用户名: 密码: 验证码:
基于光谱和高光谱图像技术的蚕茧品质无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栽桑养蚕是我国的传统经济农业,在出口创汇和国民经济发展等方面发挥了重要的历史作用,一直受到国家的重视和扶持。作为蚕桑产业最主要的产物,蚕茧一方面作为商品进行市场流通,另一方面作为缫丝工业的原料生产丝制产品。所以对于蚕茧品质的精确评价,不仅可以作为蚕茧定价的依据,还可以根据不同等级的蚕茧原料生产不同品质的生丝。但是随着市场经济的发展和科学技术的进步,我国现行的蚕茧质量评价方法呈现了操作复杂、执行率低、科技化和自动化水平差等问题,已无法满足国际市场交易和缫丝工业对原料的需求。作为世界上最大的蚕茧生产和出口国,我国在国际市场上不仅需要数量上的绝对优势,在原料和产品质量方面也需要形成有效的竞争力。为了维护我国蚕桑生产的国际地位,有必要加强对蚕茧品质检测的研究和推广,提高蚕茧生产和管理的信息化水平,提升蚕茧品质与丝制产品增值效应,促进蚕桑产业的进一步发展。本论文基于我国现行的蚕茧质量评价标准,结合在蚕茧产销过程中存在的一些实际情况,进行了蚕茧品质无损检测方面的研究,主要研究内容和成果如下:
     (1)采用400~1000nm波段的可见/近红外光谱技术分别对鲜茧和干茧的上蔟时间进行了检测。选用基线校正对光谱信号进行了预处理,通过无信息变量消除法(UVE)结合连续投影算法(SPA)分别提取了对应的特征波长,并基于特征波长建立了Bayes判别方法,对鲜茧上蔟时间的预测准确率为91.11%,对干茧上蔟时间的预测准确率为75.56%。说明基于可见/近红外光谱的蚕茧上蔟时间检测具有一定的可行性,且检测效果较好。
     (2)应用回归系数法(RC)和CARS变量选择法结合SPA对1250~2500nm波段的光谱数据进行了特征波长选取,分别建立了基于近红外光谱技术的鲜茧和干茧上蔟时间的Bayes判别方法,该方法对鲜茧和干茧的预测准确率分别为70.00%和47.77%,检测效果略差于可见/近红外光谱。
     (3)建立了基于可见/近红外光谱技术的鲜茧茧层含水率和干壳量的快速检测模型。比较了RC、UVE和CARS的特征波长选取效果,并提出了基于SPA的二次变量选择方法,实现了特征波长的有效提取。最终建立的基于特征波长的多元线性检测模型对茧层含水率和干壳量的预测相关系数分别为0.8473和0.8143,实现了基于可见/近红外光谱的桑蚕鲜茧茧层含水率和干壳量的精准高效检测。
     (4)根据鲜茧茧层所含水分在1250~2500nm波段的近红外光谱特性,建立了鲜茧茧层含水率和干壳量的线性检测模型。研究了5种预处理方法的光谱处理效果,通过相关系数和均方根误差等参数对几种特征波长选取方法的结果进行了比较,最终选择了RC-SPA方法提取的9个特征波长用于茧层含水率检测,以及CARS-SPA方法提取的6个特征波长用于干壳量检测,最终得到的多元线性检测模型对茧层含水率和干壳量的预测相关系数分别为0.7873和0.6992,有助于实现鲜茧收购过程中的快速评级定价。
     (5)研究了随机抽样法、浓度排序法、Kennard-Stone(?)和SPXY(?)等校正集样本挑选方法,基于挑选结果建立了鲜茧茧层含水率和干壳量的偏最小二乘(PLS)模型,比较结果显示Kennard-Stone法挑选的校正集样本具有更好的代表性,效果优于其余三种方法。
     (6)比较了400~1000nm的可见/近红外光谱技术和1250~2500nm的近红外光谱技术对干茧茧层丝胶溶失率的检测效果,基于CARS-SPA方法从400~1000nm波段提取的13个特征波长建立的最小二乘-支持向量机(LS-SVM)模型的预测相关系数为0.8709,而基于UVE-SPA方法从1250~2500nm波段提取的9个特征波长建立的LS-SVM模型的预测相关系数为0.6893,结果显示可见/近红外光谱技术对干茧丝胶溶失率的检测效果较好,实现了基于光谱技术的桑蚕干茧丝胶溶失率的快速检测。
     (7)应用高光谱成像系统,研究了基于450~900nm波段高光谱数据的蚕茧品质指标无损检测方法,最终得到的检测模型对鲜茧茧层含水率和干壳量的预测相关系数分别为0.4969和0.7838,对干茧茧层丝胶溶失率的预测相关系数为0.5585,对鲜茧和干茧上蔟时间的预测准确率分别为73.33%和64.44%,实现了基于高光谱图像技术的蚕茧品质综合检测。
     (8)对蚕茧的高光谱图像进行了处理,通过图像二值化、直方图处理和图像反相等数字图像处理技术,得到了黄斑茧、柴印茧和畸形茧等下车茧的区域图像,基于图像特征参数对下车茧和正常茧的预测准确率为72.50%,实现了蚕茧表面缺陷的计算机识别,可将黄斑茧、柴印茧、瘪茧和畸形茧等次下茧与正常茧精确区分,有助于蚕茧的分级和定价。
As the traditional economic agriculture in China, sericulture has been playing an important historical role in export and social economy development with much attention and support. Cocoon was the most important product in sericulture, which could be traded in the market as the raw materials for silk production. So the the precise evaluation of the cocoon quality was useful for pricing and grading. However, with the development of market economy and scientific and technological progress, the current cocoon quality evaluation method in China has turned to be inopportune with complicated operation, low implementation and poor technical level. As the the world's largest cocoon producer and exporter, what we need is not only just the absolute advantage in quantity, but also the effective competitiveness of cocoon quality in the international market. In order to maintain the international status of our sericulture production, it is necessary to research the cocoon quality detection methods, to improve the informationalized level of cocoon production and management, to promote the further development of sericulture industry in China. This study is mainy focused on the nondestructive detection research of cocoon quality, according to the current evaluation criterions and the problems exsisted in real. The main research work and achievement were as follows:
     (1) The mounting time of fresh and dried cocoon were detected with the visible and near infrared spectroscopy between400~1000nm. The spectral data was pre-processed with baseline correction, and the effective wavelengths were selected by elimination of uninformative variables (UVE) and successive projections algorithm (SPA). The Bayes discrimation models based on the effective wavelengths were built with the prediction accuracy of91.11% and75.56% for fresh and dried cocoon mounting time detection, separately.
     (2) The regression coefficient (RC) and competitive adaptive reweighted sampling (CARS) were used for effective wavelengths selection between1250~2500nm. And the Bayes discrimation models based on the effective wavelengths were built with the prediction accuracy of70.00% and47.77% for fresh and dried cocoon mounting time detection, separately. The results showed that the effect for cocoon mounting time detection of near infrared spectroscopy was worse than visible and near infrared spectroscopy.
     (3) The rapid detection models for moisture content (MC) of fresh cocoon layer and dry weight (DW) of the cocoon layer were built. The wavelengths selection results of RC, UVE and CARS were compared, and secondly selection with SPA was promoted for better effective wavelengths selection results. The correlation coefficients of multiple linear regression (MLR) models for MC and DW prediction (Rp) were0.8473and0.8143, separately.
     (4) According to the spectral characters of water contained in cocoon layer between1250~2500nm, the MLR models for MC and DW detection of fresh cocoon were built with near infrared spectroscopy. The effects of5methods for spectral data pre-proccsing were researched. And the wavelength selection results of RC-SPA, UVE-SPA and CARS-SPA were systematically compared with the correlation coefficients and root mean square errors of PLS models built based on the selected wavelengths. Finally,9wavelengths were selected for MC detection by RC-SPA, and6wavelengths were selected for DW detection by CARS-SPA. The Rp of MLR models were0.7873和0.6992.
     (5) The sampling methods of calibration set, as random, concentration sort, Kennard-Stone, sample set partitioning based on joint x-y distances (SPXY) were all used for MC and DW detection. And the sampling results showed that the samples selected by Kennard-Stone were better than others in representativeness of all samples.
     (6) The results for sericin dissolubility (SD) of dried cocoon layer detection based on400-1000nm and1250~2500nm spectral data were compared.13effective wavelengths were selected from4000~1000nm by CARS-SPA, and9effective wavelengths were selected from1250~2500nm by UVE-SPA. The Rp of least square support vector machine (LS-SVM) models built based on the selected wavelengths were0.8709and0.6893. The results showed that the effect for cocoon SD detection of near infrared spectroscopy was worse than visible and near infrared spectroscopy.
     (7) The hyperspectral imaging system was applied for the detection of cocoon quality. The Rp of models based on the hyperspectral data between450~900nm were0.4969for MC detection,0.7838for DW detection, and0.5585for SD detection. And the prediction accuracy of models for mounting time of fresh and dried cocoon were73.33% and64.44%, separately.
     (8) The hyperspectral images of healthy and unhealthy cocoons were collected and processed by digital picture processing technique. The area-of-interest images of yellow spotted cocoons, cocoons pressed by cocooning frame and malformed cocoons were achived. And the prediction accuracy of Bayes discrimination model based on characteristic parameters of area-of-interest images was72.50%.
引文
Aitkenhead M J. Weed and crop discrimination using image analysis and artificial intelligence methods [J]. Computers and Electronics in Agriculture,2003,39(3):157-171.
    Blanco M, Villarroya I. NIR spectroscopy:a rapid-response analytical tool[J]. Trends in Analytical Chemistry,2002,21(4):240-250.
    Che Man Y B, Moh H M. Determination of free fatty acids in palm oil by near-infrared reflectance spectroscopy[J]. JAOCS,1998,75(5):557-562.
    Chen Y R, Chao K, Kim M S. Machine vision technology for agricultural applications[J]. Computer and Electronics in Agriculture,2002,36(2-3):173-191.
    Cleve E, Bach E, Schollmeyer E. Using chemometric methods and NIR spectrophotometry in the textile industry[J]. Analytica Chimica Acta,2000,420(2):163-167.
    Cozzolino D, Murray I. Effect of sample presentation and animal muscle specieson the analysis of meat by near infrared reflectance spectroscopy[J]. Near Infrared Spectroscopy,2002, 10(1):37-44.
    ElMasry G, Wang N, ElSayed A, et al. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[J]. Journal of Food Engineering,2007, 81(1):98-107.
    ElMasry G, Wang N, Vigneault C, et al. Early detection of apple bruises on different background colors using hyperspectral imaging[J]. LWT-Food Science and Technology,2008, 41(2):337-345.
    Herschel W. Experiments on the Refrangibility of the Invisible Rays of the Sun[J]. Philosophical Transactions of the Royal Society of London,1800,90:225.
    Karouia R, Mouazena A M, Ramona H, et al. Feasibility study of discriminating the manufacturing process and sampling zone in ripened soft cheeses using attenuated total reflectance MIR and fiber optic diffuse reflectance Vis-NIR spectroscopy[J]. Food Research International,2006,39(5):588-597.
    Li H, Tolleson D, Stuth J. Faecal near infrared reflectance spectroscopy to predict diet quality for sheep[J]. Small Ruminant Research,2007,68(3):263-268.
    Li H, van de Voort F R, Ismail A A, et al. Determination of peroxide value by fourier transform near-infrared spectroscopy[J]. JAOCS,2000,77(2):137-142.
    Liu Y L, Brenda G L, William R. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy[J]. Meat Science,2003, 65(3):1107-1115.
    Lu R F, Chen Y R. Hyperspectral imaging for safety inspection of food and agricultural products[J]. SPIE Conference on Pathogen Detection and Remediation for Safe Eating, Boston, November 1998.
    Masataka K, Shuso K, Maki T, et al. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot[J]. Computers and electronics in agriculture,2008, 63(1):22-27.
    Millmier A, Lorimor J, Hurburgh J, et al. Near-infrared sensing of manure nutrients [J]. Trans ASAE,2000,43(4):903-908.
    Mo C L, Wu P Y, Chen x, et al. Near-Infrared Characterization on the Secondary Structure of Regenerated Bombyx mori Silk Fibroin[J]. Applied Spectroscopy,2006,60(12):1438-1441.
    Murray I, Aucott L S, Pike I H. Use of discriminate analysis on visible and near infrared reflectance spectra to detect adulteration of fishmeal with meat and bone meal[J]. Journal of Near Infrared Spectroscopy,2001,9(4):297-311.
    Nicolai B M, Lotze E, Peirs A, et al. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2006,40(1):1-6.
    Norris K H, Barnes R F, Moore J E, et al. Prediction for age quality by near infrared reflectance spectroscopy[J] Journal of Animal Science,1976,43 (4):899-897.
    Osborne B G, Mertens B, Thompson M, et al. The authentication of Basmati rice using near infrared spectroscopy[J]. Journal of Near Infrared Spectroscope,1993, 1(2):77-83.
    Osorio M T, Zumalac'arregui J M, Nuria P, et al. Differentiation between carcasses from suckling lambs reared with ewe milk or milk replacers by near infrared reflectance spectroscopy of perirenal fat[J]. Small Ruminant Research,2007,72(2):221-226.
    Pravdova V B, Walczak D, Massart L, et al. Calibration of somatic cell count in milk based on near-infrared spectroscopy[J]. Analytica Chimica, acta,2001,450(1-2):131-141.
    Prieto N, Andre's S, Gira'ldez F J, et al. Potential use of near infrared reflectance spectroscopy (NIRS)for the estimation of chemical composition of oxen meat samples[J]. Meat Science,2006,74(3):487-496.
    Prieto N, Andre's S, Gira'ldez F J, et al. Discrimination of adult steers (oxen) and young cattle ground meat samples by near infrared reflectance spectroscopy (NIRS)[J]. Meat Science, 2008,79(1):198-201.
    Qiao J, Wang N, Ngadi M O, et al. Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique[J]. Meat Science,2007,76(1):1-8.
    Reeves J B, Blosser T H. Near Infrared Reflectance Spectroscopy for analyzing undried silage[J]. Journal of Dairy Science,1989,72(1):79-88.
    Saranwong S, Sornsrivichai J, Kawano S. Prediction of ripe-stage eating quality of mango fruit from its harvest quality measured nondestructively by near infrared spectroscopy[J]. Postharv-est Biology and Technology,2004,31(2):137-145.
    Sena D G, Pinto F A C, et al. Fall Armyworm Damaged Maize Plant Identification using Digital Images[J]. Biosystems Engineering,2003,85(4):449-454.
    Sivanpillai R, Srinivasan R. Estimating regional forest cover in East Texas using Advanced Very High Resolution Radiometer (AVHRR) data[J]. International Journal of Applied Earth Observation and Geoinformation,2007,9(1):41-49.
    Tsenkova R, Atanassova S, Ozaki Y. Near-infrared spectroscopy for biomonitoring: influence of somatic cell count on cow's milk composition analysis[J]. International Diary Journal,2001,11(10):779-783.
    Williams P C. Near-infrared reflectance analysis:food industry applications [J]. Trends in Food Science & Technology,1990,1:44-48.
    Wu D, He Y, Feng S J. Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment[J]. Analytica Chimica, acta,2008, 610(2):232-242.
    Zheng Y W, Lai X X, Susanne W B, et al. Determination of moisture content of lyophilized allergen vaccines by NIR spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008,46(3):592-596.
    陈冬冬,张峭,王川.农产品质量安全及其国际竞争力评价[J].中国农学通报,2011,27(2):260-265.
    陈菁菁,彭彦昆,李永玉等.基于高光谱荧光技术的叶菜农药残留快速检测[J].农业工程学报,2010,26(S2):1-5.
    陈全胜,张燕华,万新民等.基于高光谱成像技术的猪肉嫩度检测研究[J].光学学报,2010,30(9):2602-2607.
    陈原,刘民,罗先礼.蚕茧质量无损检测方法的研究[J].蚕桑通报,2004,(4):9-12.
    陈植成,黄庶识,刘军贤等.傅立叶变换红外光谱技术在茧质检测中的应用[J].丝绸,2009,(1):3 1-33.
    杜周和,刘俊凤,胡祚忠等.家蚕限性品种雌雄茧茧丝质性状差异研究[J].丝绸,2007,(8):28-29.
    冯邦俊.毛脚茧对丝质的危害[J].丝绸,1984,(6):42-43.
    甘勇,孔庆华,韦荔甫.基于图像处理技术的蚕茧干壳量无损检测方法及影响因素分析[J].丝绸,2008,(12):39-41.
    甘勇,周国柱,张建钢等.蚕茧质量无损智能检测方法的研究[J]-广西蚕业,2002,(3)37-39.
    顾国达,徐俊良.论我国蚕丝业的多中心起源[J].浙江大学学报(人文社会科学版),2003,33(3):42-48.
    谷筱玉,徐可欣,汪曣.波长选择算法在近红外光谱法中药有效成分测量中的应用[J].光谱学与光谱分析,2006,26(9):1618-1620.
    侯瑞锋,黄岚,王忠义等.用近红外漫反射光谱检测肉品新鲜度的初步研究[J].光谱学与光谱分析,2006,26(12):2193-2196.
    胡兴明,吴恢,叶楚华等.基于神经网络集成的蚕茧干壳量无损检测方法研究[J].蚕业科学,2008,(4):781-785.
    胡祚忠,李龙,张剑飞等.家蚕茧分级和检验方法研究初报[J].蚕业科学,2006,32(4):592-595.
    华中平,甘勇.基于图像处理的蚕茧表面积计算方法[J].丝绸,2004,(3):16-18.
    黄敏,朱启兵.基于SVD的苹果粉质化高光谱散射图像特征提取[J].光谱学与光谱分析,2011,31(3):767-770.
    黄国瑞.茧丝学[M].农业出版社,1994,(1):1-5.
    雷善云,陈锦祥.毛脚苗的危害友防止措施[J].丝绸技术,1997,5(3):31-33.
    李建琴,顾国达.蚕业风险及其化解对策[J].中国蚕业,2010,(4):1-6.
    李江波,饶秀勤,应义斌等.基于高光谱成像技术检测脐橙溃疡[J].农业工程学报,2010,26(8):222-228.
    李玉品,陈斌,颜辉等.近红外光谱分析法在蚕茧性别鉴定上的应用[J].江苏农业科学,2009,(1).
    刘洪武.鲜茧化蛹程度及茧层含水与售值的关系[J].丝绸,1982,(8):2-4.
    刘鹏.浅析毛脚茧的危害及其对策[J].蚕学通讯,1998,18(4):55-56.
    刘燕德,乔振先.鸡蛋光特性及其与新鲜度的相关性研究[J].江西农业大学学报,2002,24(1):45-47.
    刘燕德,应义斌,傅霞萍.近红外漫反射用于检测苹果糖度及有效酸度的研究[J].光谱学与光谱分析,2005,25(11):1793-1796.
    陆婉珍.现代近红外光谱分析技术[M].中国石化出版社,2006:1-2.
    罗松明.农产品质量检测及安全控制研究进展[J].粮食储藏,2005,37(1):46-50.
    潘立刚,张缙,陆安祥等.农产品质量无损检测技术研究进展与应用[J].农业工程学报,2008,24(S2):325-330.
    潘沈元.蚕茧近红外反射(NIR)光谱的模式识别Ⅱ.光谱识别中特征值选取方法的探讨[J].生物物理学报,1998,14(2):252-256.
    潘沈元,金同铭,陆国权等.蚕茧近红外反射(NIR)光谱的模式识别——Ⅰ.对雌雄鲜茧、死笼茧的非破坏性识别[J].生物物理学报,1995,11(1):53-59.
    彭彦昆,黄慧,王伟等.基于LS-SVM和高光谱技术的玉米叶片叶绿素含量检测[J].江苏大学学报(自然科学版),2011,32(2):125-174.
    宋亚杰,谢守勇,冉瑞龙.机器视觉技术在蚕茧无损检测中的应用研究[J].现代农业装备,2006,(9):48-51.
    孙浪涛,张一心,张鹏飞.温度对蚕丝结构及性能的影响[J].毛纺科技,2013,41(3):61-63.
    万华伟,王昌佐,李亚等.基于高光谱遥感数据的入侵植物监测[J].农业工程学报,2010,26(S2):59-63.
    王焕炯,范闻捷,崔要奎等.草地退化的高光谱遥感监测方法[J].光谱学与光谱分析,2010,30(10):2734-2738.
    王叶元,陈芳艳,钟杨生等.家蚕有色茧丝胶含量的分析[J].广东蚕业,2012,45(2):27-29.
    韦荔甫,甘勇,张应红.蚕茧质量无损检测实验系统设计及实现[J].丝绸,2007,(1):22-24.
    无.俄罗斯开发出可辨别肉新鲜度的传感器[J].食品科学,2006,27(1):239-239.
    吴大洋,蓝广芊.我国蚕丝业存在的问题与未来发展方向[J].丝绸,2008,(12):1-6.
    吴恢,孙波,叶楚华.桑蚕茧质量检测研究进展中国蚕业[J].2009,(1):91-93.
    吴彦红,严霖元,吴瑞梅等.利用荧光高光谱图像技术无损检测猕猴桃糖度[J].江西农业大学学报,2010,32(6):1297-1300.
    徐元进,胡光道,张振飞.基于光谱整体形态和局部吸收谷位置的高光谱遥感图像地物识别[J].武汉大学学报,2010,35(7):868-872.
    薛龙,黎静,刘木华.基于高光谱图像技术的水果表面农药残留检测试验研究[J].光学学报,2008,28(12):2277-2280.
    颜辉,陈斌,金尚息.基于NIR的主成分结合支持向量机鉴别蚕茧雌雄的研究[J].计算机与应用化学,2008,25(10):1261-1264.
    杨光友,陈原,周国柱.蚕茧无损检测的数据处理[J].湖北工学院学报,2003,(5):13-15,34.
    杨光友,江金鱼,周国柱等.神经网络集成在蚕茧无损检测中的应用[J].丝绸,2008,(5):28-30.
    杨光友,罗先礼,周国柱等.虚拟仪器在蚕茧无损质量检测中的应用[J].微计算信息,2006,22(1):135-137.
    杨维旭,邓红波,赵铁巍.现场收购冻玉米各成分含量的近红外光谱(NIR)分析[J].淀粉与淀粉糖,2003,(1):38-43.
    叶澄宇.中国茧检定事业的回顾与展望(上)[J].中国技术监督,1995,(2):20-21.
    郑超蕙,刘雪华,何炜琪等.五类水体污染物质的偏振高光谱遥感实验研究[J].遥感信息,2008,(3):15-21.
    周国柱,苏旭武,罗先礼等.小波包在蚕茧无损质量检测中的应用[J].微计算机信息,2005,21(24):96-98,196.
    周国柱,杨光友,罗先礼等.基于振动的蚕茧质量智能无损检测[J].湖南科技大学学报(自然科学版),2006,21(1):17-20.
    朱良均.家蚕茧解舒优劣的检测研究[J].纺织学报,2000,(5):42-44.
    朱良均,姚菊明.桑蚕茧解舒研究的进展(1)[J].丝绸,1998a,(3):44-46.
    朱良均,姚菊明.桑蚕茧解舒研究的进展(2)[J].丝绸,1998b,(4):47-49.
    朱良均,姚菊明.家蚕茧解舒机理的研究[J].蚕业科学,1998c,24(1):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700