用户名: 密码: 验证码:
外源油菜素内酯提高黄瓜幼苗低氧耐性的蛋白基础及光合生理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无土栽培生产实践中管理不当及土壤水分过高容易导致植物根系供氧不足从而影响植株正常生长发育。黄瓜(Cucumis sativus L.)是世界性的重要蔬菜作物,也是我国设施栽培的主要蔬菜作物之一。然而,由于黄瓜根系细弱、易早衰、喜湿,但对根际氧气需求较高,根际低氧逆境下其生长势较难维持。油菜素内酯是能调节植物生长发育的重要激素之一,在促进植物生长、增强抗逆性等方面起着至关重要的作用。研究表明,外源油菜素内酯对低氧胁迫下黄瓜植株呼吸代谢和抗氧化系统相关酶活性具有一定的调节作用,但关于外源油菜素内酯对低氧胁迫下黄瓜植株蛋白及光合研究报道甚少。
     本文以耐低氧性较弱的黄瓜品种‘中农6号’为试材,采用营养液栽培的方法,通过营养液中添加外源24-表油菜素内酯(EBR),研究了低氧胁迫下油菜素内酯对黄瓜幼苗相关蛋白表达、酶活性及光合作用的影响,探讨了油菜素内酯在黄瓜植株适应低氧胁迫中作用的蛋白基础及光合生理机制。主要研究结果如下:
     1.外源油菜素内酯对低氧胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响
     低氧胁迫下,黄瓜幼苗生长明显受到抑制,根系可溶性蛋白含量降低、而叶片可溶性蛋白含量升高;施用EBR后缓解了低氧胁迫对黄瓜幼苗生长的抑制作用,其干重、根系总长、根尖数较单纯低氧处理显著增加,并且使黄瓜幼苗根系的可溶性蛋白含量提高,而使叶片可溶性蛋白含量降低。SDS-PAGE电泳分析表明,低氧胁迫与对照相比,根系中出现相对分子质量约为63.96×103的新蛋白条带,有11种蛋白表达量增强,施用EBR后根系中这些表达增强的蛋白条带均有所减弱,叶片中则有9种蛋白条带发生明显变化,这些蛋白的表达可能与外源EBR缓解低氧胁迫伤害作用密切相关,外源EBR可通过调节黄瓜幼苗中可溶性蛋白含量及其表达,从而缓解低氧胁迫对幼苗生长的抑制作用,减轻低氧胁迫对植株的伤害。
     2.外源油菜素内酯对低氧胁迫下黄瓜幼苗根系呼吸酶、抗氧化酶及其相关基因表达的影响
     低氧胁迫增强了黄瓜幼苗根系丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)、乳酸脱氢酶(LDH)同工酶的表达,低氧胁迫下施用外源EBR的3d时PDC、ADH同工酶的表达量分别比单纯低氧处理提高了18.8%、28.8%,而6、9d时PDC、ADH、LDH同工酶的表达又分别降低19.5%、25.6%、53.4%及26.4%、26.0%、28.4%。低氧胁迫下,异柠檬酸脱氢酶(IDH)、琥珀酸脱氢酶(SDH)、苹果酸脱氢酶(MDH)及苹果酸酶(ME)同工酶表达量明显的加强,低氧下施用外源EBR处理后6、9d明显增强了IDH、MDH同工酶的表达,而减弱了SDH同工酶的表达。低氧胁迫增强了黄瓜幼苗根系UDPG焦磷酸转化酶(UGPase)及醛缩酶(ALD)的表达,低氧胁迫3、6d UGPase的表达量分别提高了20.50%、30.80%,ALD的表达量分别提高了47.81%、56.17%,与单纯低氧处理相比,施用外源EBR处理3dALD的表达减少了11.20%,6d UGPase减少了22.15%。与对照相比,单纯低氧胁迫处理的黄瓜幼苗根系3、6、9d超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)同工酶表达量均低于对照,低氧胁迫下营养液增施EBR,其SOD同工酶的表达3、6d比单纯的低氧处理分别提高了5.22%、10.25%,POD同工酶的表达也分别增加了13.81%、9.46%,而CAT表达量无明显差异。油菜素内酯对短期根际低氧胁迫下黄瓜幼苗根系呼吸及抗氧化相关酶基因的表达表明,低氧处理3d黄瓜幼苗根系的ldh、pdc、idh、sdh、 mdh、ald、ugpase、pfk、hk、pod基因表达量上调,cat、sod、fk基因表达量下调,低氧下外源增施油菜素内酯ldh、idh、pfk基因表达量则进一步上调,而pdc、sdh、 mdh、cat、sod、ugpase基因表达量又稍有下降。可见,低氧胁迫下营养液添加EBR可调节黄瓜根系无氧呼吸、有氧呼吸酶和相关保护酶同工酶及基因的表达,从而增强黄瓜植株的低氧耐性,缓解低氧胁迫对黄瓜幼苗根系的伤害。
     3.外源油菜素内酯对低氧胁迫下黄瓜幼苗根系细胞超微结构、ATPase活性及其线粒体抗氧化系统的影响
     低氧胁迫下,黄瓜幼苗根系线粒体超氧阴离子(O-2)产生速率、过氧化氢(H202)和丙二醛(MDA)含量显著升高,根尖细胞受到伤害,ATPase活性及根系活力下降,处理3d其SOD、POD、CAT酶活性均受到诱导高于对照,随着处理时间延长至6d时又显著低于对照;而低氧胁迫下营养液施加EBR可在较长时间内维持较高的SOD、POD、CAT等抗氧化酶活性,降低O了产生速率、H2O2和MDA含量,提高了根系活力及其ATPase活性,根尖细胞受伤减轻。可见油菜素内酯对缓解低氧胁迫对黄瓜幼苗根系细胞超微结构、ATPase活性及其线粒体抗氧化系统均有良好的效应,可有效缓解低氧胁迫造成的伤害。4.外源油菜素内酯对低氧胁迫下黄瓜幼苗光合作用及其多胺、无机离子含量的影响低氧胁迫下,黄瓜植株的净光合速率(Pn)、表观量子效率(AQY)和羧化效率(CE)显著降低,黄瓜幼苗的PSII有效光化学效率(Fv'/Fm')、光化学淬灭系数(qP)、实际光化学效率(ΦPSII)、相对电子传递速率(rETR)显著下降,而非光化学淬灭系数(qN)和PS Ⅱ反应中心天线耗散能量(Drate)显著升高,细胞超微结构异常,说明低氧胁迫下黄瓜植株受到了光抑制。而低氧胁迫下,外源EBR可修复或缓解低氧胁迫对叶绿体和线粒体的伤害,提高植株的Pn、Fv'/Fm'、qP、rETR、ΦPSII以及光化学反应的能量(Prate),降低天线耗散的能量(Drate),说明外源EBR对缓解低氧胁迫对黄瓜幼苗光合特性和细胞超微结构的影响均有良好的效应,提高光能利用效率,缓解黄瓜植株的光抑制,维持较高的光合性能,从而减轻低氧胁迫对黄瓜幼苗的伤害。
     低氧胁迫下,黄瓜幼苗叶片及根系内源腐胺(Put)、亚精胺(Spd)、精胺(Spm)、多胺(PAs)总含量和Put/PAs值显著提高,(Spd+Spm)/Put值显著降低,根系内源多胺变化幅度大于叶片,且幼苗叶片的K+、Ca2+、Mg2、Fe3+、Zn2+、Mn2+及根系的K+、Ca2+、Mg2+、Zn2+等离子含量均显著下降;外源EBR显著提高了低氧胁迫下黄瓜幼苗游离态Spm、结合态Spd、Spm及束缚态Put、Spd、Spm的含量,促进PAs进一步积累,降低Put/PAs比值,提高(Spd+Spm)/Put比值,显著增加黄瓜幼苗叶片Ca2+、Mg2+、Fe3+、Zn2+、Mn2+及根系Ca2+、Mg2+、Fe3+、Mn2+的含量。可见,外源EBR可调节黄瓜幼苗内源多胺含量及其形态,促进植株根系的养分吸收,从而缓解低氧胁迫对黄瓜幼苗的伤害。
Plants frequently experience limited oxygen availability, mainly due to mismanagement in production practice of soilless culture and soil flooding. The growth of plant was inhibited under hypoxic stress. Cucumber (Cucumis sativus L.) is one of the important vegetables in world, and major protected cultivation vegetable crops in China. Cucumber roots are weak and senilism, so they require higher rhizosphere oxygen cucumber is highly sensitive to hypoxia. Brassinolide (BR) has been recognized as a new kind of phytohormones and played an essential role in plant development and stress resistance. Previous researches suggested that BRs could regulate respiration, carbon metabolism and antioxidant system activity of cucumber seedlings under hypoxic stress. However, reports about the effects of brassinolide on photosynthesis and protein in cucumber seedling under hypoxic stress were limited.
     Cucumber(Cucumis sativus L.)'Zhongnong6' was applied in our study, and exogenous24-epibrassinolide (EBR) was added in nutrient solution. The influence of EBR on protein expression, enzyme activities and photosynthesis in cucumber under hypoxic condition was studied, and the physiological mechanisms of cucumber responds for hypoxia were investigated. The results are as follows:
     1. Effects of exogenous brassinolide on the growth and soluble protein expression in cucumber seedlings under hypoxic stress
     Hypoxic stress significantly decreased the cucumber growth and soluble protein content in roots, but increased in leaves. EBR could alleviate the growth inhibition in cucumber seedling which induced by hypoxic stress with increasing longer roots, dry weight and root tips. Meanwhile, exogenous EBR inhibited the changes of growth and soluble protein content under hypoxic stress. Hypoxic stress induced a new protein (relative molecular weight63.96×103) in cucumber roots and increased the abundant of eleven proteins at least. However, Exogenous EBR could significantly decrease the expression of these proteins and markedly affected nine protein bands in leaves. Therefore, it was possible that these proteins have relations with exogenous EBR alleviating the effect of hypoxic stress in cucumber seedlings. Thus, we considered exogenous EBR could alleviat the inhibition of hypoxic stress on cucumber seedlings by changing the soluble protein content and expression.
     2. Effects of exogenous brassinolide on protein expression of respiratory metabolism and antioxidant system in cucumber seedling roots under hypoxic stress
     Pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) were induced by hypoxic stress. After application of EBR for three days, the expression of PDC and ADH isozymes increased by18.8%and28.8%compared to the hypoxic treatment. However, the abundance of PDC, ADH and LDH isozymes decresed by19.5%,25.6%,53.4%and26.4%,26.0%,28.4%on the6th and9th day, respectively. Hypoxia enhanced the expression of succinate dehydrogenase (SDH), isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), malic enzyme (ME) isozymes, and after application of EBR at6th and9th, IDH and MDH isozymes were significantly increased but SDH isozymes was decreased. UGPase、ALD were induced by hypoxic stress, the abundance of UGPase and ALD incresed by20.50%,30.80%and47.81%,56.17%on the3th and6th day, respectively. Compared to the hypoxic treatment, the abundance of ALD at3th and UGPase at6th after application of EBR was significantly increased by11.20%and22.15%, respectively. Compared to control, the SOD, POD and CAT isozymes of cucumber seedlings under hypoxic stress treatment were decreased at3th,6th and9th days. However, BR increased the expression of SOD isozymes by5.22%and10.25%on3th day and6th day compared to hypoxic treatment and POD isozymes were also increased13.81%and9.46%, respectively. But CAT isozymes were not changed significantly.
     The effects of EBRs on the gene expression of respiration and antioxidant in cucumber seedlings under short-term hypoxic stress suggested that the gene expression of ldh, pdc, idh, sdh, mdh, ald, ugpase, pfk, hk, pod increased and cat, sod and fk decreased at3th day of treatment. After application the EBR, the expression of ldh、idh and pfk were further increased but the pdc, sdh, mdh, cat, sod and ugpase had a slight decreased. Our results suggested that hypoxic stress inhibited the growth of cucumber seedling roots and EBR might regulate the isozyme expressions of anaerobic respiration, aerobic respiration and antioxidant enzymes of cucumber roots thereby alleviated the suppression effects of hypoxic stress.
     3. Effects of exogenous brassinolide on the mitochondria antioxidant system, ATPase activity and cellular ultrastructure in cucumber seedling roots under hypoxic stress
     Under hypoxic stress, the superoxide anion (O2-) production rate, hydrogen peroxide (H2O2) content and malondialdehyde (MDA) contents were significantly enhanced, and root and ATPase activity were decreased resulting in cell damage. Compared with the control, activities of SOD, POD and CAT were induced and were higher at3d, and significantly lowered at6d by hypoxic stress. However, the treatment of EBR could keep higher activities of SOD, POD and CAT for a longer time, reduce the generation of O2, H2O2and MDA contents and significantly increased the root and ATPase activity, injured of root tip cell was released. The results indicated that exogenous EBR raised the activities of mitochondria antioxidant enzymes, decreased the O2-production rate, H2O2and MDA contents. Therefore, exogenous EBR might improve the mitochondria antioxidant system, ATPase activity and cellular ultrstructure of cucumber seedlings under hypoxic stress thereby alleviating the adverse effects of hypoxic stress.
     4. Effects of exogenous brassinolide on photosynthesis, poly amines and inoroganic ions content in cucumber seedlings under hypoxic stress
     When exposed to hypoxic stress, net photosynthetic rate (Pn), apparent quanta yield (AQY) and carboxylation efficiency (CE) were decreased significantly, and quantum efficency of open PSⅡ reaction center (Fv'/Fm'), photochemical quenching (qP), PSⅡ photochemisty rate (ΦPSⅡ), however the raletive electron transport rate(rETR)in leaves of cucumber seedlings were significantly decreased, but the allocation of antenna heat dissipation energy (Drate), and non-photochemical quenching(qN) were significantly increased, and the cellular ultrastructure was abnormal, which indicated that hypoxia caused photo-inhibition to cucumber seedlings. However, EBR could alleviate or release the damages in chloroplast and mitochondria under hypoxic stress, and enhanced Pn, Fv'/Fm', qP, rETR, PSⅡ and Prate. The results suggested that EBR could play a positive role in alleviating damage in mitochondria and chloroplast ultrastructure and photosynthetic characteristics, and make the leaf keep a higher photosynthetic performance, and alleviate the damage of hypoxic stress.
     Hypoxic stress significantly increased the contents of polyamines including Put, Spd, Spm, total PAs and Put/PAs ratio in leaves and root, and decreased (Spd+Spm)/Put ratio. The change of root was greater than that of leaf. K+, Ca2+, Mg2+, Fe3+, Zn2+and Mn2+content in leaves and K+, Ca2+, Mg2+, Zn2+content in roots significantly decreased, too. However, Exogenous EBR increased the contents of the free Spm, conjugated Spd, Spm and bound Put, Spd, Spm. Meanwhile, EBR further increased the PAs content and (Spd+Spm)/Put ratio and reduced the Put/PAs ratio. Ca2+, Mg2+, Fe3+, Zn2+and Mn2+content in leaves and Ca2+, Mg2+, Fe3+, Mn2+content in roots significantly increased, too. Thus, EBR not only could regulate the formation and contents of polyamines but also promote the absorption of nutrients, make the leaf keep a higher photosynthetic performance, and alleviate the damage of hypoxic stress.
引文
1. 艾希珍,郭延奎,马兴庄,邢禹贤.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,2004,37(2):268-273
    2. 白团辉,马锋旺,李翠英,束怀瑞,韩明玉.水杨酸对根际低氧胁迫八棱海棠幼苗活性氧代谢的影响.园艺学报,2008,35(2):163-168
    3. 曹云英,赵华.高温胁迫下油菜素内酯对水稻幼苗的保护作用.中国水稻科学,2007,21(5):525-529
    4. 陈丽霞,李英慧,郑服丛,任朝阳,关荣霞,刘章雄,郝再彬,常汝镇,邱丽娟.油菜素内酯(BR)对大豆疫霉根腐病抗性的影响.大豆科学,2007,26(5):713-717,727
    5. 丁海东,刘慧,陈一,王丹,梁建生.H202和MAPK介导油菜素内酯诱导番茄抗氧化防护酶SOD和CAT的信号途径.植物生理学报,2011,47(10):1010-1016
    6. 董登峰,李杨瑞,江立庚.油菜素内酯对铝胁迫大豆光合特性的影响.作物学报,2008,34(9):1673-1678
    7. 杜长霞,李娟,郭世荣,樊怀福.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.西北植物学报,2007,27(6):1179-1184
    8. 段九菊,郭世荣,康云艳,李璟,刘香娥.盐胁迫对黄瓜根系生长和多胺代谢的影响.应用生态学报,2008,19(1):57-64
    9. 方丽,任海英,茹水江,王汉荣.低氧胁迫下西瓜接穗与葫芦砧木形态及生理特性变化,浙江农业学报,2010,22(6):764-768
    10.冯朝红,李凯荣,张鹏文,刘建利.干旱胁迫下油菜素内酯对文冠果苗木抗氧化酶活性和抗氧化剂含量的影响.干旱地区农业研究,2008,26(4):152-155
    11.高洪波,郭世荣,刘艳红,汪天,孙艳军,胡晓辉.低氧胁迫下Ca2+,La3+和EGTA对网纹甜瓜幼苗活性氧代谢的影响.南京农业大学学报,2005a,28(2):17-21
    12.高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响.园艺学报,2004b,31(2):236-235
    13.高洪波,郭世荣.低氧胁迫对无土栽培网纹甜瓜幼苗多胺含量的影响.园艺学报,2005b,32(1):121-123
    14.高洪波,郭世荣.外源Y-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响.植物生理与分子生物学学报,2004a,30(6):651-659
    15.高俊杰,秦爱国,于贤昌.低温胁迫下嫁接对黄瓜叶片SOD和CAT基因表达与活性变化的影响.应用生态学报,2009,20:213-217
    16.古志钦,张利权,袁琳.互花米草与芦苇光合色素含量对淹水措施的响应.应用生态学报,2009,20(10):2365-2369
    17.郭世荣.无土栽培学.北京:中国农业出版社,2003:125-129
    18.韩冰,孙锦,郭世荣,金春燕.钙对盐胁迫下黄瓜幼苗抗氧化系统的影响.园艺学报,2010,37(12):1937-1943
    19.韩刚,李凯荣.油菜素内酯对干早胁迫下山杏光合作用的影响.西北林学院学报,2011,26(4):27-32
    20.韩瑞宏,卢欣石,高桂娟,杨秀娟.紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应.生态学报,2007,27(12):5229-5237
    21.韩张雄,李利,徐新文,吕湘芳.NaCl胁迫对3种荒漠植物幼苗叶绿素荧光参数的影响.西北植物学报,2008,28(9):1843-1849
    22.何宇炯,徐如娟,赵毓橘.表油菜素内酯对绿豆幼叶衰老的促进作用.植物生理学报,1996,22(1):58-62
    23.何忠效,张树政.电泳.北京:科学出版社,1999,289-292
    24.胡文海,黄黎锋,毛伟华,周艳虹,喻景权.油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究.园艺学报,2006,33(4):762-766
    25.胡晓辉,郭世荣,李璟,王素平,焦彦生.低氧胁迫下钙调素拮抗剂对黄瓜幼苗根系多胺含量和呼吸代谢的影响.应用与环境生物学报,2007,13(4):475-480
    26.胡晓辉,李璟,郭世荣,王素平,周国贤.Ca2+对低氧胁迫下黄瓜幼苗生长和根系无氧呼吸酶的影响.西北植物学报,2005,25(10):1997-2002
    27.华子春,郑伟娟译(曼琴科G.P.著).酶的凝胶电泳检测手册.北京:化学工业出版社,2008:482
    28.黄俊,郭世荣,吴震,李式军.弱光对不结球白菜光合特性与叶绿体超微结构的影响.应用生态学报,2007,18(2):352-358
    29.黄雪梅,宋松泉,傅家瑞.在蔗糖预培养诱导耐脱水性过程中黄皮胚轴的水分状态和可溶性蛋白含量的变化.植物生理与分子生物学学报,2006,32(2):245-251
    30.黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210
    31.黄玉辉,罗海玲,陈小凤.油菜素内酯对苦瓜幼苗抗冷性的影响.南方农业学报,2011,42(5):488-491
    32.贾永霞,郭世荣,李娟,孙锦,黄保健.外源腐胺对根际低氧胁迫下黄瓜幼苗多胺和抗氧化系统的影响.西北植物学报,2008,28(8):1654-1662
    33.贾永霞,孙锦,王丽萍,束胜,郭世荣.低氧胁迫下黄瓜植株热耗散途径.应用生态学报,2011,22(3):707-712
    34.焦彦生,郭世荣,李娟,樊怀福,胡晓辉,王素平.钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响.西北植物学报,2006,26(10):2056-2062
    35.康云艳,郭世荣,段九菊.24-表油菜素内酯对低氧胁迫下黄瓜根系抗氧化系统及无氧呼吸酶活性的影响.植物生理与分子生物学学报,2006,32(5):535-542
    36.康云艳,郭世荣,段九菊.低氧胁迫对不同耐性黄瓜品种根系抗氧化系统的影响.植物生理学 通讯,2007,43(4):630-634
    37.康云艳,郭世荣,段九菊.根际低氧胁迫对黄瓜幼苗根系呼吸代谢的影响.应用生态学报,2008a,19(3):583-587
    38.康云艳,郭世荣,段九菊.外源24-表油菜素内酯对低氧胁迫下黄瓜幼苗抗氧化系统及蛋白含量的影响.农业工程学报,2005,21(z):82-86
    39.康云艳,郭世荣,李娟,段九菊.24-表油菜素内酯对低氧胁迫下黄瓜幼苗根系抗氧化系统的影响.中国农业科学,2008b,41(1):153-161
    40.康云艳,杨暹,郭世荣,张营营.24-表油菜素内酯对低氧胁迫下黄瓜幼苗碳水化合物代谢的影响.中国农业科学,2011,44(12):2495-2503
    41.克热木·伊力,侯江涛,买合木提,王丽娜.盐胁迫对扁桃光合特性和叶绿体超微结构的影响.西北植物学报,2006,26(11):2220-2226
    42.赖廷和,何斌源.木榄幼苗对淹水胁迫的生长和生理反应.生态学杂志,2007,26(5):650-656
    43.李翠英,马锋旺,白团辉,束怀瑞,韩明玉,王昆.低氧胁迫对苹果砧木幼苗生长与生理特性的影响.西北植物学报,2008,28(5):1001-1006
    44.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,119-120
    45.李璟,胡晓辉,郭世荣,王素平,王鸣华.外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响.植物生态学报,2006,30(1):118-123
    46.李凯荣,李会科,王健.天然油菜素内酯对红富士苹果抗旱增产效应的研究.园艺学报,2006,33(5):1059-1062
    47.李凯荣,张胜利,李晓军.天然油菜素内酯对核桃叶片水分和光合速率的影响.园艺学报,2003,30(6):715-718
    48.李亚玲,孙周平,时雪.马铃薯幼苗对根际低氧胁迫的生长响应及耐性分析.中国生态农业学报,2011,19(4):799-804
    49.李振,魏佳,贾承国,汪俏梅.bzrl基因的转化对番茄果实性状的影响.中国农业科学,2010,43(9):1868-1876
    50.梁芳,郑成淑,孙宪芝,王文莉.低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响.应用生态学报,2010,21(1):29-35
    51.梁国庆,孙静文,周卫,王秀斌.钙对苹果果实超氧化物歧化酶、过氧化氢酶活性及其基因表达的影响.植物营养与肥料学报,2011,17(2):438-444
    52.刘德兵,魏军亚,李绍鹏,崔百明,彭明.油菜素内酯提高香蕉幼苗抗冷性的效应.植物研究,2008,28(2):195-198
    53.刘刚,郭世荣,康云艳.钙对低氧胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.江苏农业科学,2008,6:135-137,142
    54.刘海英,郭天财,朱云集,王晨阳,康国章.花期外施表油菜素内酯(epi-BR)对小麦籽粒淀粉积累及其关键酶活性的影响.作物学报,2006a,32(6):924-930
    55.刘海英,郭天财,朱云集,王晨阳,康国章.开花期喷施表油菜素内酯对豫麦49蔗糖代谢和产 量的影响.麦类作物学报,2006b,26(1):77-81
    56.刘强,王庆成,徐静,孙晶.外源亚精胺和精胺对NaHCO3胁迫下南蛇藤抗氧化系统的影响.应用生态学报,2009,20(3):549-554
    57.刘新宇,黄玉碧.低氧胁迫对玉米根尖蛋白表达影响的研究.西南农业学报,2004,17(3):318-323
    58.刘义玲,李天来,孙周平,陈亚东.根际低氧胁迫对网纹甜瓜光合作用、产量和品质的影响.园艺学报,2009,36(10):1465-1472
    59.刘义玲,李天来,孙周平,陈亚东.根际低氧胁迫对网纹甜瓜生长、根呼吸代谢及抗氧化酶活性的影响.应用生态学报,2010,21(6):1439-1445
    60.鲁旭东,刘华英.油菜素内酯促进植物伸长生长机理研究进展.生物学教学,2005(6):3-4
    61.陆美莲,谭光营,郑慧明.赤霉素与油菜素内酯对芫荽种子高温萌发的影响.种子科技,2002(4):219-220
    62.陆晓民,朱世东.水分胁迫下几种药剂对早熟毛豆抗逆性的影响.草业学报,2006,15(3):86-92
    63.马怀宇,杨洪强.外源H202对湖北海棠根系线粒体膜透性和细胞核DNA的影响.植物生理与分子生物学学报,2006,32(5):551-556
    64.孟陈,徐明策,李俊祥,高三平.栲树冠层光合生理特性的空间异质性.应用生态学报,2007,18(9):1932-1936
    65.孟凡娟,庞洪影,王建中,李淑艳,王彦杰.NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构.生态学报,2011,31(3):0734-0741
    66.米银法,马锋旺,马小卫.根际低氧对不同抗性猕猴桃幼苗生长和内源激素的影响.园艺学报,2009,36(2):163-170
    67.钱琼秋,宰文姗,何勇,王永传,朱祝军.外源硅和辅酶Q10对盐胁迫下黄瓜根系线粒体的保护作用.中国农业科学,2006,39(6):1208-1214
    68.屈淑平,张灵宇,崔崇士.表油菜素内酯诱导大白菜抗软腐病研究.东北农业大学学报,2009,40(10):27-31
    69.尚庆茂,宋士清,张志刚,郭世荣.外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性.中国农业科学,2006,39(9):1872-1877
    70.尚庆茂,张志刚,董涛,宋士清,李晓芬.油菜素内酯诱导黄瓜幼苗抗灰霉病研究.应用与环境生物学报,2007,13(5):630-634
    71.邵小杰,杨洪强,乔海涛,张龙,由淑贞.氯化镉对葡萄根系线粒体特性与根系活力的影响.应用生态学报,2009,20(6):1390-1394
    72.生利霞,冯立国,束怀瑞.氮对低氧胁迫下樱桃根系抗氧化酶活性及线粒体功能的影响.园艺学报,2009,36(11):1575-1580
    73.生利霞,冯立国,束怀瑞.低氧胁迫下钙对樱桃砧木根系抗氧化系统及线粒体功能的影响.中国农业科学,2008,41(11):3913-3919
    74.师恺,顾敏,于海静,姜玉萍,周艳虹,喻景权.腐胺提高黄瓜根际低氧耐性的生理机理.中国农业科学,2009,42(5):1854-1858
    75.施木田,陈如凯.锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响.应用生态学报,2004,15(1):77-80
    76.束红梅,郭书巧,沈新莲,倪万潮.油菜素内酯对NaCl胁迫下棉花幼苗生理特性的影响.江苏农业学报,2011,27(6):1198-1202
    77.束胜,孙锦,郭世荣,李娟,刘超杰,王长义,杜长霞.外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响.园艺学报,2010,37(7):1065-1072
    78.宋纯鹏,王学路等译.植物生理学,北京:科学出版社,2009,206-207
    79.宋士清,刘微,郭世荣,尚庆茂,张志刚.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报,2006,17(10):1871-1876
    80.万正林,罗庆熙,李立志.表油菜素内酯诱导番茄幼苗抗高温机理的研究.广西农业科学,2009,40(9):1203-1208
    81.汪天,李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005a,31(6):637-642
    82.汪天,王素平,郭世荣,高洪波.低氧胁迫下黄瓜幼苗根系多胺代谢的变化.园艺学报,2005b,32(3):433-437
    83.汪天,王素平,郭世荣,孙艳军.外源亚精胺对根际低氧胁迫下黄瓜幼苗光合作用的影响.应用生态学报,2006,17(9):1609-1612
    84.王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    85.王长义,郭世荣,程玉静,束胜,马月花.外源钙对根际低氧胁迫下黄瓜植株钾、钙、镁离子含量和ATPase活性的影响.园艺学报,2010a,37(5):731-740
    86.王长义,郭世荣,杜长霞,刘超杰.外源钙对根际低氧胁迫下黄瓜幼苗ADH、LDH活性和同工酶的影响.生态学杂志,2010b,29(4):662-668
    87.王长义,郭世荣,刘超杰.钙对根际低氧胁迫下黄瓜幼苗根系保护酶同工酶表达的影响.西北植物学报,2009,29(9):1874-1880
    88.王凤茹,王志勇.油菜素内酯信号转导的研究进展.华北农学报,2008(z):29-39
    89.王利英,侯喜林,刘琳,陈晓峰.甘蓝链格孢菌侵染对白菜保护酶活性和H202含量的影响.园艺学报,2008,35(7):1065-1068
    90.王淼,李秋荣,付士磊,董百丽.外源一氧化氮对干旱胁迫下杨树光合作用的影响.应用生态学报,2005,16(2):218-222
    91.王廷芹,杨暹.油菜素内酯对青花菜茎尖核酸和激素含量的影响.园艺学报,2008,35(5):661-666
    92.王文泉,张福锁.高等植物厌氧适应的生理及分子机制.植物生理学通讯,2001,37(1):63-70
    93.王文泉,郑永战,梅鸿献,张福锁.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化. 植物遗传资源学报,2003,4(3):214-219
    94.王旭,郭世荣,李军,段九菊,贾永霞.Ca2+对根际低氧胁迫下黄瓜幼苗生长和叶片荧光特性的影响.西北植物学报,2007a,27(5):0859-0863
    95.王旭,郭世荣,徐刚,孙艳军.Ca2+对低氧胁迫下黄瓜幼苗光合效率和细胞超微结构的影响.江苏农业学报,2007b,23(1):39-45
    96.王瑛,杨海荣,张莉,胡秀丽.H2O2和ABA对干旱高温复合胁迫诱导的玉米叶片抗氧化防护基因表达的影响.河南农业大学学报,2011,45(6):634-639
    97.王玉琴,罗文华,徐如涓,赵毓橘.表油菜素内酯对西瓜生长和产量性状的影响(简报).植物生理学通讯,1994,30(6):423-425
    98.魏群.分子生物学实验指导.北京:高等教育出版社,2007,55
    99.翁晓燕,蒋德安,陆庆,陶月良.油菜素内酯对水稻产量和光合特性的影响.浙江农业大学学报,1995,21(1):51-54
    100.吴登如,赵毓橘.表油菜素内酯对绿豆上胚轴核酸代谢的影响.植物生理学报,1993,19(1):49-52
    101.吴晓丽,罗立津,黄丽岚,杨秀红,吴慧玲.水杨酸和油菜素内酯对花椰菜幼苗生长及抗旱性的影响.干旱地区农业研究,2011,29(2):168-172
    102.吴雪霞,查丁石,朱宗文,李贤.外源24-表油菜素内酯对盐胁迫下茄子种子萌发和幼苗生理特性的影响.植物生理学报,2011,47(6):607-612
    103.武维华.植物生理学.北京:科学出版社,2008,16-17
    104.夏庆平,高洪波,李敬蕊.γ -氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响.2011,22(4):999-1006
    105.许大全.光合作用效率.上海:上海科学技术出版社.2002
    106.杨芳,李启任.表油菜素内酯对月季切花衰老的影响.植物生理学通讯,2006,42(5):891-893
    107.杨凤娟,王秀峰,魏珉,苏秀荣,闫童.NO-3胁迫及恢复对黄瓜幼苗叶片叶绿素荧光参数及ATPase活性的影响.应用生态学报,2006,17(3):403-407
    108.杨立,周月,赵许朋,蒋永松,汤绍虎.表油菜素内酯对非洲菊切花衰老的影响,安徽农业科学,2011,39(21):13063-13064,13106
    109.耶兴元,仝胜利,刘建军.油菜素内酯对大棚温室草莓生理特性、产量及品质的影响.广东农业科学,2011a,8:39-41
    110.耶兴元,仝胜利,张燕.油菜素内酯对高温胁迫下猕猴桃苗耐热性相关生理指标的影响.西北农业学报,2011b,20(9):113-116
    111.尹博,王秀峰,姜春辉,李晓云,崔秀敏.外源油菜素内酯对番茄铜胁迫的缓解效应.植物营养与肥料学报,2012,18(1):162-168
    112.余彭娜,易小红,汤绍虎.表油菜素内酯对香石竹切花抗衰老的作用.安徽农业科学,2010,38(27):14911-14912,14914
    113.於丙军,龚红梅,李名旺.葡聚糖与蔗糖密度梯度离心制备膜微囊方法的比较.南京农业大学 学报,1997,20(4):14-18
    114.喻景权.“十一五”我国设施蔬菜生产和科技进展及其展望.中国蔬菜,2011(2):11-23
    115.袁凌云,朱世东,赵冠艳,单国雷,李仁杰.油菜素内酯诱导番茄幼苗抗冷效果的影响.中国农学通报,2010(5):205-208
    116.张会曦,甘立军,夏凯.24-表油菜素内酯和生长素促进大麦胚芽鞘伸长生长的协同作用.南京农业大学学报,2006,29(3):23-27
    117.张琳,唐敏,王正,邬旭然.油菜素内酯对油菜中有机磷农药毒死蜱残留的降解效果.安徽农业科学,2012,40(2):805-806
    118.张仁和,马国胜,柴海,张兴华,路海东,薛吉全.干旱胁迫对玉米苗期叶绿素荧光参数的影响.干旱地区农业研究,2010,28(6):170-175
    119.张燕,方力.表油菜素内酯对几种与烟草幼苗抗热性有关的生理指标的影响.延边大学农学学报,1998,2(20):96-98
    120.张燕婉,叶珏,时那,孟宪敏,王来元.蛋白质免疫印迹技术的实验研究.实验技术与管理,2008,25(10):35-37
    121.张永平,杨少军,陈幼源.24-表油菜素内酯对高温胁迫下甜瓜幼苗抗氧化酶活性和光合作用的影响.西北植物学报,2011,31(7):1347-1354
    122.张振贤.蔬菜栽培学.北京:中国农业大学出版社,2003,139
    123.张志刚,尚庆茂,董涛.油菜素内酯与CaCl2复合逆境下黄瓜幼苗的诱抗作用.内蒙古农业大学学报,2007,28(3):118-124
    124.赵士诚,孙静文,马有志,汪洪,梁国庆,周卫.镉对玉米幼苗活性氧代谢、超氧化物歧化酶和过氧化氢酶活性及其基因表达的影响.中国农业科学,2008,41(10):3025-3032
    125.赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998,149-161
    126.赵毓橘,罗文华,王玉琴,徐如涓.表油菜素内酯对绿豆下胚轴切段的保幼延衰作用.植物生理学报,1987,13(2):129-135
    127.赵云罡,徐建兴.线粒体、活性氧和细胞凋亡.生物化学与生物物理进展,2001,28(2):168-171
    128.郑敏娜,李向林,万里强,何峰,席翠玲.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响.草地学报,2009,17(5):643-649
    129.周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响.植物学通报,2006,23(4):341-347
    130.朱诚,曾广文,刘飞燕.表油菜素内酯对黄瓜幼苗热激忍耐和抗氧化代谢的关系.浙江农业大学学报,1996,22(3):284-288
    131.朱先灿,宋凤斌,徐洪文.低温胁迫下丛枝菌根真菌对玉米光合特性的影响.应用生态学报,2010,21(2):470-475
    132. Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiologia Plantarum, 2007,131:555-570
    133. Ahsan N, Lee DG, Lee SH, Lee KW, Bahk J, Lee BH. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant and Soil,2004,295:37-51
    134. Ai XZ, Guo YK, Chen L P, Xing Y X. Photosynthetic characteristics and ultrastructure of chloroplast of cucumber under low light density in solar-greenhouse. Agricultural Sciences in China,2004,3:129-135
    135. Albrecht G, Mustroph A, Fox T C. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physiologia Plantarum,2004,120:93-105
    136. Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.Wilczek). Environmental and Experimental Botany,2008a,62:153-159
    137. Ali B, Hayat S, Ahmad A.28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany,2007,59:217-223
    138. Ali Q, Athar H, Ashraf M. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regulation, 2008b,56:107-116
    139. Allakhverdiev SIA, Sakamoto A, Nishiyama Y, Inaba M, Murata N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiolohy,2000, 123:1047-1056
    140. Almeida JM, Fidalgo F, Confraria A, Santos A, Pires H, Santos I. Effect of hydrogen peroxide on catalase gene expression,isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Plant Function evolutionary Biology,2005,32:707-720
    141.Anselmi S, Chiesi M, Giannini M, Manes F, Maselli F. Estimation of Mediterranean forest transpiration and photosynthesis through the use of an ecosystem simulation model driven by remotely sensed data. Global Ecology Biogeography,2004,13:371-380
    142. Anuradha S & Rao SSR. Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica,2009,47:317-320
    143. Anuradha S & Rao SSR. The effect of brassinosteroids on radish (Raphanussativus L.) seedlings growing under cadmium stress. Plant Soil Environment,2007,53 ,465-472
    144. Armstrong W & Brandle R, Jackson MB. Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 1994,43:307-358
    145. Armstrong W & Drew M. Root growth and metabolism under oxygen deficiency. In:WaiselY, Eshel A, Kafkafi U (eds) Plant roots the hidden half. Marcell Dekker, New York USA,2002, 729-761
    146. Arora N, Bhardwaj R, Sharma P, Arora HK. Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity tress. Acta Physiologiae Plantarum,2008,30:833-839
    147. Arora P, Bhardwaj R, Kanwar MK.24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiology and Molecular Biology of Plants,2010,16: 285-293
    148. Atwell BJ & Steer BT. The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants. Plant and Soil,1990,122:1-8
    149. Bailey-Serres J, Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms. Annals of Botany,2005,96:507-518
    150. Bajguz A & Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry,2009,47:1-8
    151. Bajguz A. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 2010,68:175-179
    152. Bajguz A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination Toxicology, 2011,60:406-416
    153. Baker NR. A Possible role for photosystemⅡ in environmental perturbations of photosynthesis. Physiologia Plantarum,1991,81:563-570
    154. Bari R & Jones JD. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009,69:473-488
    155. Bennicelli RP, Ste Pniewski W, Zakrzhevsky DA, Balakhnina TI, Ste Pniewska Z, Lipiec J. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomatal diffusive resistance in maize seedlings. Environmental and Experimental Botany, 1998,39:203-211
    156. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum,2004,122:419-428
    157. Bishop G. Brassinosteroid mutants of crops. Journal of Plant Growth Regulation,2003,22:325-335
    158. Blokhima OB, Virolainen E, Fagetstedt KV, HoikkalaA, Wahala K, Chirkova TV. Antioxidant status of anoxia-tolerant and intolerant plant species under anoxia and reaetation. Physiologia Plantarum,2000,109:396-403
    159. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of Botany,2003,91:179-194
    160. Blumwald E & Poole RJ. Salt tolerance in suspension cultures of sugar beet:induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant Physiology,1987,83:884-887
    161.Borrell A, Carbonell L, Farras R, Puig-Parellad P, Tiburcio AF. Polyamines inhibit lipid peroxidation in senescing oatleaves. Physiologia Plantarum,1997,99:385-390
    162. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: Recent development. Plant Science,1999,140:103-125
    163. Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    164. Burrows WJ & Carr DJ. The effect of flooding the root system of sunflower plant on the cytokinin contents in the xylem sap. Physiologia Plantarum,1969,2:1105-1112
    165. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the A7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta,2001a,212:659-672
    166. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B,Sangwan Norreel BS,Sangwan RS. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana.Ⅱ.Effects of brassinosteroids on microtubules and cell elongation in the bull mutant. Planta,2001b,212: 673-683
    167. Cerana R, Bonetti A, Marre M T, Romani G, Lado P, Marre E. Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiologia Plantarum, 1983,59:23-27
    168. Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts J KM. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiology,2000,122: 295-317
    169. Chapin FS, Autumn K, Pugnaire F. Evolution of suites of traits in response to environmental stress. American Naturalist,1993,142:578-592
    170. Christianson JA, Llewellyn DL, Dennis ES, Wilson IW. Global gene expression responses to waterlogging in roots and leaves of cotton (gossypium hirsutum L.). Plant and Cell Physiology, 2010,51 (1):21-37
    171. Cobbett C & Goldsbrough P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology,2002,53:159-182
    172. Crawford RMM & Braendle R. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany,1996,47:145-159
    173. Cui JX, Zhou YH, Ding JG, Xia XJ, Shi K, Chen SC, Asami T, Chen ZX, Yu JQ. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment,2011,34:347-358
    174. Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany,2000,51:89-97
    175. Dhaubhadel S, Browning KS, Gallie DR, Krishna P.Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant Journal, 2002,29:681-691
    176. Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P.Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napusand tomato seedlings. Plant Molecular Biology,1999,40:333-342
    177. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence:Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany,1982,32:93-101
    178. Ding J, Shi K, Zhou Y, Yu J. Effects of root and foliar applications of 24-epibrassinolide on fusarium wilt and antioxidant metabolism in cucumber roots. Hortscience,2009a,44:1340-1345
    179. Ding J, Shi K, Zhou Y, Yu J. Microbial community responses associated with the development of Fusarium oxysporum fsp.cucumerinum after 24-epibrassinolide applications to shoots and roots in cucumber. European Journal Plant Pathology,2009b,124:141-150
    180. Divi U & Krishna P. Brassinosteroids:a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology,2009,26:131-136
    181. Drew MC. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia. Annual Review of Plant Biology,1997,48:223-250
    182. Du CX, Fan HF, Guo SR, Takafumi T. Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity. Journal of the American Society for Horticultural Science,2010,135:18-24
    183. Duca S, Tidu V, Bassi R, Esposito C, Serafmi-Fracassini D. Identification of chloroPhyll-a/b protein as substrates of transglutaminase activity in isolated chloroplast of Helianthus tuberosus L. Planta,1994,193:283-289
    184. Ellis MH, Millar AA, Llewellyn DJ, Peacock WJ, Dennis ES. Transgenic cotton (Gossypium hirsutum) overexpressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Australian Journal of Plant Physiology,2000,27: 1041-1050
    185. Ephritikhine G, Fellner M, Vannini C, Lapous D, Barbier-Brygoo H. The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant Journal, 1999,18:303-314
    186. Everard JD & Drew MC. Mechanisms of inhibition of water movement in anaerobically treated roots of zea mays. Journal ofExperimental Botany,1987,38:1154-1159
    187. Fariduddin Q, Khanam S, Hasan S A, Ali B, Hayat S, Ahmad A. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiologiae Plantarum,2009a,31:889-897
    188. Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A.28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica,2011,49:55-64
    189. Fariduddin Q, Yusuf M, Hayat S, Ahmad A. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environmental and Experimental Botanty,2009b,66:418-424
    190. Farquhar GD & Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345
    191. Felle HH. pH regulation in anoxic plants. Annals of Botany,2005,96:519-532
    192. Franck-Duchenne M, Wang Y, Tahar S, Beachy R. In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell, Tissue & Organ Culture,1998,53:79-84
    193. Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ. A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany,2008,59:2299-2308
    194. Gao HB, Jia YX, Guo SR, Lv GY, Wang T, Li J. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. Journal of Plant Physiology,2011,168:1217-1225
    195. Garnczarska M & Bednarski W. Effect of a short-term hypoxic treatment followed by reaeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiology and Biochemistry, 2004,42:233-240
    196. Garnczarska M. Response of the ascorbate-glutathione cycle to reaeration following hypoxia in lupine roots. Plant Physiology and Biochemistry,2005,43:583-590
    197. Genty B, Brianiantain JM, Baker NR. The relationships between the quantum yield of photosynthetic electron transport and the quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta(BBA)-General Subiects,1989,990:87-92
    198. Giannopolitis CN & Ries SK. Purification and quantitative relationship with water-soluble protein in seedling. Plant Physiolgy,1977,59:315-318
    199. Gibbs J & Greenway H. Mechanisms of anoxia tolerance in plants.I.Growth, survival and anaerobic catabolism. Functional Plant Biology,2003,30:1-47
    200. Gibbs J, Morrell S, Valdez A, Setter TL, Greenway H. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. Journal of Experimental Botany, 2000,51:785-796
    201. Gibbs J, Turner DW, Armstrong W, Sivasithamparam K, Greenway H. Response to oxygen deficiency in primary maize roots. Ⅱ. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Australian Journal of Plant Physiology,1998, 25:759-764
    202. Gravatt DA, Kirby CJ. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology,1998,18:411-417
    203. Greenway H & Gibbs J. Mechanisms of anoxia tolerance in plants. Ⅱ. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology,2003,30: 999-1036
    204. Grove MD. Spencer GF. Rohwedder W K. Brassinolide, a plant growth-promoting steroid isolated from Brassic napus pollen. Nature,1919,281:216-217
    205. Guo SR & Tachibana S. Effect of dissolved O2 levels in a nutrient solution on the growth and mineral nutrition of tomato and cucumber seedlings. Journal of the Japanese Society for Horticultural Science,1997,66:331-337
    206. Guye MG, Vigh L, Wilson JM. Polyamine titre in relation to chilling sensitivity in plaselous. Journal of Experimental Botany,1986,37:1034-1043
    207. Hartley IP, Armstrong AF, Murthyw R, Barron-Gafford G, Ineson P, Atkin OK. The dependence of respiration on photosynthetic substrate supply and temperature:Integrating leaf, soil and ecosystem measurements. Global Change Biology,2006,12:1954-1968
    208. Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DPV, Choe S, Johal, GS. Schulz B. Brassinosteroid control of sex determination in maize. Proceeding of the National Academy of Sciences of The United States of America,2011,108:19814-19819
    209. Hasan SA, Hayat S, Ali B, Ahmad A.28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution,2008,151:60-66
    210. Hasegawa PM, Bressan RA, Zhu JK. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Molecular Biology,2000,51:463-499
    211. Hayat S, Ali B, Hasan SA, Ahmad A. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experiment Botany,2007,60:33-41
    212. He LX, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-emperature photoinhibition due to interruption of chill-indueed inerease of s-adenosylmethionine deearboxylase aetivity in leaves of spinach(spinacia oleracea L.). Plant and Cell Physiology,2002, 43:196-206
    213. Hoffman NE, Bent AF, Hanson AD. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiology,1986,82:658-663
    214. Holbrook NM & Zwieniecki MA. Plant biology:Water gate. Nature,2003,425:361
    215. Hong Z, Miyako UT, Sae SS,Yoshiaki I, Shozo F, Yukihisa S, Suguru T, Masakazu A, Shigeo Y, Yoshihisa W, Sakurako U, Hidemi K, Mttoyuki A, Makoto M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the or ganized arrangement and polar elongation of cells in the leaves and stem. Plant Journal,2002,32:495-508
    216. Honnerova J, Rothova O, Hola D, Kova M, Kohout L, Kvasnica M. The Exogenous application of brassinosteroids to Zea mays (L.). stressed by long-term chilling does not affect the activities of photosystem 1 or 2. Journal of Plant Growth Regulation,2010,29:500-505
    217. Horchani F, Gallusci P, Baldet P, Cabasson C, Maucourt M, Rolin D, Aschi-Smiti S, Raymond P. Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. Journal of Plant Physiology,2008,165:1352-1359
    218. Horchani F, Khayati H, Raymond P, Brouquisse R, Aschi-Smiti S. Contrasted effects of prolonged root hypoxia on tomato root and fruit (Solanum lycopersicum) metabolism. Journal of Agronomy and Crop Science,2009,195:313-318
    219. Howell WM, Keller GE, Kirkpatrick JD, Jenkins RL, Hunsinger RN, McLaughlin EW. Effects of the plant steroidal hormone,24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genetics and Molecular Research,2007,6:50-58
    220. Hu WH, Wu Y, Zeng JZ, He L, Zeng QM. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica,2010,4:537-544
    221. Huang S, Greenway H, Colmer TD. Response by coleoptiles of intact rice seedlings to anoxia:K+ net uptake from the external solution and translocation from the caryopses. Annals of Botany,2003, 91:271-278
    222. Huang SB, Greenway H, Colmer TD, Millar HV. Protein synthesis by rice coleoptiles during prolonged anoxia:implications for glycolysis, growth and energy utilization. Annals of Botany, 2005,96:703-715
    223. Ismond KP, Dolferus PRMD, Dennis ES, Good AG. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiology,2003,132: 1292-1302
    224. Jackson MB & Hall KC. Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant, Cell & Environment,1987,10:121-130
    225. Jager CE, Symons GM, Ross JJ, Smith JJ, Reid JB. The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta,2005,221:141-148
    226. Jager CE, Symons GM., Ross JJ, Reid JB. Do brassinosteroids mediate the water stress response? Physiologia Plantarum,2008,133:417-425
    227. Janeczko A, Koscielniak J, Pilipowicz M, Szarek-lukaszewska G, Skoczowski A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica,2005,43: 293-298
    228. Janeczko A, Oklest' kova J, Pociecha E, Koscielniak J, Mirek M. Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum,2011,33:1249-1259
    229. Janina L, Thomas A, Carsten M. Metabolic changes in fruits of the tomato dx mutant. Phytochemistry,2006,67:2232-2238
    230. Jia YX, Sun J, Guo SR, Li J, Hu XH, Wang SP. Effect of root-applied spermidine on growth and respiratory metabolism in roots of cucumber (Cucumis sativus) seedlings under hypoxia. Russian Journal of Plant Physiology,2010,57:648-655
    231. Justin SFW & Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol.1987,106:465-495
    232. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta,2007,225:353-364
    233. Kang YY, Guo SR, Li J, Duan JJ. Effect of root applied 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) seedlings under hypoxia.plant growth regulation.2009,57:259-269
    234. Kang YY, Guo SR, Li J, Duan JJ. Effects of 24-epibrassinolide on antioxidant system in cucumber seedling roots under hypoxia stress. Agricultural Sciences in China,2007,6:281-289
    235. Kennedy RA, Rumpho ME, Fox TC. Anaerobic metabolism in plants. Plant Physiology,1992,100: 1-6
    236. Kim SL, Lee Y, Lee SH, Kim SH, Han TJ, Kim SK. Brassinolide influences the regeneration of adventitious shoots from cultured leaf discs of tobacco. Journal of Plant Biology,2008,51: 221-226
    237. Klaring H & Zude M. Sensing of tomato plant response to hypoxia in the root environment. Scientia Horticulturae,2009,122:17-25
    238. Kochba J, Lavee S, Spiegel-Royp. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic'Shamouti'orange ovular callus lines. Plant and Cell Physiology,1977,18:463-467
    239. Kogawara S, Yamanoshita T, Norisadal M, Masumori M, Kojima K. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camaldulensis, a moderately flood-tolerant species. Tree Physiology,2006,26: 1413-1423
    240. Kolb RM, Dolder H, Cortelazzo AL. Effects of anoxia on root ultrastructure of four neotropical trees. Protoplasma,2004,224:99-105
    241. Kornyeyev D, Logan BA, Payton P. Enhanced photochemical lightutilization and decreased chilling-induced photoinhibition of photosystem Ⅱ in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum,2001,113:323-331
    242. Kruger NJ. The Bradford method for protein quantification//Walker JM. The Protein Protocols Handbook.2nd Edition. Totowa, NJ:Humana Press Inc.,2002:15-21
    243. Ladygin VG. Functional activity and chloroplast structure in leaves of pisum sativum and glycine max under conditions of root hypoxia and anoxia. Russian Journal of Plant Physiology,1999,46: 207-218
    244. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-684
    245. Lee KW, Chen PW, Lu CA, Chen S, Ho THD, Yu SM. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Science signaling,2009,2(91):61
    246. Leubner-Metzger G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta,2001,213:758-763
    247. Li J, Sun J, Yang YJ, Guo SR, Glick BR. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. Plant Physiology and Biochemistry,2012,51:74-80
    248. Li K,Wang H, Han G.,Wang Q, Fan J. Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forest,2008,35:255-266
    249. Li KR, Zhang WB, Li HK. Effect of natural brassinolide on germination of Ailanthus altissima seeds. Forestry Studies in China,2005,7:12-14
    250. Li KR & Feng CH. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum,2011,33:1293-1300
    251. Li SW, Pezeshki SR, Goodwin S. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia). Acta Oecologica,2004,25:17-22
    252. Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in arabidopsis thaliana. The Plant Journal,2010,62:302-315
    253. Lima ALS, Da Matta FM, Pinheiro HA, Totola M, Loureiro ME. Photochemical responses and oxidative stress in two clones of Coffea canephoraunder water deficit conditions. Environmental and Experimental Botany,2002,47:239-247
    254. Lin KHR, Weng CC, Lo HF, Chen JT. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science,2004,167:355-365
    255. Liu YJ, Zhao ZG, Si J, Di CX, Han J, An LZ. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regulation,2009,59:207-214
    256. Mancuso S & Marras A. Adaptative response of Vitis root to anoxia. Plant and Cell Physiology, 2006,47:401-409
    257. Mandava NB, Sasse JM, Yopp JH. Brassinolide, a growth-promoting steroidal lactone Ⅱ, Activity in selected gibberllin and cytokin in bioassays. Physiologia Plantarum,1981,53:453-461
    258. Marco F, Calvo E, Carrasco P, Sanz M.J. Physiological and molecular responses of pea plants to ozone stress. Recent Research Developments in Plant Molecula Biology,2003,1:67-77
    259. Mayumi K & Shiboaka H. A possible double role for brassinolide in the re-orientation of cortical microtubules in the epidermal cells of Azuki bean epicotyls. Plant Cell and Physiology,1995,36: 173-181
    260. Mazorra L, Nunez M, Hechavarria M, Coll F, Sanchez-Blanco M.Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum,2002,45: 593-596
    261.Mckee KL & Mendelssohn IA. Root metabolism in the black mangrove(Avicennia germinans (L.)L):Response to hypoxia. Environmental and Experimental Botany,1987,27:147-156
    262. Medrano H, Escalona JM, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought:stomatal conductance as a reference parameter. Annals of Botany, 2002,89:895-905
    263. Moller IM. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:561-591
    264. Mommer L & Visser EJW. Underwater photosynthesis in flooded terrestrial plants:A matter of leaf plasticity. Annals of Botany,2005,96:581-589
    265. Morillon R, Catterou M, Sangwan RS, Sangwan BS, Las-salles JP. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta,2001,212:199-204
    266. Mustroph A & Albrecht G. Tolerance of crop plants to oxygen deficiency stress:Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum,2003,117:508-520
    267. Mustroph A, Boamfa El, Laarhoven LJJ, Harren FJM, Albrecht G, Grimm B. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. Ⅱ. Light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta,2006,225: 139-152
    268. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacoo and rice. The Plant Journal,2003,33:887-898
    269. Naumann JC, Young DR, Anderson JE. Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environmental and Experimental Botany,2008,63:402-409
    270. Nie X, Durnin DC, Igamberdiev AU, Hill RD. Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta,2006,223:542-549
    271. Nunez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT. Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Planttarum, 2003,47:67-70
    272. Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogues S. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 2008,27:49-57
    273. Ogweno JO, Hu WH, Song XS, Shi K, Mao WH, Zhou YH, Yu JQ. Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regulation,2010,60:175-182
    274. Ohri P, Sohal SK, Bhardwaj R, Khurma UR. Studies on the root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood under the influence of 24-epibrassinolide. Annals Plant Protection Sciences,2008,16:198-202
    275. Papadopoulou E & Grumet R. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. HortScience,2005,40:1763-1767
    276. Parida AK & Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicology Environmental Safety,2005,60:324-349
    277. Park W. Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta, 1998,207:120-124
    278. Pedersen O, Rich SM, Colmer TD. Surviving floods:Leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal,2009,58:147-156
    279. Pinol R & Simon E. Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. Journal Plant Growth Regulation.2009,28:97-105
    280. Pustovoitova TN, Zhdanova NE, Zholkevich VN. Epibrassinolide increases plant drought resistance. Doklady Biochemistry and Biophysics,2001,376:36-38
    281. Qayyum B, Shahbaz M, Akram NA. Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). Inernational Journal Agricuture & Biology,2007,9:584-589
    282. Rahman M, Grover A, Peacock WJ, Dennis ES, Ellis MH. Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Australian Journal of Plant Physiology,2001,28:1231-1241
    283. Raza SH, Athar HR, Ashraf M, Hameed A. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany,2007,60:368-376
    284. Ricard B, Couee I, Raymond P, Saglio PH, Saint-Ges V, Pradet A. Plant metabolism under hypoxia and anoxia. Plant Physiology and Biochemistry,1994,32:1-10
    285. Roberts DR, Dumbroff ED, Thompson JE. Exogenous polyamines alter membrane fluidity in bean leaves-bsis for potential misinterpretation of their true physiological role. Planta,1986,167: 395-401
    286. Roberts JK, Callis J, Wemmer D, Walbot V & Jardetzky O. Mechanisms of cytoplasmic ph regulation in hypoxic maize root tips and its role in survival under hypoxia. Proceedings of the National Academy of Sciences,1984,81:3379-3383
    287. Rocha M, Licausi F, Arau WL, Nunes-Nesi A, Sodek L, Fernie AR., Dongen JT.Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiology,2010,152:1501-1513
    288. Romanutti C, Castilla V, Coto CE, Wachsman MB. Antiviral effect of a synthetic brassinosteroid on the replication of vesicular stomatitis virus in vero cells. International Journal of Antimicrobial Agents,2007,29:311-316
    289. Sachs MM, Freeling M, Okimoto R. The anaerobic proteins of maize. Cell,1980,20:761-767
    290. Saglam-Cag S. The effects of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnological Equipment,2007,21:63-65
    291. Sairam RK. Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. Plant Growth Regulation,1994,14: 173-181
    292. Saka H, Fujii S, Imakawa AM, Kato N, Watanabe S, NishizawaT, YonekawaS. Effect of brassinolide applied at the meiosis and flowering stages on the levels of endogenous plant hormones during grain-filling in rice plant (Oryza sativa L.). Plant Production Science,2003,6: 36-42
    293. Sasse JM. Physiological actions of brassinosteroids:an update. Journal of Plant Growth Regulation, 2003,22:276-288
    294. Sasse JM. Recent progress in brassinosteroid research. Physiologia Plantarum,1997,100:696-701
    295. Saygideger S & Deniz F. Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regulation. 2008,56:219-223
    296. Shahbaz M, Ashraf M, Athar HR. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation,2008,55: 51-61
    297. Shao HB, Chu LY, Jaleel CA, Zhao CX. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies,2008,331:215-225
    298. Sharma P, Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum,2007,29:259-263
    299. Sharma SS & Dietz KJ. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science,2009,14:43-50
    300. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K.Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany,2002,53: 1305-1319
    301. Singh I & Shono M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regulation,2005,47:111-119
    302. Singh S, Eapen SD, Souza SF. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere,2006,62,233-246
    303. Sondergaard TE, Schuiz A, Palmgern MG. Energization of transport processes in plants roles of the plasma membrane H+-ATPase. Plant Physiology,2004,136:2475-2482
    304. Song WJ, Zhou WJ, Jin ZL, Cao DD, Joel DM, Takeuchi Y, Yoneyama K. Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Research,2005,45:467-476
    305. Song WJ, Zhou WJ, Jin ZL, Zhang D, Yoneyama K, Takeuchi Y, Joel DM. Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Australian Journal Agricultural Research,2006,57:1195-1201
    306. Sousa CAF & Sodek L. The metabolic response of plants to oxygen deficiency. Brazilian Journal of Plant Physiology,2002,14:83-94
    307. Steber CM & McCourt P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiology,2001,125:763-769
    308. Steffens D, Hutsch B W, Eschholz T, Losak T, Schubert S. Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil and Environment,2005,51: 545-552
    309. Subbaiah CC, Bush DS, Sachs MM. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. The Plant Cell,1994,6:1747-1762
    310. Subbaish C & Sachs MM. Molecular and cellular adaptations maize to flooding stress. Annals of Botany,2003,91:119-127
    311. Sun C, Liu YL, Zhang WH. Mechanism of the effect of polyamines on the activity of tonoplasts of barley roots under salt stress. Acta Botanica Sinicia,2002,44:1167-1172
    312. Swamy KN & Rao, SSR. Influence of 28-homobrassinolide on growth, photosynthesis metabolite and essential oil content of geranium (Pelargonium graveolens (L.) Herit). American Journal Plant Physiology,2008,3:173-179
    313. Symons G, Davies C, Shavrukov Y, Dry I, Reid J, Thomas M. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology,2006,140:150-158
    314. Tadege M, Brandle R, Kuhlemeier C. Anoxia tolerance in tobacco roots:effect of over expression of pyruvate decarboxylase. Plant Journal,2002,14:327-335
    315. Tadolini B. Polyamine inhibition of lipoperoxidation:the influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochemical Journal,1988, 249,33-36
    316. Takamura N, Kusai F, Watanabe M. Effects of Cu, Cd, Zn on photosynthesis of freshwater benthic algae. Journal ofAppiedl Phycology,1989,1:39-52
    317. Takeuchi Y, Omigawa Y, Ogasawara M, Yoneyama K, Konnai M, Worsham AD. Effects of brassinosteroids on conditioning and germination of clover broomrape (Orobanche minor) seeds. Plant Growth Regulation,1995,16:153-160
    318. Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S.Physiological roles of brassinosteroids in early growth of Arabidopsis:brassinosteroids have a synergistic relationship with gibberellins as well as auxin in light-growth hypocotyl elongation. Journal of Plant Growth Regulation,2003,22:259-271
    319. Tezara W, Martinez D, Rengifo E, Herrera A. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanace) to drought, soil salinity and saline spray. Annals of Botany,2003,92: 757-765
    320. Tiburcio AF,Campos JL, Figueras X, Besford RT. Recentadvances in the understanding of polyamines functions duringplant development. Plant Growth Regulation,1993,12:331-340
    321. Tominaga R, Sakurai N, Kuraishi S. Brassinolide-induced elongation of inner tissues of segments of squash (Cucurbita maxima Duch.) hypocotyls. Plant Cell Physiology,1994,35:1103-1106
    322. Ullah H, Chen JG, Wang S, Jones AM. Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology,2002,129:1-11
    323. Vain B, Pardha P, Saradhi PM. Alteration in chloroplast structure and thylakoid membrane composition due to in vivo heat treatment in rice seedlings:Correlation with the functional changes. Journal of Plant Physiology,2001,158:583-592
    324. Vardhini BV & Rao SSR. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry,2002,16:843-847
    325. Vardhini BV & Rao SSR. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum, Plant Growth Regulation,2003,41:25-31
    326. Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Annals of Botany,2003,91:155-172
    327. Waie B & Rajam MV. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science,2003,164:727-734
    328. Wang BK & Zeng GW. Effect of epibrassinolide on the resistance of rice seedlings to chilling injury. Acta Phytophysiologica Sinica,1993,19:38-42
    329. Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivumlThinopyrum ponticum. Proteomics,2008,8:123-456
    330. Wang ZY, Takeshi N, Joshua G, He JX, Chen M, Dionne V, Yang YL, Shozo F, Shigeo Y, Tadao A, Joanne C. Nuclear-Localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell,2002,2:505-513
    331. Wilen RW, Sacco M, Lawrence VG, Krishna P. Effects of 24-epibrassinolide on greening and thermotolerance of brome grass (Bromus inermis) cell cultures. Physiologia Plantarum,1995,95: 195-202
    332. Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta,2009a,230:1185-1196
    333. Xia XJ, Huang YY, Wang L, Huang L, Yu YL, Zhou YH, Yu JQ. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pesticide Biochemistry and Physiology,2006,86:42-48
    334. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroids-induced stress tolerance in cucumber. Plant Physiology, 2009b,150:801-814
    335. Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ. Brassinosteroids promote metabolism of pesticides in cucumber. Journal of Agricural and Food Chemistry,2009c,57: 8406-8413
    336. Yamaguchi T, WakizukaT, Hirai K, Fujii S, Fujita A. Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proceeding of the Plant Growth Regulator Society of America, 1987,1:35-39
    337. Yang T & Poovaiah BW. Hydrogen peroxide homeostasis:Activation of plant catalase by calcium/calmodulin. Proceeding of the National Academy Sciences of the United States of America,2002,99:4097-4102
    338. Yopp JH, Mandava NB, Sasse JM. Brassinolide, a growth-promoting steroidal lactone I, Activity in selected auxin bioassays. Physiologia Plantarum,1981,53:445-452
    339. Yu JQ, Zhou YH, Ye SF, Huang LF.24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. Journal Horticultural Science & Biotechnology,2002,77:470-473
    340. Yuan GF, Jia CG, Zhen L, Sun B, Zhang LP, Liu N, Wang QM. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae,2010,126:103-108
    341. Yuan Y, Qian HM, Yu YD, Lian FQ, Tang DQ. Thermo tolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiologiae Plantarum,2011,33:1001-1009
    342. Yun HR, Joo SH, Park CH, Kim SK, Chang SC, Kim SY. Effects of brassinolide and IAA on ethylene production and elongation in maize primary roots. Journal of Plant Biology,2009,52: 268-274
    343. Zhang AY, Zhang J, Ye NH, Cao JM, Tan MP, Zhang JH, Jiang MY. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. Journal of Experimental Botany,2010,61:4399-4411
    344. Zhang AY, Zhang J, Zhang JH, Ye NH, Zhang H, Tan MP, Jiang MY. Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiology.2011,52:181-192
    345. Zhang MC, Zhai ZX, Tian XL, Duan, LS, and Li ZH. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation.2008,56:257-264
    346. Zhao FG, Sun C, Liu YL, Zhang WH. Relationship between polyamines metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica,2003,45:295-300
    347. Zhu JK. Salt and drought stress signal transduction in plants. Annual Review in Plant Biology,2002, 53:247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700