用户名: 密码: 验证码:
青藏高原东北缘西宁盆地新生代孢粉记录与古生态环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球环境系统发生重大变革的新生代是距离人类最近的时期,它后期的演化直接促成了生物界最高级类型-人类的诞生。因此,我们非常关注与人类社会休戚相关的过去地球环境系统的演化。与此同时,由于人类在工业化过程中促使温室气体浓度的显著增加,使全球地表平均温度近百年来(1906-2005年)升高了0.74℃,预计到21世纪末仍将上升1.1-6.4℃,对全球自然生态系统产生了重要影响,对人类社会的生存和发展带来严重挑战。全球气候变化及其不利影响已成为全人类共同关心的问题。因此,预测未来气候变化进而提出应对策略乃是关乎人类社会未来生存的最有效方法,类似现今如此高浓度的CO_2所带来的气候环境剧烈变化可以从新生代早期的高浓度温室气体和温室效应过程中找到参考。因此,“以古论今”为更好的理解现代和未来气候变化提供依据是地球科学界对过去气候变化研究的另一个重要原因。来自深海的氧同位素曲线清楚记录了新生代以来全球持续变冷过程和多次冰盖扩张事件。
     不仅如此,新生代以来亚洲大陆发生了显著构造运动与气候变化:青藏高原的隆升、亚洲内陆干旱化和亚洲季风的形成等,这些构造和气候之间内在的联系与未来的发展演化更是关乎我国可持续发展战略的重大议题。那么,亚洲内陆生态环境和气候是如何变化的?如何响应全球气候系统、青藏高原构造和东亚气候环境格局以及与上述因素之间(全球气候变化、青藏高原隆起、西北内陆干旱化、东亚季风的演化)如何联系?要解决上述问题,不仅需要精准的海洋记录作为全球气候变化的背景,更需要亚洲大陆上具有准确年代的、不同位置上的、跨度时间长久的气候代用指标的记录进行比对综合研究。
     位于青藏高原东北缘的西宁盆地地处我国三大自然地理区的交界处,也是我国黄土高原的西部边缘,对气候、环境的变迁十分敏感。同时,由于新生代以来青藏高原的构造隆起,西宁盆地沉积了巨厚的堆积物,比较完整地记录了高原东北部的变形隆升、源区风化剥蚀历史和气候环境变化过程,是研究高原构造隆升和气候环境变化相互作用过程与机制的理想地区。西宁盆地的磁性地层年代学研究获取了该盆地的52.5~17.0Ma的古地磁年代,为开展古气候研究奠定了年代基础。而在各种自然因素中,植物对于生态环境变化的反应尤为敏锐,孢粉植被自然成为陆相地层中环境与气候变化最直接和敏感的记录者。
     为此,本文通过对西宁盆地谢家剖面孢粉样品的分析,获取了一条我国大陆新生代较为详细的孢粉记录,并在此基础上进行了古生态环境演化的分析,得到以下结论:
     1.孢粉记录揭示出西宁盆地新生代古生态环境在33Ma发生重大转变,前后分为两个大的演化阶段。52.5~33Ma为第一个阶段,包括组合带Ⅰ-Ⅴ:整体上表现为麻黄、白刺与喜热分子的高含量带,呈现出一种亚热带干旱灌丛-稀疏森林植被景观。33~17Ma为第二阶段,包括组合带Ⅵ-Ⅷ:表现为草本和喜温成分高含量,植被景观转变成一种温带森林-草原类型。
     2.孢粉记录最为显著的变化是从33Ma开始,喜热分子百分含量显明降低,草本植物含量明显增加。该结果与全球温度变化具有良好的对应关系,说明全球背景下的大降温可能是导致西宁盆地植被演化的主要原因。
     3.通过对西北内陆地区新生代孢粉植物群的深入研究揭示出:古近纪时期整个西北内陆地区处于行星风系控制之下,植被面貌为亚热带灌丛-稀树森林,气候干燥炎热。新近纪时期植被面貌发生转变,以温带草原-森林为主,气候干旱温凉。同时,孢粉植物群记录也表明我国西北内陆地区自新生代以来就处于干旱环境区;新近纪开始我国古气候环境格局发生转变,西北内陆地区由行星干旱区转变为内陆干旱区,并持续变干变冷。这一结果指示了我国环境格局在23Ma左右的古近纪/新近纪之交发生转变。
     4.西宁盆地针叶林在52.5~37Ma之间含量很低,37Ma开始大量出现(主要指云杉),同期孢粉组合并伴生有喜温、喜热分子以及草本植物。结合新生代全球温度曲线与现代针叶林(云杉)生态特征,可以认为:1)当云杉在孢粉组合中出现时,要充分考虑组合中其它孢粉植物的生态习性,以此确定孢粉组合所代表的气候特征。2)西宁盆地针叶林高含量带指示了山地的存在。3)云杉、冷杉等暗针叶林分子大量出现不仅指示低温环境,同时也必需一定的有效水分使之生长。4)云杉属植物现代分布特征及其生态习性是长期适应气候变化的结果。
     5.在谢家剖面车头沟组最底部(约23Ma)发现了木化石群,通过对该化石群同层位孢粉组合特征与有机组分分析的结果进行比对,推测木化石为云杉属植物,且当时云杉林能够生长在西宁盆地。对应于Mi-1降温事件,说明在海洋中发现的该事件在亚洲内陆同样表现明显。
     6.孢粉记录揭示在37~33Ma和26~22Ma之间西宁盆地附近存在高海拔山地,孢粉结果为恢复青藏高原东北缘古海拔与阶段性隆升提供了依据。
The Cenozoic era with great changes of the environmental system is the most important period for our humanity for the birth of a human. We are very concerned about the evolution of the Earth's systems. Moreover, the concentrations of greenhouse gas increase significantly as a result of the industrialization process. The global surface temperature has already increased 0.74℃over the past century, and will be expected to increase 1.1-6.4℃at the end of the 21st century, which has made a severeimpact on the world natural ecosystems and brought a serious challenge to human's survival and development of society. Global climate change and its adverse impacts have become a common concern of humankind. Therefore, to predict the future climate change and put forward the responding strategy is the most effective way which is related to the survival of the human society future. Such a high concentration of CO_2 similar to the present that brought about by dramatic changes in climate and environment could find the reference from the early Cenozoic high concentration of greenhouse gases and the process of greenhouse effect. Therefore, "to the ancient theory of this", to provide a basis for a better understanding of modern and future climate change on Earth is the major reason for the geoscientific community research on over the past climate change. Deep-sea oxygen isotope data sets have a clear record of the Cenozoic global cooling progress interrupted by a series of transient ice sheet expansion events.
     During the same time, the significant tectonic movement and climate change have taken place in the Asian continent: the uplift of Tibet Plateau, the drying of Asian inland and the formation of Asian monsoon, etc. The intrinsic link between tectonic and climate and its future development are related to the major issues of China's sustainable development strategy. Then, how did the Asian inland environment and climate change? and how the Tibet Plateau tectonic and the climate and environment pattern in East Asia was responded to the global climate system, as well as what's the connection between these factors (global climate change, the uplift of Tibet Plateau, the drying of northwest inland, the evolution East Asian monsoon)? To resolve these problems requires not only the accurate marine record as the background of global climate change, but also a comprehensive study on the Asian continent with the exact age, different position, the long-term proxy records of climate.
     Xining Basin is located in the northeastern of Tibet Plateau where is the junction of the three major geographical areas of China, and also the western edge of China's Loess Plateau. This location is very sensitive to changes of climate and environment. At the same time, because of the tectonic uplift of the Tibet Plateau since the Cenozoic, thick sedimental deposits have accumulated in Xining Basin, a relatively complete record of the deformation and uplift of the northeastern of the plateau, denudation of weathering history of the source region, and the environment and climate change, is ideal to examine the course of interaction and mechanism between the uplift of plateau and climate changes.The Magnetostratigraphy geochronology of Xining Basin obtained the 52.5Ma~17Ma palaeomagnetic age, and laid a foundation for the paleoclimate research. For the variety natural proxies of climate changes, plants are particularly sensitive to the ecological environment changes, palynological flora becomes the most direct and sensitive records of the environment and climate change in continental history.
     This paper is based on the analysis of palynology samples from the Xiejia section of the Xining Basin, and obtained a relatively detailed pollen record of our continent. With that, the evolution of paleoecological environment has been discussed. Main conclusions are summarized as following:
     1. The palynological records of Xiejia section display the Cenozoic ecological environment in Xining Basin had a major change at 33Ma. Two major stages and eight pollen assemblage zones can be divided before and after the change. 52~33Ma is the first phase, including the combinations with I - V: the overall performance for Ephedripites, Nitrariadites and thermophilic elements with high content, showing a sub-tropical arid shrubs-savanna forest vegetation in the landscape. 33~17Ma is the second phase, including the combinations with VI - VIII: herb and temperate elements performance for the high content, vegetation landscape is a temperate forest-grassland type.
     2. Palynological records suggest that the most significant change in performance is that thermophilic elements content are obviously lower, with the beginning of a marked increase of herb plants from the onset of 33Ma. Palynological record of Xining Basin has a good matching to the Cenozoic global temperature curve, which shows that the temperature might be the main reason for the vegetation evolution in Xining Basin, the large-scale expansion of the Antarctic ice sheet led to global cooling, resulting the ecological environment change in Xining Basin.
     3. Further study of palynofloras in northwest inland reveals that: it was controlled by the planetary wind system through the Paleogene period with the landscape of sub-tropical shrub- savanna forests, dry and hot climate. The landscape changed during the Neogene period, becoming temperate grassland-forest, with warm cool climate. At the same time, Palynoflora record also shows that the northwest inland of China was a arid region through the Cenozoic period.The pattern of China's paleoclimate and environment have changed since Neogene. Northwest inland was translating from the planetary arid region into an inland arid region, continuing drying and cooling. This result further indicates that the pattern of China's environment change at about 23Ma when the Paleogene turned to Neogene.
     4. The conifers in the Xining Basin had a low percentages during 52~37 Ma and became aboundant at.37Ma. Combining with the Cenozoic global temperature curve and the ecological characteristics of modern conifers( mainly Picea) , we can considere that:1) When the Picea and Abies appear in the palynological assemblages, it should also take the ecological habits of other pollen types as well into account in order to determine the assemblages on behalf of the climate types. 2) The appearance of high conifers content in Xining Basin indicates the existence of a mountain. 3) The occurrence of a large number of Picea, Abies and other dark conifers not only implies a low temperature and cold climate, but also shows a rich water condition.4)The modern distribution and ecological habits of Picea are the result from the adapting to climate change in a long time.
     5. The original burial fossil woods are excavated at the bottom of the Chetougou formation (about 23 Ma) in Xiejia section. Together with the analysis of pollen and the organic components at the same layer, we presumed that the fossil woods are Picea, that is, the spruce forest could grow in the Xining Basin at that time. Corresponding to the Mi-1 cooling event found in ocean records.
     6. Palynological records reveal that a high altitude mountains existed in Xining Basin during 37~33Ma and 26~22Ma. It si a much more powerful material for the restoration of palaeo-elevation and deformation and uplift of northeastern of Tibet Plateau.
引文
1. Abe M, Kitoh A, Yasunari T. An evolution of the Asian summer monsoon associated with mountain uplift simulation with the MRI atmosphere ocean coupled GCM. Journal of the Meteorological Society of Japan, 2003, 81 (5) : 909-933.
    
    2. Allen G B, Brown K J and Hebda R J. Modern pollen spectra from south Vancouver Island.Can.J.Bot. 1999, 77: 1-14.
    
    3. Alvin K L. Further conifer8 of Pinaceae from the Wealden Formation of Belgium. M em Inst Roy Sci Nat Belgium, 1960, 146: 1-39.
    
    4. An Z S. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 2000, 19 (1-5) : 171-187.
    
    5. An Z S, KutzbachJE, Prell W L et al. Evolution of Asian monsoons and phased up lift of the Himalaya2Tibetan Plateau since LateMiocene times. Nature, 2001, 411: 62-66.
    
    6. Aubry M P. Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In: Prothero D R, and Berggren W A (eds), Eocene-Oligocene climatic and biotic evolution. New Jersey: Princeton University Press, 1992: 272-309.
    
    7. Axelord D I. History of the coniferous forests, California and Nevada. Univ Calif Publ Bot,1976, 70.
    
    8. Axelord D I. Cenozoic history of some western American pines.Ann Missouri Bot Gard,1986, 73: 565-641.
    
    9. Bette L, Btto-Bllesner, Garland R, et al. Vegetation-induced warming of high-latitude regions during the Cretaceous period. Nature, 1997, 385:804-807.
    
    10. Boersma A, Premoli-Silva I, Shackleton N J. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography,1987, 2:287-331.
    
    11. Bohaty S M and Zachos J C. Significant Southern Ocean warming event in the late middle Eocene. Geology, 2003, 31:1017-1020.
    
    12. Bradshaw R H W, Webb T III. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology, 1985, 66:721-737.
    
    13. Brown KJ. Late Quaternary vegetation, climate, fire history and GIS mapping of Holocene climates on southern Vancouver. Island, British Columbia, Canada. Ph. D. thesis, University of Victoria, Victoria, British Columbia, 2000.
    
    14. Chaloner W G and Creber G T. Do fossil plants give a climate signal? J. Geol. Soc. London.1990, 147:343-350.
    
    15. Combourieu-Nebout N, Paterne M, Turon J L, Siani G. A high resolution record of the last deglaciation in the central Mediterranean Sea: Paleovegetation and Paleohydrological evolution. Quaternary Science Reviews, 1998, 17: 303-317.
    
    16. Cour P, Zheng Z, Duzer D, et al. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Palaeobotany and Palynology, 1999, 104: 183-204.
    
    17. Coxall H K, Wilson PA. Palike H et al. Rapid step wise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 2005, 433: 53-57.
    
    18. Crane P R, Friis E M, Pedersen K R. The origin and early diversification of angiosperms.Nature, 1995, 374 (2) : 27-33.
    
    19. Dai S, Fang X M, Dupont-Niver-Nivet G, Song C, GaoJ, Krijgsman W, Langereis C,and Zhang W. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res., 2006, 111, B11102,doi: 10. 1029/2005JB004187.
    
    20. Deconto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO_2. Nature, 2003, 421:245-249.
    
    21. Diester-Haass L, Zahn R. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology, 1996, 24: 163-166.
    
    22. Dumayne-Peaty L. Late Holocene human impact on the vegetation of southeastern Scotland: a pollen diagram from Dogden Moss, Berwickshire. Review of Palaeabotany and Palynology, 1999, 105: 121-141.
    
    23. Dunwiddie P W. Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology, 1987, 68:1-11.
    
    24. Dupont-Niver-Niver G, Krijgsman W, Langereis C G et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635-638.
    
    25. Dupont-Niver-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition:Evidence from pollen analysis of the Xining Basin. Geology, 2008, 36(12): 987-990.
    
    26. El-Moslimany. The ecological significance of common nonarboreal pollen example from dry land of the Middle East. Review of Palaeobotany and Palynology, 1990, 64: 343-350.
    
    27. Fennessy, M J, Kinter J L, Kirtman B, Marx L, Nigam Broccoli A J, Manabe S. The effects of orography on middle latitude northern hemisphere dry climates. J. Clim., 1992,5:1181-1201.
    
    28. Ferguson S K. On the phytogeography of co niferales in the European Cenozoic Palaeogeogr Palaeodim Palaeoecol, 1967, 3 (1): 73-110.
    
    29. Flohn H. Contribution to a meteoralogy of the Tibetan Highlands. Colorado State University,Ft Collins. Colo Atmosph Sci Paper Nr, 1968, No. 190.
    
    30. Florin R.The distribution of conifer and taxad genera in time and space. Aeta Hort Berg, 1963, 20: 194-256.
    
    31. Giresse P. Late Quaternary palaeoenvironments in the lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeography ,Palaeoclimate, Palaeoecol., 1994, 107:65-78.
    
    32. GuoZT, Ruddiman W, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J Yuan B Y, Liu T S. Onset of Asian desertifications by 22Myr ago inferred from loess deposits in China. Nature, 2002, 416:159-163.
    
    33. Hahn D G and Manabe S. The role of mountains in the south Asian monsoon circulation.Jourmal of the Atmospheric Sciences, 1975, 32:151-54.
    
    34. Hansen T A. Extinction of late Eocene to Oligocene molluscs: relationship to shelf area,temperature changes, and impact events. Palaios, 1987, 2:69-75.
    
    35. Harrison T M, Copeland P, Kidd W S, Yin An. Raising Tibet. Science, 1992, 255:1663-1670.
    
    36. Hebda R J and Allen G B. Modern pollen spectra from west central British Columbia.Canadian Journal of Botany, 1993, 71:1486-1495.
    
    37. Hizume M. Karyomorphological studies in the family Pinaceae. Natural Science, 1988, 8:1-108.
    
    38. Hoffmann MH, Litt T, Jager E J. Ecology and climate of the early Weichselian flora from Grobern (Germany) . Review of Palaeobotany and Palynology, 1998, 102 (3) : 259-276.
    
    39. Horowitz A and Horowitz M. Subsurface Late Cenozoic palynostratigraphy of the Hula Basin, Israel. Pollen and Spores, 1985, 27:365-390.
    
    40. Horowitz A. Palynology of Arid Lands. Amsterdam: Elseriver Science Publishers, 1992:1-530.
    
    41. Jaramillo C, Rueda M J, Mora G. Cenozoic plant diversity in the Neotropics. Science, 2006,311: 1893-1896.
    
    42. Jiang H C, Ding Z L, Xiong S F. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology (2006),doi:10.1016/j.palaeo.2006.07.016.
    
    43. Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38Ma ago[J]. Science, 1976, 260: 513-515.
    
    44. Kennett JP, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 1991, 353:225-229.
    
    45. Klaus W. Mediterranean pines and their history. PI SystEvol, 1987, 162: 133-162.
    
    46. Kutzbach J E, Guetter P J, Ruddiman W F, Prell W L. Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. Journal of Geophysical Research, 1989, 94 (D15) : 18393-18407.
    
    47. Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian Climate to surface uplift of the Tibetan Plateau. Journal of Geology, 1993, 101: 177-190.
    
    48. Lawver L A, Gahagan L M. Evolution of Cenozoic seaways in the circum Antarctic region [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198:11-37.
    
    49. Lear C H, Rosenthal Y, Coxall H K, et al. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography, 2004, 19 (4) : 1029-1039.
    
    50. Li J J. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou, Lanzhou University Press, 1995, 38-39.
    
    51. Liu G W, Leopold E B, Liu Y et al. Palynological record of Pliocene climate events in North China. Review of Palaeobotany and Palynology, 2002, 119: 335-340.
    
    52. Liu T S.Geological environments in China and Global change. Proceeding of 30th International Geology Congress, Vol.1, 1997, 5-26.
    
    53. Liu T S, Guo Z T. Geological environment in China and global Change. In: An Zhisheng ed.Selected Works of Liu Tungsheng, Beijing: Science Press, 1997, 192-202.
    
    54. Liu, X. and Yin, Z. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr., Palaeoclimat., Palaeoecol., 2002, 183:223-245.
    
    55. Liu X D, Kutzbach J E, Liu Z et al. The Tibetan Plateau as amplifier of orbital scale variability of the East Asian monsoon. Geophysical Research Letters, 2003, 30(16): 1839,doi: 10. 1029/2003GL017510
    
    56. Luis Palazzesi and Viviana Barreda. Major vegetation trends in the Tertiary of Patagonia (Argentina) :A qualitative paleoclimatic approach based on palynological evidence. Flora,2007, 202: 328-337.
    
    57. Maher L J. Ephedra pollen in sediments of the Great Lakes Region. Ecology, 1964, 45:391-395.
    
    58. Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmos-phere as identified by numerical experiments. J. Atmos. Sci., 1974, 31: 3-42.
    
    59. Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes. Science, 1990,247:192-194.
    
    60. Millar C I. Impact of eocene on the evolution of Pinus L. Afin Mimqouri Bot Gard, 1993,80: 47-498.
    
    61. Miller C N. Early evolution In the Pinaceae. Rev Palaeobot Palynot, 1975, 21: 101-117.
    
    62. Miller C N. M esozoic conifer8, Bot Rev, 1977, 43: 217-218.
    
    63. Miller C N. The origin of modern conifer families. In: Beck C Bed. Origin and Evolution of Gymnosparms. New York: Colmmbia Univ Press, 1988, 448-487.
    64. Miller K G, Fairbanks R G. Mountain G S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 1987, 2 (1) : 1-19.
    
    65. Minckley T, Whitlock C. Spatial variation of modern pollen in Oregon and southern Washington, USA. Review of Palaeobotany and Palynology, 2000, 112:97-123.
    
    66. Molnar P. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica, 2005, 8 (1) : 1-23.
    
    67. Murakami, T. Orography and Monsoons. In: Fein, J. S., and Stephens, P. L., (Eds),Monsoons, Wiley, New York, 2000, 331-364.
    
    68. Naish, T. R., Wilson, G.S., Dunbar, G.B., Barrett, P. J.. Constraining the amplitude of Late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (2) Implications for global sea-level changes.Palaeogeogr. Palaeoclimatol. Palaeoecol, 2008, 260: 66-76.
    
    69. Peterson G M. Recent pollen spectra and zonal vegetation in the western USSR. Quat. Sci.Rev., 1983, 2 (4), 281-321.
    
    70. Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406:695-699
    
    71. Pellat M G, Mathewes R W, Walker I R. Pollen analysis and ordination of lake sediment-surface samples from coastal British Columbia, Canada Canada Journal of Botany, 1997, 75:799-814.
    
    72. Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360:647-653.
    
    73. Quade J, Cerling T E, Bowman J R. Development of Asian moonsoon revealed by marked ecological shift during the Lastest Miocene in north Pakistan. Nautre, 1989, 342: 163-166.
    
    74. Ramstein G, Fluteau F, Besse J, Joussaume S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386:788-795.
    
    75. Raymo M E, Ruddiman W F.Tectonic forcing of late Cenozoic climate. Nature, 1992, 359:117-120.
    
    76. Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmopsheric circulation. Science, 1985, 227:721-725.
    
    77. Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift and cooling of the Northern Hemisphere. Paleoceanography,1998, 215-224.
    
    78. Reasoner M A and Huber U M. Postglacial palaeoenvironments of the upper Bow Valley,Banff National Park, Alberta, Canada. Quat. Sci. Rev. 1999, 18:475-492.
    79. Richter F M, Rowley D B and DePaolo D J. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett., 1992, 109: 11-23.
    
    80. Ruddiman W F, Prell W L, Raymo M E. Late Cenozoic uplift in Southern Asia and the American West: Rational for general circulation modeling experiments. Journal of Geophysical Research, 1989, 94:18379-18391.
    
    81. Ruddiman W F, Kutzbach J E. Forcing of the late Cenozoic uplift northern hemisphere climate by plateau uplift in the Southern Asia and American West. J. Geophys. Res. 1989,94, 18409-18427.
    
    82. Savitsky V D,L G Bezus'ko, N G Butich, Z M Tsymbaliuk, O V Savitska, T V Bezus'ko.Airborne pollen in Kiev (Ukraine) : gravimetric sampling, Aerobiologia. 1996, 12 (3) :209-211.
    
    83. Schabitz F. Holocene climatic variations in northern Patagonia, Argentina. Palaeogeography Palaeoclimatology Palaeoecology, 1994, 109:287-294.
    
    84. Smith A G, Hurley A M, Briden J C. Phanerozoic Paleocontinental World Maps. Cambridge:Cambridge Univ Press, 1981.
    
    85. Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421:622-624.
    
    86. Sugita S. A model of pollen source area for an entire lake surface. Quaternary Research,1993, 39:239-244.
    
    87. Sun J M and Zhang Z Q. Palynological evidence for the Mid—Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global and Planetary Change, 2008, 64: 53-68.
    
    88. Sun X J, Song C Q, Wang F Y et al. Vegetation history of the Loess Plateau of China during the last 100000 years based on pollen data. Quaternary International, 1997, 37: 25-36.
    
    89. Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2005, 222: 181-222.
    
    90. Thompson R S. Pliocene and early Pleistocene environments and climate of the western Snake River Plain , Idaho. Marine Micropaleontology, 1996, 27(1/4): 141-156.
    
    91. Tripati A K, Backman J, Elderfield H, et al. Eocene bipolar glaciations associated with global carbon cycle changes[J]. Nature, 2005, 436:341-346.
    
    92. Tsuchi R. Neogene Events in Japan and Southeast Asia. Annual Technical Meeting 1989 and IGCP~246, Thailand Proceedings, Chiang Mai Univ, 1991, 169-177.
    
    93. Van Campo E, Cour P, Huang S X. Holocene environmental changes in Bangong Co. basin (western Tibet) . Part 2: The pollen record. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 120:49-63.
    
    94. Van Zeist W. Late Quarternary vegetation history of western Iran. Rev. Paleobot. Palynol.,1967, 2:301-311.
    
    95. Villa G, Fioroni C, Pea L , Bohaty S , Persico D. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology, 2008, 69: 173-192.
    
    96. Vonhof H B, Smit J, Brinkhuis H, et al. Global cooling accelerated by early Late Eocene impacts. Geology, 2000, 28 (8) : 687-690.
    
    97. Wade B S, Kroon D. Middle Eocene regional climate instability: Evidence from the western North Atlantic. Geology, 2002, 30 (11) : 1011-1014.
    
    98. Wade B S, P.like H. Oligocene climate dynamics. Paleoceanography, 2004, 19:4019-10.1029/2004-001042.
    
    99. Wang P X. Neogene stratigraphy and paleoenvironments of China. Palaeogeography,Palaeoclimatology, Palaeoecology, 1990, 77 (3-4):315-334.
    
    100. Wang P X, Z Q H, J Z M et al. Thirty million year deep sea records in the South China Sea.Chinese Science Bulletin, 2003a, 48 (23) : 2524-2535
    
    101. Wang P X, T J, C X R et al. Exploring cyclic changes of the ocean carbon reservoir. Chinese Science B ulletin, 2003b, 48 (23) : 2536-2548
    
    102. Wang P X, J Z M, Z Q H et al. Evolution of the South China Sea and monsoon history revealed in deep-sea records Chinese Science Bulletin, 2003c, 48 (23) : 2549-2561.
    
    103. Wang P X, Clemens S, Beaufort L et al. Evolution and variability of the Asian monsoon system. State of the art and outstanding issues Quaternary Science Reviews, 2005, 24 (5-6):595-629.
    
    104. Wang W M. Correlation of pollen sequences in the Neogene palynofloristic regions of China.Palaeoworld, 2006, 15: 77-99.
    
    105. Willis K J, Braun M, Sumegi P and Toth A. The late Quaternary environmental history of B(?)torliget, N. E. Hungary. Palaeogeography Palaeoclimatology Palaeoecology, 1995, 118:25-27.
    
    106. Wright J W. Spe cies crossability in relation to distribution and taxonomy. Forest Science,1955, 1 (4): 319-352.
    
    107. Wu F L, F X M, M Y Z, M Herrmann, V Mosbrugger, An Z S, Miao Y F. Plio-Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2007.02.029.
    
    108. Zachos J C, Lohmann K. C, Walker J C G, et al. Abrupt climate change and transient climates in the Paleogene: a marine perspective. J. Geol., 1993, 101: 193-215.
    109.Zachos J C,Quinn T M,Salamy K A.High-resolution(10~4 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition.Paleoceanography,1996,11:251-266.
    110.Zachos J C,Pagani M.,Sloan L,Trends,Rhythms,And Aberrations In Global Climate 65Ma To Present,Science,2001,292:686-693.
    111.Zachos J C,Kump L R.Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene[J].Global and Planetary Change,2005,47:51-66.
    112.Zaklinskaja E D.Stratigraphical significance of gymnosperm pollen in the Pavlodar Preertahar and northern Prearalea in Cenozoic sediments.Tpyda Institute of Geology,Hayk CCCP,1957,6:1-220(in Russian).
    113.Zhang Z S,Wang H J,Guo Z T,Jiang D B.Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China.Earth and Planetary Science Letters,2007,257:622-4534.
    114.安芷生,张培震,王二七,王苏民等.中新世以来我国季风—干旱环境演化与青藏高原的生长.第四纪研究,2006,26(5):678-693.
    115.陈隆勋,朱乾根,罗会邦,等.东亚季风.北京:气象出版社,1991.
    116.陈隆勋,刘骥平,周秀骥等.青藏高原隆起及海陆分布变化对亚洲大陆气候的影响,第四纪研究.1999,4:314-329.
    117.程波,朱艳,陈发虎,张家武,黄小忠,杨美临.石羊河流域表土孢粉与植被的关系.冰川冻土,2004,26(1):81-88.
    118.迟效国,李才,金巍,等.藏北新生代火山作用的时空演化与高原脉动隆升.地质论评,1999,45,增刊:978-986.
    119.董光荣,王贵勇,陈惠忠,等.中国沙漠形成演化与青藏高原隆升的关系.见:青藏高原研究会编.青藏高原与全球变化研讨会论文集.北京:气象出版社,1995,13-29.
    120.大庆油田开发研究院.松辽盆地晚白垩世孢粉组合.北京,科学出版社,1976.
    121.德日进.中国之大陆沉积.中国地质学会(16卷)(丁文江先生纪念册),1937,16:195-220.
    122.地质矿产部海洋地质综合研究大队,中国海洋石油总公司渤海石油公司,等.东海陆架盆地龙井构造带新生代孢粉学的研究.合肥:安徽科学技术出版社,1985,1-209.
    123.丁林,张进江,周勇,邓万明,许荣华,钟大赉.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(3):408-421.
    124.范淑贤,刘海坤,徐建明,郑宏瑞,赵华,毕志伟,杨振京,林防,张静.3.50Ma BP 以来河北衡水地区古植被与环境演化.现代地质,2009,23(1):75-81.
    125.方精云,沈泽昊,崔海亭.试论山地的生态特征及山地生态学的研究内容.生物多样性,2004,12(1):10-19
    126.方小敏,宋春晖,戴霜,等.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录.地学前缘,2007,14(1):230-242.
    127.傅立国,陈潭溥,郎楷永,等.中国高等植物.青岛:青岛出版社,2004.
    128.傅智雁,袁效奇,耿国仓.河套盆地第三系及其生物群.地层学杂志,1994,16(1):24-29.
    129.高锐,董树文,李秋生,贺日政,钱桂华,匡朝阳,白金,王海燕.陆陆碰撞过程与大陆地壳深俯冲.中国地球物理学会第二十届年会论文集,2004.
    130.高瑞祺,朱宗浩,郑国光,赵传本,等.中国含油气盆地孢粉学.北京:石油工业出版社,2000,1-251.
    131.耿宝印,陶君容,颉光普.兰州盆地早第三纪植物及古气候意义.植物分类学报,2001,39(2):105-115.
    132.郭双兴.两广南部晚白垩世和早第三纪植物群及地层意义.中国科学院古脊椎动物与古人类研究所,中国科学院南京地质古生物所编.华南中新生代红层.北京:科学出版社,1979,223-231.
    133.郭正堂,彭书珍,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系.第四纪研究,1999,6:556-566.
    134.郝诒纯,阮培华,周修高,等.西宁、民和盆地中侏罗世—第三纪地层及介形虫、轮藻化石.地球科学—武汉地质学院学报地层古生物专辑,1983.
    135.何月明,孙湘君.江西清江盆地下第三系孢子花粉的研究Ⅰ.Ⅱ.植物学报,1977,19(1):72-82 & 19(3):237-243.
    136.侯学煜,孙世洲,何妙光,等.中国植被图(1:400万).北京:地图出版社,1979(1982年第二版).
    137.黄秉维,郑度,赵名茶,等.现代自然地理.北京:科学出版社,1999.
    138.黄赐璇,梁玉莲.藏北高原北部地区湖相沉积的孢粉分析.见:中国科学院青藏高原综合科学考察队编.西藏第四纪地质.北京:科学出版社,1983,153-161.
    139.黄大燊.甘肃植被.兰州:甘肃科技出版社,1997,1-216.
    140.黄有元.西宁盆地1/10万石油地质测量报告.西宁:青海石油普查大队.1977.
    141.江德昕,何卓生,董凯林.新疆塔里木盆地早白垩世孢粉组合.植物学报,1988,30(4):430-440.
    142.蒋汉朝.宁夏固原寺口子剖面磁性地层与孢粉植物群初步研究.博士毕业论文.中国科学院地质与地球物理研究所.2004.
    143.金小凤.吐哈盆地第三系—白垩系古微体植物、动物群.石油勘探与开发,1996,23(1):33-38.
    144.金性春,周祖翼,汪品先.大洋钻探与中国地球科学.上海:同济大学出版社,1995,1-349
    145.柯曼红.黄土孢粉分析方法的研究.植物学报,1994,36(2):144-147.
    146.雷作淇.珠江口盆地第三纪孢粉组合及其意义.植物学报,1985,27(1):94-105.
    147.李传夔,邱铸鼎.青海西宁盆地早中新世哺乳动物化石.古脊椎动物与古人类学报,1980,18(3):198-215.
    148.李传夔,邱铸鼎,王士阶.青海西宁盆地中新世地层及哺乳动物群性质.古脊椎动物与古人类学报,1981,19(4):313-320.
    149.李春海,何翠玲.黄土孢粉HF处理方法.微体古生物学报,2004,21(3):346-348.
    150.李春海,童国榜,沈吉,王苏民,羊向东,刘志明.云南丽江—大理地区现代表土花粉垂直分布特征.古生物学报,2008,47 2):168-175.
    151.李光瑜.孢粉分析技术手册.北京,地质出版社,1995.
    152.李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式探讨.中国科学(B辑),1979,(6):608-4516.
    153.李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574.
    154.李吉均,赵志军.德日进“亚洲干极”理论的现实意义.第四纪研究,2003,23(4):366-371.
    155.李杰,旺罗,裴云鹏,等.甘肃西峰6.2~2.4 Ma红粘土中孢粉记录及古植被演化.第四纪研究,2005,25(4):467-473.
    156.李杰,李珍,赵宝成,蒋辉.海洋泥质沉积物的孢粉实验室处理方法研究.海洋科学进展,2008,26(2):184-189.
    157.李林初.若干铁杉属植物核型的比较研究.广西植物,1988,8(4):423-328.
    158.李曼英.广东南雄盆地古新世早期孢粉组合.古生物学报,1989,28(6):471-479.
    159.李楠.论松科植物地理分布、起源和扩散.植物分类学报,1995,33(2):105-130.
    160.李文漪,姚祖驹.表土中松属花粉与植物间数量关系之研究.植物学报,1990,32(12):943-950.
    161.李文漪.中国第四纪植被与环境.北京:科学出版社.1998,43-48.
    162.李小强,杜乃秋.第四纪花粉的无酸碱分析法.植物学报,1995,41(7):782-784.
    163.李小强,周杰,A.R.Ashraf,EvaW acker.黄土孢粉分析的新途径—筛滤分析法.中国沙漠,1999,19(4):399-402.
    164.李小强,尚雪,周新郢,张宏宾.黄土花粉分析的筛析—重液综合法.干旱区地理,2006,29(5):663-667.
    165.李小玲.浅析西宁市生态环境质量评价.青海环境,2004,9(3):128-130.
    166.李孝泽,董光荣.中国西北干旱环境的形成时代与成因探讨.第四纪研究,2006,26(6):895-904.
    167.李宜垠,张新时,周广胜,倪健.中国北方几种常见表土花粉类型与植被的数量关系.科学通报,2000,45(7):761-765.
    168.李育,王乃昂,许清海,李月丛,阳小兰,张振卿,温锐林.中国北方第四纪孢粉提取方法研究.沉积学报,2007,25(1):124-130.
    169.李月丛,中国北方森林植被主要表土花粉类型对植被的指示性.第四纪研究,2005,25(5):598-608.
    170.林金星,胡玉熹,王献溥,等.中国特有植物长苞铁杉的生物学特性及其保护.生物多样性,1995,3(3):147-152.
    171.刘东生,丁梦林.晚第三纪以来中国古环境的特征及其发展历史.地球科学:中国地质大学学报,1983,22(4):15-28.
    172.刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,1998,(3):194-204.
    173.刘耕武.我国北方晚第三纪孢粉序列.古生物学报,1988,27(1):75-85.
    174.刘会平,唐晓春,潘安定,孙东怀,王开发.神农架南坡表土孢粉植物群初步研究.沉积学报,2001,19(1):107-112.
    175.刘晓东,李力,安芷生.青藏高原隆升与欧亚内陆及北非干旱化,第四纪研究,2001,21(2):114-120.
    176.刘增力,方精云,朴世龙.中国冷杉、云杉、和落叶松属植物的地理分布.地理学报,2002,57(5):577-586.
    177.罗宝信,王毓钊,黄秋圃,严富华,翟乾祥,柯曼红.天津云杉孢粉组合与披毛犀化石共存的发现及其意义.地质科学,1983,2:160-164.
    178.罗传秀,潘安定,郑卓.西北干旱地区表土孢粉与植被关系研究进展.干旱区研究,2006,23(2):314-319.
    179.罗传秀,郑卓,潘安定,安放舟,Celia BEAUDOU IN1,黄康有.新疆地区表土孢粉分布规律及其与植被关系研究.干旱区地理,2007,30(4):536-543.
    180.吕厚远,王苏民,吴乃琴,等.青藏高原错鄂湖2.8Ma来的孢粉记录.中国科学(D),2001,31:234-240.
    181.吕厚远,王淑云,沈才明,羊向东,童国榜,廖淦标.青藏高原现代表土中冷杉和云杉花粉的空间分布.第四纪研究,2004,24(1):39-49.
    182.吕新苗,陈辉,李双成,郑度.东祁连山表土花粉组合及其数量特征.2004,22(2):199-206.
    183.马瑾乾.酒泉盆地第三纪孢粉组合及其古环境探讨.石油实验地质,1993,15(4):423-435.
    184.马玉贞.甘肃敦煌盆地南部第三纪孢粉组合.微体古生物学报,1991,8(2):207-225.
    185.马玉贞.青藏高原东北缘第三纪红层中发现丰富孢粉化石及其意义.科学通报,1992,37(13):1245-1246.
    186.马玉贞,李吉均,方小敏.临夏地区30.6~5.0Ma红层孢粉植物群与气候演化记录.科 学通报,1998,43(3):301-304.
    187.马玉贞,方小敏,李吉均,等.酒西盆地晚第三纪—第四纪早期植被与气候变化.中国科学(D),2004a,34(2):107-116.
    188.马玉贞.青藏高原东北缘新生代植被演化和环境变化.博士毕业论文.兰州大学,2004b(未发表).
    189.马玉贞,吴福莉,方小敏,李吉均,安芷生,张军.黄土高原陇东盆地朝那红黏土8.1~2.6Ma的孢粉记录.科学通报,2005,50:1627-1635.
    190.苗运法.我国西北地区始新世孢粉记录与古生态环境变化.博士毕业论文.兰州大学2007.
    191.苗运法,方小敏,宋之琛,吴福莉,韩文霞.青藏高原北部始新世孢粉记录与古环境变化.中国科学(D辑),2008,38(2):187-196.
    192.倪健,郭柯,刘海江,张新时.中国西北干旱区生态区划.植物生态学报,2005,29(2):175-184.
    193.齐国凡,杨家驹,徐瑞瑚,等.中国武汉被子植物化石木群.北京:科学出版社,2005,16-18.
    194.青海地质矿产局地质志编写组.青海省地质志.北京:地质出版社,1991.
    195.青海石油管理局勘探开发研究院勘探开发研究院,中国科学院南京地质古生物研究所.柴达木盆地第三纪孢粉学研究.石油工业出版社,北京,1985.1-41.
    196.乔秀云,金玉东,万传彪.富集孢粉化石的一种方法.大庆石油地质与开发,1998,17(6):49-50.
    197.邱铸鼎,李传夔,王士阶.青海西宁盆地中新世哺乳动物.古脊椎动物与古人类学报,1981,19(2):156-173.
    198.邱铸鼎,李传夔.中国哺乳动物区系的演变与青藏高原的抬升.中国科学(D辑),2004,9(2):845-854.
    199.石宁.上新世—早更新世云杉属和冷杉属在华北地区的发展及其气候指示意义.第四纪研究,1996,4:319-328.
    200.施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D 辑),1998,28(3):263-271.
    201.施雅风,李吉均,李炳元,姚檀栋,王苏民,李世杰,崔之久,王富保,潘保田,方小敏,张青松.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-21.
    202.石油化学工业部石油勘探开发规划研究院和中国科学院南京地质古生物研究所.渤海沿岸地区早第三纪孢粉.北京,科学出版社.1978.
    203.舒军武,王伟铭,王爱根.江苏宜兴龙池山现代植被表土孢粉的初步研究.古生物学报,2007,46 3):340-346
    204.宋春晖.青藏高原北缘新生代沉积演化与高原构造隆升.博士毕业论文.兰州大学,2006.
    205.宋之琛.甘肃省酒泉第三纪红色岩系的孢子花粉组合及其在地质学和植物学上的意义.古生物学报,1958,6(2):167-185.
    206.宋之琛,曹流,李曼英.山东第三纪孢粉组合.中国科学院地质古生物研究所集刊(3号).北京:科学出版社,1964.179-290.
    207.宋之琛,郑亚惠,刘金陵,等.江苏地区白垩纪—第三纪孢粉组合.北京:地质出版社,1981,1-290.
    208.宋之琛,李曼英.西藏昌都地区贡觉组始新世孢粉组合.见:川西藏东地区地层与古生物.成都:四川人民出版社,1982,7-28.
    209.宋之琛,刘耕武.西藏东北部早第三纪孢粉组合及其古地理意义.西藏古生物(第五分册).北京:科学出版社.1982,165-190.
    210.宋之琛,黎文本,何承全.中国白垩纪和早第三纪孢粉植物群和有机岩的分布.中国科学B辑,1983,(02)
    211.宋之琛,钟碧珍.云南景谷第三纪孢粉组合.中国科学院南京地质古生物研究所丛刊,1984,8:1-53.
    212.宋之琛,关学婷,李增瑞,郑亚惠,王伟铭,胡仲衡.东海陆架盆地龙井构造带新生代孢粉学的研究.合肥,安徽科学技术出版社.1985.
    213.宋之琛,李曼英,钟林.广东三水盆地白垩纪—早第三纪孢粉组合.北京:科学出版社,1986.
    214.宋之琛.云南昭通晚新生代孢粉植物群.见:中国科学院南京地质古生物研究所集刊,1988,24:1-52.
    215.宋之琛.东濮地区早第三纪孢粉组合.北京:石油工业出版社,1989,1-192.
    216.宋之琛,张大华.内蒙古鄂托克旗草木浩石膏矿的地质年代兼论我国化石山龙眼类花粉研究.古生物学报,1990,19(3):257-269.
    217.宋之琛,郑亚惠,李曼英.中国孢粉化石(Ⅰ)晚白垩世—第三纪孢粉.北京:科学出版社,1999,749-757.
    218.宋之琛,王伟铭,毛方圆.依据孢粉资料探讨我国西北地区第三纪时期的干旱化及其与季风的关系.古生物学报,2008,47(3):265-272.
    219.孙孟蓉,孙秀玉,赵英娘.东海陆架盆地新生代古生物群(微体古生物分册).北京,地质出版社,1989.6-111.
    220.孙孟蓉,王宪曾.新疆准噶尔盆地第三纪孢粉组合.见:中国地质科学院地质研究所,新疆石油管理局勘探开发研究院编.新疆北部二叠纪—第三纪地层及孢粉组合.北京:中国环境科学出版社.1990,122-51.
    221.孙启高.如何利用化石植物定量研究古海拔.地质论评,2008,54(2):145-154.
    222.孙素英.宁夏同心地区渐新世孢粉组合.中国地质科学院地质研究所所刊,1982,(4),127-138.
    223.孙湘君.中国晚白垩世—古新世孢粉区系的研究.植物分类学报,1979,17(3):8-23.
    224.孙湘君,孙孟蓉,杜乃秋.辽宁抚顺煤田下第三系抚顺群孢子花粉研究,辽宁抚顺煤田地层及其古生物群研究.北京,科学出版社,1980,155-198.
    225.孙湘君,何月明.江西古新世孢子花粉研究.北京:科学出版社.1980,1-143.
    226.孙湘君,王丰瑜,宋长青.中国北方部分科属花粉—气候响应面分析.中国科学(D辑),1996,26(5):431-436.
    227.孙秀玉,范永琇,邓茨兰,余正清.渭河盆地新生代孢粉组合.中国地质科学院院报—地质研究所分刊,1980a,1(1):84-109.
    228.孙秀玉,赵英娘,何卓生.1980b.西宁—民和盆地晚白垩世—老第三纪孢粉组合特征及地层时代、古植被、古气候的探讨.石油实验地质,4:44-52.
    229.孙秀玉,赵英娘,何卓生.青海西宁—民和盆地渐新世至中新世孢粉组合.地质评论,1984,(3):207-215.
    230.汤懋苍,高晓清,董文杰.银河旋臂、地核环流与地球大冰期,地学前缘,1997,4(1-2):169-177.
    231.童国榜,羊向东,王苏民,夏良华.满洲里—大杨树—带表土孢粉的散布规律及数量特征.植物学报,1996,38(10):814-821.
    232.童国榜,羊向东,刘志明,王苏民,赵鸿光.云南玉龙山地区的表土花粉散布特征.海洋地质与第四纪地质,2003,23(2):103-107.
    233.拓守廷,刘志飞,成鑫荣,赵泉鸿.南大西洋渐新世初碳酸盐记录(ODP 1263站).地球科学进展,2006,21(8):800-805.
    234.王从风.河南义马潭头组和义马组的孢粉组合.地层学杂志,1983,7(4):305-309.
    235.王大宁,赵英娘.江汉盆地晚白垩世—早第三纪早期孢粉组合特征及其地层意义.地层古生物论文集(第九集),北京:地质出版社,1980,121-167.
    236.王大宁,孙秀玉,赵英娘.河南西部潭头盆地古新世—始新世孢粉植物群.植物学报,1984,26:(4):445-455.
    237.王大宁,孙秀玉,赵英娘,等.青海、新疆部分地区晚白垩世—第三纪孢粉植物群研究.见:青海、新疆部分地区白垩纪—第三纪含油盆地微古植物群的研究.北京:中国环境科学出版社,1990,1-179.
    238.王琒瑜,宋长青,孙湘君.内蒙古中部表土花粉研究.植物学报,1996,38(1):902-907.
    239.王伏雄,钱南芬,张玉龙,杨惠秋.中国植物花粉形态(第二版).北京,科学出版社,1997
    240.汪品先.新生代亚洲变形与海陆相互作用.地球科学—中国地质大学学报,2005,30(1):1-18.
    241.王云山.青藏高原北部构造发展的主要阶段.青海地质,1991,2:14-24.
    242.王伟铭.中国南方晚第三纪孢粉植物群的变迁.微体古生物学报,1992,9(1):81-95.
    243.王伟铭,张大华.内蒙古商都—化德盆地第三纪孢粉组合—兼论中国草原植被的形成.微体古生物学报,1990,7(3):239-253.
    244.王伟铭,邓涛.新近系谢家阶层型剖面的孢粉植物群及其意义.古生物学报,2009,48(1):1-8.
    245.魏明建,王成善,万晓樵,伊海生.第三纪青藏高原面高程与古植被变迁.现代地质,1998,12(3):318-326.
    246.魏明建,伊海生,陈淑娥.青藏高原腹地红层孢粉分析的有效方法.第四纪研究,2001,21(1):78.
    247.吴福莉,方小敏,马玉贞,等.黄土高原中部1.5Ma以来古生态环境演化的孢粉记录.科学通报,2004,49(1):99-105.
    248.吴国碹,覃军干,茅绍智.南海深海相渐新统孢粉记录.科学通报,2003,48(17):1868-1871.
    249.吴作基,余金凤,1981.广东南雄盆地浓山组上段孢粉组合.古生物学报,20(5):44-448.
    250.武吉华,张绅.植物地理学(第二版).北京:高等教育出版社,1983,1-242.
    251.武力超,岳乐平,王建其,等.新近系谢家阶层型剖面古地磁年代学研究.地层学杂志,2006,30(1):50-53.
    252.吴玉书.甘肃灵台雷家河地区中新世晚期—上新世早期孢粉植物群.植物学报,2001,43(7):750-756.
    253.吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据.地质学报,2007,81(5):577-587.
    254.吴征镒.中国植被.北京:科学出版社,1980.
    255.西尼村.亚洲中部最高地区的大地构造轮廓.地质译丛,1956,(4):1-10.
    256.肖爱芳,黎敦朋,张汉军,等.新疆库木库里盆地渐新—上新统孢粉组合特征与古气候演变.陕西地质,2003,21(1):36-44.
    257.肖霞云,沈吉,肖海丰,等.鹤庆湖泊深钻孢粉记录揭示的植被演替与气候变迁.见:庆祝中国第四纪研究委员会成立50周年暨第九届全国第四纪学术大会.论文摘要,2006,151.
    258.席以珍.中国罗汉松科花粉形态研究.植物分类学报,1986,24(6):434-438.
    259.许清海,吴忱,孟令尧,王子惠,阳小兰,姚祖驹.华北平原不同地貌冲积物孢粉组合特征.科学通报,1994,39(19):1792-1795.
    260.许清海,李润兰,朱峰,阳小兰,梁文栋.华北平原冲积物孢粉沉积相研究.古地理学报,2001,3(2):55-63.
    261.许清海,李月从,阳小兰,郑振华.中国北方几种主要森林群落表土花粉组合特征研究.第四纪研究,2005a,25(5):586-597.
    262.许清海,李月丛,阳小兰,郑振华.北方草原区主要群落类型表土花粉分析.地理研究,2005b,24(3):394-402.
    263.许清海,李月丛,阳小兰,陈辉,吕新苗.青藏高原东北部典型花粉类型埋藏特征及其与植被关系的研究.地球科学进展,2005c,20(1):89-98.
    264.许清海,李月丛,赵登海,阳小兰,郑振华,郝明亮.中国北方典型灌丛群落表土花粉组合特征.古地理学报,2006a,8(2):158-164.
    265.许清海,李月丛,李育,阳小兰,张振卿,贾红娟.现代花粉过程与第四纪环境研究若干问题讨论.自然科学进展,2006b,16(6):674-656.
    266.许清海,李月丛,阳小兰,郑振华.中国北方几种主要花粉类型与植被定量关系.中国科学D辑:地球科学,2007,37(2):192-205.
    267.徐丽.西宁盆地古近纪沉积物颜色、磁化率特征及其古环境意义.硕士毕业论文,兰州大学,2008.
    268.徐仁,陶君容,孙湘君.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义.植物学报,1973,15(1):103-119.
    269.徐仁,孔昭宸,杜乃秋.中国更新世的云杉—冷杉植物群及其在第四纪研究上的意义.中国第四纪研究,1980,5(1):48-56.
    270.徐仁.青藏古植被的演化与青藏高原的隆起.植物分类学报,1982,20(4):385-391.
    271.严焕德.西宁盆地末次冰期晚冰阶古气候变化的黄土记录.硕士毕业论文,西南大学,2007.
    272.阎顺.新疆表土松科花粉分布的探讨.干旱区地理,1993,16(3):1-9.
    273.阎顺,贾宝全,许英勤,杨云良.乌鲁木齐河源区植被及表土花粉.冰川冻土,1996,18,增刊.
    274.阎顺,孔昭宸,杨振京,等.新疆表土中云杉花粉与植被的关系.生态学报,2004,24(9):2017-2023.
    275.杨伟平.一种新颖的孢粉处理技术—微波炉处理孢粉.地质科技情报,1992,11(1):83-85.
    276.杨振京,许清海,孟令尧,阳小兰,王开发.燕山地区表土花粉与植被间的数量关系.植物生态学报,2003,27 6):804-809.
    277.杨振京,孔昭宸,阎顺,倪健,马克平,许清海.天山乌鲁木齐河源区大西沟表土花粉散布特征.干旱区地理,2004,27(4):543-547.
    278.叶笃正,高由禧.青藏高原气象学.北京科学出版社,1979.
    279.叶干诺夫.以柴达木的沉积为例论述红色层生成条件中的气候因素.地质学报,1960,40(2):147-149.
    280.应俊生.中国裸子植物分布区的研究(Ⅰ)—松科植物的地理分布.植物分类学报,1989,27(1):27-38.
    281.喻建新,张海峰,林启祥,顾延生,张智勇.青海省民和县古近系西宁群孢粉植物群的地质意义.地球科学—中国地质大学学报,2003,28(4):401-406.
    282.袁金红,罗运利,徐兆良,等.3.0-2.0 Ma BP南海南部深海沉积物孢粉记录及其对全球气候变化的响应.海洋地质与第四纪地质,2005,25(3):75-81.
    283.于革,刘平妹,薛滨,李政益.台湾中部和北部山地植被垂直带表土花粉和植被重建.科学通报,2002,47(21):1663-1666.
    284.余静贤,孙孟蓉,张望平,曲立范,候静鹏,杨基端,孙素英.新疆晚二叠世至第三纪孢粉组合序列.中国地质科学院地质研究所所刊(第15号),1986,140-151.
    285.于澎涛,刘鸿雁.小五台山北台北坡植被垂直带的表土花粉及其气候意义研究.北京大学学报(自然科学版),1997,33(4).475-484.
    286.岳乐平,F Heller,邱占祥,张莉,颉光普,邱铸鼎,张云翔.兰州盆地第三系磁性地层年代与古环境记录.科学通报,2000,45(18):1998-2003.
    287.张虎,温娅丽,马力,常宗强,王金叶.祁连山北坡中部气候特征及垂直气候带的划分.山地学报,2001,19(6):497-502.
    288.张林源.青藏高原上升对我国第四纪环境演变的影响.兰州大学学报(自然科学版),1981,(3):142-155.
    289.张林源,蒋兆理.论我国西北干旱气候的形成.干旱区地理,1992,15(2):1-12.
    290.张清如,马俊荣.新生代孢子花粉,中南地区古生物图册(4).北京,科学出版社.1978,514-588.
    291.张伟林.柴达木盆地新生代高精度磁性地层与青藏高原隆升.博士毕业论文.兰州大学.2006.
    292.张丽艳,许清海,李月从,阳小兰,贾红娟,张振卿,曹现勇,王学丽.贺兰山表土花粉与花粉通量对比研究.地理与地理信息科学,2007,23(4):102-106.
    293.张一勇,王可德,刘金陵,郑亚惠.东海陆架盆地西南部始新世孢粉.微体古生物学报,1990,7(4):389-402.
    294.张一勇,詹家祯.新疆塔里木盆地西部晚白垩纪至早第三纪孢粉.北京:科学出版社,1991.
    295.张一勇.中国早第三纪孢粉植物群纲要.古生物学报,1995,34(2)212-227.
    296.张一勇.中国白垩纪被子植物花粉的宏演化.古生物学报,1999,38(4):435-453.
    297.张芸,孔昭衰,阎顺,杨振京,倪健.天山北坡晚全新世云杉林线变化和古环境特征.科学通报,2006,51(12):1450-1458.
    298.张仲石,郭正堂.根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义.第四纪研究,2005,25(4):523-530.
    299.赵传本,叶得泉,魏德恩,等.中国油气区第三系(Ⅲ),东北油气区分册.北京,石油工业出版社.1994.
    300.赵济主编.中国自然地理(第三版).北京:高等教育出版社,1995.
    301.赵士洞.中国柳属植物地理分布的研究.植物分类学报,1987,25(2):114-124.
    302.赵松乔.中国沙漠、戈壁的形成和演变.见:赵松乔主编.中国干旱地区自然地理.北京:科学出版社,1985.1-17.
    303.赵先贵,肖玲,陈存根,毛富春.秦岭表土的花粉分析.西北林学院学报,1999,14(1):1-5.
    304.赵秀兰,赵传本,关学婷,唐升层,傅智雁.利用孢粉资料定量解释我国第三纪古气候.石油学报,1992,13(2):215-225.
    305.赵英娘,孙秀玉,王大宁.新疆莎车和库车盆地第三纪的孢粉组合.中国地质科学院地质研究所所刊,1982,4:95-115.
    306.赵英娘,王大宁,孙秀玉.中国早第三纪孢粉植物群与古气候、古地理、古生态的关系.地层古生物论文集,1995,26:115-123.
    307.郑度.黄秉维与中国综合自然区划研究.见:自然地理综合研究—黄秉维学术思想探讨.北京:气象出版社,1993.
    308.郑卓,P cour,邹和平,覃朝锋.热带雨林的抱粉垂直分布规律—以海南岛现代抱粉雨为例.古生物学报,2002,41(4):487-496.
    309.郑卓,潘安定,罗传秀,黄康有.我国西北新疆地区较大尺度表土孢粉与植被和气候关系研究获得初步成果.中国古生物学会孢粉学分会.简讯.2006,第二期(内部资料)
    310.郑卓,黄康有,邓韫,P.Cour,黄赐璇,D.Duzer,G.Robert,M.Calleia,C.Beaudouin,罗传秀.中国东部大陆尺度南北样带尘土花粉散布规律与现状植被的关系.中国科学D辑:地球科学,2007,37(4):534-543.
    311.郑卓,黄康有,许清海,吕厚远,Rachid Cheddadi,罗运利,Celia Beaudouin,罗传秀,郑艳伟,李春海,魏金辉,杜春彬.中国表土花粉与建群植物地理分布的气候指示性对比.中国科学D辑:地球科学,2008,38(6):701-714.
    312.钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289-295.
    313.中国科学院中国植物志编辑委员会.中国植物志(第七卷).北京,科学出版社,1978.
    314.中国科学院中国植物志编辑委员会.中国植物志(第一卷).北京,科学出版社,2004.
    315.中国科学院植物研究所古植物室孢粉组和华南植物研究所形态研究室.中国热带亚热带被子植物花粉形态.北京,科学出版社,1982.
    316.中国植被编辑委员会.中国植被.北京,科学出版社,1995.
    317.中华人民共和国石油勘探公司南海分公司,等.南海北部大陆架第三纪古生物图册(孢粉部分,孙湘君等).广州:广东科技出版社,1981.
    318.钟艳霞.末次冰期以来黄土高原西部地区环境变化的黄土有机地球化学记录研究.博士毕业论文.兰州大学.2008.
    319.周廷儒.中国第三纪与第四纪以来地带性与非地带性的分化.北京师范大学学报(自然科学版),1960,2:63-78.
    320.周廷儒.古地理学.北京:北京师范大学出版社,1982,1-342.
    321.周廷儒.新生代古地理.见:中国科学院《中国自然地理》编辑委员会编.中国自然地理—古地理(上册).北京:科学出版社,1984.1-23.
    322.周兴民,王质彬,杜庆.青海植被.西宁:青海人民出版社,1987,126-129.
    323.周浙昆,杨青松,夏珂.栎属高山栎组植物化石推测青藏高原的隆起.科学通报,2007,52(3):249-257.
    324.朱艳,陈发虎,唐领余,施旗,颉耀文.干旱区石羊河终闾湖泊孢粉组合中云杉圆柏属环境指示意义探讨.2001,21(2):141-146.
    325.朱艳,陈发虎,程波,张家武,David B M.干旱区石羊河流域河水孢粉组合特征(英文).植物学报,2002,44(3):367-372.
    326.朱志诚.秦岭北坡及陕北黄土高原区有松林初步研究.西北植物学报,1987,7(2):73-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700