z. M. Sheng, Chaos and fractals in (2+1)-dimensional soliton system, Chinese Physics Letter, 20(2003)1399;
    
    
    C. L. Zheng, J. F. Zhang, Z. M. Sheng and L. Q. Chen Liqun, Soliton in a generalized (2+1)-dimensional AKNS system, Chinese Physics, 12(2003)472;
    J. F. Zhang and J. P. Meng, Abundant localized coherent structures of the(2+1)- dimensional generalized NNV system, Chinese Physics Letter, 20(2003):1006;
    J. F. Zhang, J. P. Meng and W. H. Huang, A new class of coherent localized structures for the Maccari system, Commun. Theor. Phys., 40(2003)443;
    H. Y. Ruan, Interaction between line and Y-periodic soliton: solution to the asymmetric Nizhnik-Novikov-Veselov equation, Phys. Scripta, 67(2003)240;
    阮航宇,陈一心,2+1维Nizhnik-Novikov-Veselov方程孤子相互作用的探索,物理学报, J. F. Zhang and C. L. Zheng, New Coherent Structures in the generalized (2+1)dimensional NNV system, Chin. J. Phys., 41 (2003) 242;
    J. F. Zhang, Z. M. Lu and Y. L. Liu, Folded solitary waves and foldon in the (2+1)- dimensional long dispersive wave equation, Znaturforsch, 58a(2003)280;
    张解放,刘宇陆,寻找具有三个任意函数的变系数KdV-MKdV方程的类孤波解的新方法,应用数学和力学,24(2003)1114;
    J. F. Zhang, C. L. Zheng, Abundant localized coherent Structures for the (2+1)dimensional long dispersive wave system, J. of Hydrodynamics, 15 (2003) 75. 52(2003)1313;
    张解放,刘宇陆,高阶(2+1)维Broer-Kaup方程的局域相干结构,应用数学和力学,23(2002)489;
    J. F. Zhang, Y. L. Liu, Bcklucd transformation and localized coherent structures for(2+1)-dimensional asymmetric Nozhnik-Novikov-Veselov equation,Journal of shanghai University(English Edition), 6(2002)191.
    [98] J. D. Cole, On a quasilinear parabolic equation occuring in aerodynamics, Q. Appl. Math., 9(1951)225.
    [99] E. Hopf, The partial differential equation u_t+uu_x=μu_(xx), Commun. Pure Appl. Math., 3(1950)201.
    [100] R. M. Miura, J. Math. Phys., 9(1968)1202.
    [101] M. J. Ablowitz et al., J. Math. Phys., 20(1971)991.
    [102] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27(1971)1192;
    R. Hirota, Exact N-soliton of the wave equation of long waves in a shallow water and in nonlinear lattices, J. Math. Phys.,14(1973)810;
    Y. Matsuno, Bilinear Transformation Method, Academic,(1984). R. Hirota, Exact
    
    envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys.,14(1973)805.
    [103] X. B. Hu, J. Phys. A: Math. Gen., 30(1997)8225;
    X. B. Hu and Z. N. Zhu J. Phys. A: Math. Gen.,31(1998) 4755; J. Math. Phys., 39(1998) 4766;
    X. B. Hu and H. W. Tam, Rep. Math. Phys., 46(2000)99; Inver. Probl.,317(2001)319.
    [104] W. Hereman, P. P. Banerjee and A. Korpel, Wave motion,7(1985)283;
    W. Hereman, P. P. Banerjee and A. Korpel, G. Assanto, A. Van Immerzeele and A. Meerrpoel, J. Phys. A: math. Gen., 23(1990) 607;
    W. Hereman, P. P. Banerjee and A. Korpel, M. R. Chatterjee, J. Phys. A: math. Gen., 22(1989) 241;
    W. Hereman, M. Takaoka, J. Phys. A: math. Gen., Solitary wave solution of nonlinear evolution and wave equations using a direct method and MACSYMA, J. Phys. A: math. Gen., 23(1990)4805;
    W. Hereman, Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA. Comp. Phys. Commun, 65 (1996) 143;
    M. Panigrahi and P. C. Dash, Phys. Lett. A, 261(1999)6284;
    E. Belokolos, A. Bobenko, V. Enol'skij, A. Its, V. B. Matveev. Algebro-Geometrical approach to nonlinear integrable equations. Berlin: Springer; 1994.
    [105] 徐桂琼,李志斌,构造非线性发展方程孤波解的混合指数方法,物理学报,51(2002)946;
    扩展的混合指数方法及其应用,物理学报,51(2002)1424;
    P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, N. A. Kostov. Quasi-periodic solutions of the coupled nonlinear Schrodinger equations. Proc. R. Soc. London A Math 451(1995)685;
    M. S. Alber, Y. N. Fedorov, Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. Inverse Probl, 17(2001) 1017;
    W. Malfiet. Solitary wave solutions of nonlinear wave equations. Am. J. Phys, 60(1992)650;
    E. J. Parkes, B. R. Duffy. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun., 98(1996)288;
    E. J. Parkes. Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A, 27(1994)L497;
    E. G. Fan. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 277(2000)212;
    E. G. Fan. Traveling wave solutions for nonlinear equations using symbolic computation. Comput. Math. Appl, 43 (2002) 671;
    
    
    Y. X. Yao, Z. B. Li. New exact solutions for three evolution equations. Phys. Lett. A, 297(2002) 196.
    [106] H. B. Lan and K. L. Wang, Exact solutions of two nonlinear equation: Ⅰ, J. Phys. A: Math. Gen., 23(1990)4097;
    Exact solutions of two nonlinear equation: Ⅰ, J. Phys. A: Math.Gem, 23(1990)3923.
    [107] G.X. Huang, S. Y. Lou and X. X. Dai, Exact and explicit solitary wave solutions to a model equation for water waves, Phys. Lett. A 139 (1989)373;
    G.X. Huang, S. Y. Lou, X. X. Dai and J. R. Yan, A model equation and its exact twodimensional solitary wave solution for wave dynamics, Chin. Phys. Lett. 6(1989) 393.
    [108] A. V. Porubov, Exact traveling wave solutions of nonlinear evolution equation of surface-waves in a convecting fluid. J. Phys. A, 26(1993)L797-800;
    Periodical solution to the nonlinear disspative equation for surface waves in a convecting liquid layer, Phys, lett. A,221(1996)391;
    A. V. Porubov and D. F. Paeke, Some general periodic solutions to coupled nonlinear Schrodinger equations. Wave Motion, 29(1999)97-109.
    [109] S. K. Liu, Z. T. Fu, S. D. Liu and Q. Zhao, Jacobi Elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289(2001)69;
    Z. T. Fu, S. K. Liu, S. D. Liu and Q. Zhao, New Jacobi Elliptic function expansion method and new periodic solutions of nonlinear wave equations, Phys. Lett. A, 290(2001)72;
    刘式适,傅遵涛,刘式达,赵强,Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用,物理学报,50(2001)2068;
    刘式适,傅遵涛,刘式达,赵强,一类非线性方程的新周期解,物理学报,51(2002)10;
    刘式达,傅遵涛,刘式适,赵强,非线性波动方程的Jaconbi椭圆函数包络周期解,物理学报,51(2002)718;
    E. J. Parkes, B. R. Duffy and P. C. Abbott, The Jacobi elliptic -function method for finding periodic-wave solutions to nonlinear evilution equations, Phys. Lett. A, 295280.
    [110] E. Q. Fan and J. Zhang, Applicationsof the Jacobi elliptic function method to specialtype nonlinear equations, Phys. Lett. A, 305(2002)383;
    E. Q. Fan and B. Y. C. Hon, Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems, Phys. Lett. A, 292(2002)335.
    [111] Z. Y. Yan, The extended Jacobi elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV equation, Chaos, Solitons and Fractals,15(2003) 575;
    Extended Jacobi elliptic function expansion algorithm with symbolic computa-
    
    tion to construct new doubly-periodic solutions of nonlinear differential equaitons, Compu. Phys. Commun., 148(2002)30.
    [112] S. Y. Lou and G. J. Ni, The relations among a special type of solutions in some (D+1) dimensional nonlinear equations, J. Math. Phys.,30 (1989) 1614;
    Deforming some special solutions of sine-Gordon equation to that of double sine-Gordon equation, Phys. Lett. A, 140(1989) 33;
    Deformation theory among traveling wave solutions of KdV equation and high order KdV equation, Acta Physica Sinica, 40 (1991) 513 (in Chinese).
    [113] E. Q. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons and Fractals, 16(2003) 819;
    An Algebraic method for finding a series of exact solutions to integrable and noningrable nonlinear evolution equations, J. Phys. A: Math. Gen., 36(2003) 7009.
    [114] M. Boiti, J. J. P. Leon, L. Martina and F. Pempinelli, Scattering of localized solitons in the Plane, Phys. Lett. A, 132(1988)432;
    M. Boiti, J. J. P. Leon and F. Pempinelli, Multidimensional solitons and their spectral transforms, J.Math. Phys., 31(1990)2612;
    M. Boiti, J. J. P. Leon, Martina and F. Pempinelli, Dynamics of Multidimensional solitons Phys. Lett. A,132 (1991)55;
    M. Boiti, B. G. Konopelchenko and F. Pempinelli, Bcklund transformation via guage transformation in 2+1 dimensions, Inverse Problems, 1(1985)33;
    [115] A. S. Fokas and P. M. Santini, Coherent structures in multidimensions, Phys. Rev. Lett., 63(1989)1329;
    On the simplest integrable equationin 2+1 dimensions, Phyisica D, 44(1990)99.
    [116] J. Hietarinta and R. Hirota, Multidromion solutions to the Davey-Stewartson equation, Phys. Lett. A, 145 (1990)237;
    J. Hietarinta, One-dromion solutions for generic classes of equations, Phys. Lett. A,149(1990) 113.
    [117] R. Radha and M. Lakshmanan, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations, J. Math. Phys., 35 (1994)4746.
    [118] R. Radha and M. Lakshmanan Dromion like structures in the (2+1)-dimensional breaking soliton equation, Phys. Lett. A, 197(1995)7.
    [119] R. Radha and M. Lakshmanan, Exotic coherent structures in the (2+1)-dimensional long dispersive wave equation, J. Math. Phys., 38(1997)292.
    
    
    [120] R. Radha and M. Lakshmanan, The (2+1)-dimensional sine-Gordon equation; integrability and localized solutions, J. Phys. A, 29(1996)1551.
    [121] R. Radha and M. Lakshmanan, A new class of induced localized structures in the (2+1)dimensional scalar nonlinear SchrSdinger equations, J. Phys. A, 30(1997)3229;
    Localized coherent structures and integrability in a generalize (2+1)-dimensional nonlinear Schrdinger equation, Chaos, Solitons and Fractals, 8(1997)17.
    [122] S. Y. Lou Generalized dromion solutions of the(2+1)-dimensional KdV equation. J. Phys. A, 28(1995)7227.
    [123] S. Y. Lou, On the dromion solutions of the potential breaking soliton equation, Commun. Theor., 26(1996)487.
    [124] R. Radha and M. Lakshmanan, Generalized dromions in the (2+1)-dimensional long dispersive wave(2LDW) and scalar nonlinear SchrSdinger (NLS) equations, Chaos, Solitons and Fractals, 10(1999)1821.
    [125] S. Y. Lou, Dromion-like structures in a (3+1)-dimensional KdV-type equation, J. Phys. A, 29(1996) 5989.
    [126] 阮航宇,可积模型中孤子相互作用的研究,物理学报,2001,50,3:369;
    阮航宇,2+1维NLBQ方程和KP方程的多Dromion结构和相互作用的研究,物理学报,1999,48,10:1781;
    H. Y. Ruan and S. Y. Lou, Higher-dimensional dromion structures: Jimbo-MiwaKadomtsev-Petviashvili system, J. Math. Phys., 38(1997) 3123.
    [127] S. Y. Lou, Some special types of multisoliton solutions of the Nizhnik-Novikov-Veselov equation, Chin. Phys. Lett. 11(2000)781;
    J. Lin, S. Y. Lou and K. L. Wang,Multi-soliton Solutions of the KonopelchenkoDubrovsky Equation, Chin. Phys. Lett. 18(2001) 1173;
    L. Y. Wang and S. Y. Lou, Some special types of solitary wave solutions for the (3+1)dimenaional Kadomtsev-Petviashvilli equation, Commun. Theor. Phys. 33 (2000) 683;
    J. P. Ying and S. Y. Lou, Abundant Coherent Structures of the (2+1)-dimensionalBroer-Kaup-Hupershmidt Equation, Z.Naturforsch. 56a (2001) 619;
    H. Y. Ruan and S. Y. Lou, Dromion structure of (2+1)-dimensional sine-Gordon system, Commun. Theor. Phys., 32 (1999) 109;
    H. Y. Ruan and Y. X. Chen, The study of dromion interactionsof of (2+1)dimensionalintegrable system, J. Math. Phys., 40(1999)248;
    H. Y. Ruan and Y. X. Chen, Interaction of solitons in (2+1)-dimensional integrable models, Phys. Scripta, 66(2002)254;
    
    
    J. F. Zhang, Generalized dromion structures of new (2+1)-dimensional nonlinear evolution equation, Commun. Theor. Phys., 35(2001)267;
    J. F. Zhang and W. H. Huang, Multisoliton solution of the (2+1)-dimensional KdV type equation, Commun. Theor. Phys., 36(2001)523;
    J. F. Zhang, Soliton-like solutions for the (2+1)-dimensional nonlinear evolution equation, Commun. Theor. Phys., 32(1999)315.;
    J. F. Zhang and F. M. Wu, Bcklund transformation and multiple soliton solutions for the (3+1)- dimensional JM equation, Chinese Physics, 11(2002)425;
    J. F. Zhang and F. J. Chen, Abundant muitlsoliton structures of the generalized NNV equation, Commun. Theor. Phys., 38(2002)395.
    [128] X. G. Geng and C. W. Cao, Quasi-periodic solutions of the modified KadomtsevPetviashvili equation, J. Phys. A: Math. Gen., 32(1999)3733;
    X. G. Geng, Y. T. Wu and C. W. Cao, Quasi-periodic solutions of the 2+1 diemnsional modified Korteweg-de Vries equation,Phys.Lett.A, 261(1999)289;
    X. G. Geng and X. M. Li, Explicity solutions for some (2+1)-diemnsional nonlinear evolution equations, J. Phys. A: Math. Gen., 34(2001)9653;
    X. G. Ceng, C. W. Cao and H. H. Dai, Quasi-periodic solutions for some (2+1)diemnsional integrable models generated by the Jaulent-Miodek hierarchy, J. Phys. A: Math. Cen., 34(2001)989;
    C. W. Cao, X. G. Geng and H. Y. Wang, Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, J. Math. Phys., 43(2002)621.
    [129] B. B. Kadomtsev and V. I. Petviashavili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl.,15(1970)539;
    M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 91(1979) 691;
    R. S. Johnson, Water waves and Korteweg-de Vries equations, J. Fluid Mech., 97 (1980)701.
    [130] F. Calogero and A Degasperis Nuov Cimento B31(1976) 201; B39(1977)54.
    [131] L. P. Nizhnik, Sov. Phys. Dolk., 25(1980) 706;
    A. P. Veselov and S. P. Novikov, Sov. Math. Dolk., 30(1984) 588, 705;
    S. P. Novikov and A. P. Veselov, Physica D, 18(1986) 267.
    [132] M. Boiti, J. P. P. Leon, M.Manna and F. Peminelli, Inverse problem, 2(1986) 2271; 3(1987)25.
    [133] R. Grimshaw, Evolution equations for weakly nonlinear, long internal waves in a ro-
    
    tating fluid, Stud. Appl. Maths.,73(1985)1;
    R. Grimshaw and W. K. Melville, On the derivation of the modified KP equation, Stud. Appl. Maths. ,80(1989) 183.
    [134] R. S. Johnson, A two-diemnsional Boussinesq equation for water wavesand some of its solutions, J. Fluid Mech., 323(1996)65.
    [135] Yaotsu Wu and Jin E.Zhang, On modeling nonlinear long waves, SIAM, In Mathematics is for Solving Problems, Edited by p. Cook, V. Roytburd, L.Pamela Cook and M. Tulin,(1996)233.
    [136] D. J. Benney and G. J. Roskes, Stud. Appl. Math.,4891969) 337;
    A. Davey and K. Stewartson, Proc. R. Soc. A,338(1974)101;
    V. E. Zakharov, Stability of peridic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 2(1968)190.(From Russian)
    [137] M. Okiawa, M. Okamura and M. Funakoshi, Two-dimensional resonant interaction between long and short waves, J. Phys. Soci. Jpn.,58(1989)4416.
    [138] R. A. Kraenkel and A Zenchuk, Two-diemnsional integrable generalization of the Camassa-Holm equaation, Phys. Lett. A, 260(1999)218.
    [139] D. K. Ludlow, P. A. Clarkson and A. P. Bassom, Similarity reductions and exact solutionsfor the two-dimensional incompressible Navier-Stockes equations, Studies in Appl. Math.,103(1999)183.
    [140] 张解放,陈芳跃,截断展开方法和广义变系数KdV方程新的精确类孤子解,物理学报,50(2001)1648;
    陈凤娟,张解放,(2+1)维广义变系数KP方程的类孤子解,兵工学报,24(2003)389.
    [141] J. F. Zhang, Homogenous Balance method and chaotic and fractal solutions for the NNV equation, Physics Letter A, 2003,313:401.;
    Abundant exact solution structures of the Nizhnik-Novikov-Veselov equation, Chin. Phys.,10 (2001)893.
    [142] J. F. Zhang, C. L. Zheng, J. P. Meng and J. P. Fang, Chaotic Dynamic Behavior in Soliton Solutions for a new -(2+1)-Dimensional Long Dispersive Wave System, Chin. Phys. Lett., 20 (2003)448;
    J. F. Zhang, Z. M. Lu and Y. L. Liu, Folded solitary waves and foldon in the (2+1)dimensional long dispersive wave equation, Znaturforsch, 58a(2003)280.
    [143] W. H. Huang, J. F. Zhang and S. M. Sheng, Coherent soliton structures of the -(2+1)dimensional long waves-short waves interaction equation, Chin. Phys., 11(2002)1101
    [144] J. F. Zhang and C. L. Zheng, New Coherent Structures in the generalized (2+1)-
    
    dimensional NNV system, Chinese Journal of Physics, 41(2003)242;
    J. F. Zhang, Bcklucd transformation and variable separation solutions for generalized Nozhnik-Novikov-Veselov equation, Chin. Phys., 11 (2002)651.
    [145] 来娴静,张解放,2+1维非线性方程的双周期波和孤立波解,(2003)待发.
    [146] 马正义,郑春龙,张解放,(2+1)维非线性演化方程的形式新解,(2003)待发.
    [147] A. Khare and U. Sukhatme, Linear Superposition in Nonlinear Equations, Phys. Rev. Lett., 88(2002) 244101;
    F. Cooper, A. Khare and U.Sukhatme, Periodic solutions of nonlinear equations obtained by linear superposition, J. Phys. A: Math. Gem., 35(2002) 10085;
    A. Khareand and U. Sukhatme, Cyclic identities involving Jacobi elliptic functions, J. Math. Phys., 43(2002) 3798.
    [148] J. F. Zhang and X. J. Lai, An alternative construction of linear superposition periodic solutions to nonlinear equations, (2003)In press.
    [149] J. F. Zhang, Generalized dromions of the (2+1)-dimensional SchrSdinger equation, Communication in Nonlinear Science and Numerical Simulation, 6(2001)50.
    [150] J. F. Zhang, Generalized dromion structures of new (2+1)-dimensional nonlinear evolution equation, Commun. Theor. Phys. 35(2001)267.
    [151] J. F. Zhang, Extotic cohrent structures in the (2+1)-dimensinal breaking soliton equation, International Journal of Theoretical Physics, 38(1999)2253;
    张解放,韩平,(2+1)维Broer-Kaup方程的广义dromion孤子解结构,原子与分子物理学报,18(2001)216.
    [152] E. N. Lorentz, Deterministic nonperiodic flow, J. Atmos. Sci., 20(1963) 130.
    [153] O. E. Rssler, An equation for continuous chaos, Phys. Rev. Lett., 64(1976)397.
    [154] 王东生,曹雷,混沌、分形及其应用,中国科技大学出版社,(1995).
    [155] 阮航宇,高维模型的可积性和孤子相互作用性质的研究,博士论文,浙江大学,2000年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700