用户名: 密码: 验证码:
花生慢生根瘤菌的多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用表型性状测定、16S rDNA PCR-RFLP、16S rRNA序列分析和16S-23SrDNA ITS PCR-RFLP分析等技术系统研究了从我国不同地域分离的55株花生慢生根瘤菌的遗传多样性及其在根瘤菌系统发育中的地位和相互关系。
     表型聚类结果表明:在69%相似性水平上,所有供试菌株和参比菌株可以分为两大类群Ⅰ和Ⅱ。在75.4%的相似性水平上,群Ⅰ可分为ⅠA、ⅠB和ⅠC三个亚群。亚群ⅠA由来自重庆、襄樊、泰安的菌株共同组成;亚群ⅠB由来自襄樊和泰安的菌株组成;亚群ⅠC由来自襄樊的菌株组成。在78%的相似性水平上,群Ⅱ也可分为ⅡA、ⅡB和ⅡC三个亚群。亚群ⅡA是由来自重庆、襄樊和盐城的菌株组成;亚群ⅡB主要由来自许昌的菌株组成,还包括3株来自重庆的菌株;亚群ⅡC由6株参比菌株Bradyrhizobium japonicum USDA6、USDA110、USDA122和Bradyrhizobium elkanii USDA46、USDA76、USDA86组成。
     16S rDNA PCR-RFLP和16S rRNA序列分析结果表明:在63%的相似性水平上,所有供试菌株与参比菌株可分为三大类群。群Ⅰ由TA15等5株供试花生慢生根瘤菌组成,该群菌株在系统发育上与B.japonicum和B.elkanii的参比菌株亲缘关系较远。群Ⅱ由参比菌株B.japonicum USDA6、USDA 110和USDA122等组成。群Ⅲ在相关系数为0.818时可以再分为亚群1和亚群2两个亚群,亚群1中包含TA2等42株菌株,亚群2由自盐城分离的YC10等8个菌株与参比菌株B.elkanii USDA46、USDA76和USDA86组成。
     16S-23S rDNAITS PCR-RFLP分析在61%的相似性水平上,将所有供试菌株和参比菌株分为三大类群:其中群Ⅰ由TA15等5株供试花生慢生根瘤菌组成。群Ⅱ由参比菌株B.japonicum USDA6、USDA110、USDA122和B.elkanii USDA 46、USDA76和USDA86组成。群Ⅲ在相关系数为0.658时也可以再分为亚群1和亚群2两个亚群,亚群1由TA2等42株菌株组成,可以在相关系数为0.939时分为六个小群,;亚群2由来自江苏盐城的8个菌株组成,在相关系数为0.791时YC10与其他7个菌株分开,单独聚为一类。与16S rDNA PCR-RFLP相比,16S-23S rDNA ITS PCR-RFLP具有更高的解析度,供试菌株表现出更加丰富的遗传多样性。
Studies on diversity and phylogeny of slow-growing rhizobia isolated from Arachishypogaea in China was determined by analysis of phynotype, 16S rDNA PCR-RFLP, 16SrRNA gene sequence, 16S-23S rDNA ITS PCR-RFLP.
     Results of phenotype test shown that all 55 rhizobia tested and 6 reference strainswere clustered into two groups(Ⅰ,Ⅱ) at the similarity of 69%. GroupⅠcould be dividedinto subgroupⅠA,ⅠB andⅠC. SubgroupⅠA contained rhizobia isolated from Chongqing,Xiangfan and Taian. SubgroupⅠB contained rhizobia isolated from Xiangfan and Taian.SubgroupⅠC contained rhizobia isolated from Xiangfan. GroupⅡalso could be dividedinto subgroupⅡA,ⅡB andⅡC. SubgroupⅡA contained rhizobia isolated fromChongqing, Xiangfan and Yancheng. SubgroupⅡB contained rhizobia isolated fromXuchang and Chongqing. SubgroupⅡC contained 6 reference strains B.japonicumUSDA110, USDA6, USDA122 and B. elkanii USDA76, USDA46 andUSDA86.
     Results of 16S rDNA PCR-RFLP analysis and 16S rRNA gene sequence revealedthat all strains tested could be clustered into three groups at the similarity of 63%. GroupⅠcontained 5 slow-growing rhizobia including TA5, they were relatively far from B.japonicum and B. elkanii phylogenetically. GroupⅡconsisted of 3 reference strains ofB.japonicum USDA110, USDA6 and USDA122. GroupⅢcould be divided into twosubgroup. SubgroupⅠcontained 42 slow-growing rhizobia including TA2. SubgroupⅡcontained 8 slow-growing rhizobia isolated from Yancheng and the reference strains of B.elkanii USDA76, USDA46 and USDA86.
     Results of 16S-23S rDNA ITS PCR-RFLP shown that strains tested could be dividedinto two groups at the similarity of 61%. GroupⅠcontained 5 slow-growing rhizobiaincluding TA5. GroupⅡcontained 6 reference strains B. japonicum USDA110, USDA6,USDA122 and B. elkanii USDA76, USDA46 and USDA86. GroupⅢcould be dividedinto two subgroup. SubgroupⅠcontained 42 slow-growing rhizobia including TA2 whichcould be subdivided into six groups at the similarity of 0.939. SubgroupⅡcontained 8slow-growing rhizobia isolated from Yancheng. At the similarity of 0.791, YC10 wasseparated from other 7 slow-growing rhizobia. Compared with 16S rDNA PCR-RFLP,ITS RFLP assay shown higher resolution.
引文
1.陈丹明,曾昭海,隋新华等.紫花苜蓿高效共生根瘤菌的筛选.草业科学,2002,19(6):27-31
    2.贾筱婷,周俊初,李阜棣.两种扩增rDNA片断RFLP图谱用于快生型大豆根瘤菌的遗传多样性研究.农业生物技术学报,1998,6(4):398-404
    3.李俊,曹凤明,李力,樊蕙,杨苏声.慢生根瘤菌16S-23S rDNA ITS的RFLP分析.应用与环境生物学报,1996,26(3):184-188.
    4.林稚兰,黄秀梨.现代微生物学与实验技术.北京:科学出版社,2000:9-13
    5.沈世华,荆玉祥.中国生物固氮研究现状和展望.科学通报,2003,48(6):532-540
    6.史晓霞,师尚礼,杨晶,王正凤.豆科植物根瘤菌分类研究进展.草原与草坪,2006,1:12-17
    7.王素英.根瘤菌分类的新进展.微生物学通报,1997,24(1):44-47
    8.王素英,邵汝梅,蔡雪梅,许晓东.核酸指纹图谱技术在根瘤菌分类中的应用.天津商学院学报,2002,22(6):26-29
    9.姚竹云,陈文新.多相分类技术在根瘤菌分类中的应用.农业生物技术学报,1998,6(2):161-165
    10.杨江科,周俊初.潍坊、花园口土样中土著大豆根瘤菌的遗传多样性研究.应用与环境生物学报,2000,6(3):259-262
    11.章家恩,蔡燕飞,高爱霞,朱丽霞.土壤微生物多样性实验研究方法概述.土壤,2004,36(4):346-350
    12.张小平,李阜隶.根瘤菌的遗传多样性与系统发育研究进展.应用与环境生物学报,2002,8(3):325-333
    13.张小平,陈强,李登煜,Kristina L.花生根瘤菌在根瘤菌系统发育中的地位研究.微生物学报,1996,36(3):227-233
    14.郑君芳,朱万孚.根瘤菌系统发育分类方法研究进展.微生物学通报,2004,31(2):126-129
    15. Allen O N, Allen E K. The Leguminosae: A source book of characteristics, Uses and Nodulation. University of Wisconsin Press: Madison, WI.1981
    16. Banfalvi Z, Sakanyan V. Location of nitrogen fixation genes on a high molecular weight plasmid of R.meliloti. Mol Gen Genet, 1981, 184:318-325
    17. Berrera L L, Trujillo M E, Goodfellow M J et al. Biodiversity of bradyrhizobia nodulating Lupinus spp. Int.J Syst Bacterial, 1997, 47: 1086-1091
    18. Brown J R, Doolittle W F. Archaea and the prokaryote-to-eukaryote transition. Mol Biol Rev, 1997, 61: 456-502
    19. Cartwright C P, Stock F, Beekman S E, Williams E C, Gill V J. PCR amplification of rRNA intergenic spacer region as a method for dpidemiologic typing of Clostridium difficile. J Clin Microbiol, 1995, 33: 184-187
    20. Chen W, Wang E, Wang S et al. Characteristics of Rhizobium Tianshanense sp.nov, a moderately and slowly growing growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J Syst Bacteriol, 1995, 45:153-159
    21. Chen Q, Zhang X, Li D , Liang R, Kristina L. Numerical taxonomy and DNA homonogy of Brabyrhizobium sp. (Arachis). Southwest China Journal of Agricultural Science, 1998, 11 (4): 1-9
    22. Chen W X, Li G S, Qi Y L Rhizobium huakuii sp.nov. isolated from the root nodules of Astragalus sinicus. Int J Syst.Bacteriol, 1991, 41: 275 -280
    23. Colwell R R. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus and related Vibrio species. J Bacteriol, 1970,104: 410-433
    24. Corich V, Giacomini A, Ollero F J et al. Pulsed-field electrophoresis in contour-clamped homogenous electric fields (CHEF) for the fingerprinting of Rhizobium spp. FEMS Microbiol Lett, 1991, 83: 193-198
    25. De Lajudie P, Willems A, Pot B et al. Polyphasic taxonomy of rhizobia: emendation of the genus sinorhizobium and description of sinorhizobium meliloti comb.nov., Sinorhizobium saheli sp.nov., and Sinorhizobium teranga sp.nov. Int J Syst Bacteriol, 1994, 44: 715-733
    26. De Ley J. Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. In Proceedings of the 4th International conference on plant patho-genotic Bacteria, Angers. Gilbert-Clarey, Tours. France, 1978,1: 347-357
    27. Denarie J, Debelle F, Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol, 1992, 46: 497-531
    28. Denarie J , Roche P. Rhizobium nodulation signals Verma DPS. Molecular signals in plant-microbe communi-cations. London : CRC Press , 1991, 296-324
    29. De Lajudie P, Laurent-Fulele E, Willems A. Description of Allorhizobium undicola gen. Nov., sp.nov., For nitrogen-fixing bacteria effciently nodulating Neptunia natans in Sengal. Int J Syst Bacteriol,1998a, 48: 1277-1290
    30. Gao J L, Sun J G, Li Y . Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol, 1994, 44: 151-158
    31. Gao J L, Turner S L, Kan F L, Wang E T, Tan Z Y, Qiu Y H, Gu J, Terefework Z, Young J P, Lindstrom K, Chen WX. Mesorhizobium septentrionale sp.nov. and Mesorhizobium trmperatum sp.nov. isolated from Astragalusadsurgens growing in the northern regions of China. Int J Svst .Bacteriol, 2004, 54: 2003-2012
    32. Gills Belles-Isles J, Brown G, Gagne S, Lemieux C, Mercier J P, Dion P. Identification of variability of ribosomal DNA spacer from Pseudomomas soil isolates. Can J Microbiol, 1994, 40: 541-547
    33. Gurtler V, Stanisich V A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology, 1996, 142: 3-16
    34. Haukka K, Lindstrom K. Plused-field electrophoresis for genotypic comparison of Rhizobium bacteria that nodulate tree. FEMS Microbiol Lett, 1994,119:215-220
    35. Herrea M A et al. Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recocer deseritified Mediterranean ecosystems. Appl Environ Microbio, 1993, 56(1):129-133
    36. Higgins C F, Ferro-luzzi Ames G, Barnes W M. et al. A novel intercistronic regulatory element of prokaryotic operons. Nature, 1982, 298: 760-762
    37. Hoogkans P, Van Brussel A, Den Dulkras H. Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium Tumefaciens. Nature, 1981, 291: 351-353
    38. Hulton C S J, Higgins C F, Sharp P M. ERIC sequence, a novel family of repetitive elements in the genome of Escherichis coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, 1991, 5 (4): 825-834
    39. Janssen P, Maquelin K, Coopman R. et al. Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int. J Syst.Bacteriol, 1997, 47: 1179-1187
    40. Jarvis B D W, Tighe S W. Rapid identification of Rhizobium species based on cellular fatty acid analysis. Plant and soil, 1994,161: 31-34
    41. Jarvis B D W, Sivakumaran S, Tighe S W, Gills M. Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant and Soil, 1996, 184:143-158
    42. Jensen M, Webster JA, Straus N. Variability of the random amplified polymorphic DNA assay among thermal cycles, and effects of primer and DNA concentraion. Appl Environ Microbiol, 1993, 59(4): 945-952
    43. Johnston A, Beyono J. High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature, 1978, 276: 634-636
    44. Laguerre G, Allard M R, Revoy F, Amarger N. Rapid identificaiton of rhizobia by restrication fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol, 1994, 60: 56-63
    45. Long S R. Rhizobium symbioses: nod factors in perspective. Plant Cell, 1996, 8: 1885-1898
    46. Madigan M T, Martinko J M, Parker J. Brock biology of Microbiology, 9~(th), I.Southern(ed.), Prentice Hall International.2000
    47. Martin B, Humbert O, Amara M C et al. A highly conserved repeated DNA element located in the chromosome of streptococcus pneumonia. Nucleic Acids Rev , 1992, 20: 3479-3483
    48. Martinez-Romero E. Recent Development in Rhizobium taxonomy. Plant and soil, 1994,161:11-20
    49. Nick G, Rasanen L, de Lajudie P, Gillis M, Lindstrom K.. The biodiversity among rhizobia, agrobacteria and agrobacterium like strains assessed by 16S rDNA PCR-AFLP. Int J Syst Bacteria, 1998, 612: 305-313
    50. Noel K, Brill W J. Diversity and dynamics of indigenous Rhizobium japonicum. Appl Environ Microbiol, 1980, 40: 931-938
    51. Nour S M, Cleyet Marel J C, Beck D E, ffosse A, Fernandez M P. Genotypic and Phenotypic diversity of Rhizobium isolated from Chickpea (cicer arietnum L). Can J Microbiol, 1994a, 40: 345-354
    52. Nour S M, Fernandez M P, Cleyet Marel J C. Rhizobium ciceri sp.nov, consisting of strains that nodulate chickpeas (cicer orietinum). Int J Syst Bacteriol, 1994b, 44: 511-522
    53. Nour S M, Cleyet-Marel J C, Normand P, Fernandez M P. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp.nov. Int J Syst Bacteriol, 1995, 45: 640-648
    54. Nuti M, Lepidi A, Prakash R. Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmid. Nature, 1979, 282: 640-648
    55. Obbard J P, Jones K C. The effect of heavy metals on dinitrogen fixation by Rhizobium while clover in range of long-term sewage sludge amended and metal-contaminated soils. Environmental Pollution, 1993, 79(2): 105-112
    56. Olsen G J, Woses C R, Overbeek R. The winds of evolutionary change: breathing new life in microbiology. J Bacteriol, 1994,176:1-6
    57. Perret X, Stachelin C, Broughton W. Molecular Basis of Symbiotic Promiscuity. Microbiol Mol Rev, 2000, 64: 180-201
    58. Roberts G P, Leps W T, Silver L E et al. Use of two-dimentional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Appl Environ Microbiol, 1980, 39: 414-422.
    59. Rossum D V, Schuurmans F P, Gillis M, Muyotcha A, Henk W, Verseveld V , Stouthamer A H, Boogerd F C. Genetic and phonetic analyses of Bradyrhizobium strains nodulating peanut (Arachis) roots. Appl Environ Microbiol ,1995, 61(4): 1599-1609
    60. Schneider M, de Bruijn F J. rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World J Microbiol Biotechnol, 1996,12:163-174
    61. Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet. 1998, 32: 33-57
    62. Selander R K, Caugant D A, Ochman H. et al. Methods of the multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol, 1986, 51: 873-884
    63. Sharples G J, Lloyd R G. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res , 1990,18: 6503-6508
    64. Smith S R, Giller, Giller K E. Effective Rhizobium Leguminosarum biovar trifolii present in five contaminated with heavy metals from long-term application of sewage sludge or metal mine spoil. Soil Biol and Binchem, 1992, 24(8): 781-788
    65. Sneath P H A, Sokal R B. Numerical taxonomy. The principles and practice of numerical classiification. Freeman W H Co. San Francisco. 1973
    66. Sneath P H A. Bacterial classification II. Numerical Taxonomy. In: Kreig N R and Holt J G Bergey's Manual of Systematic Bacteriology. Vol. 1, Williams and Wilkins, Baltinore, M D. USA. 1984, 5-7
    67. Stern M J, Ferro-Luzzi Ames G, Smith N H et al. Repective palindromic sequences: A major component of the bacterial genome. Cell, 1984, 37: 1015-1026
    68. Terefework Z, Nick G, Suomalainen S, Paulin L, Lindstrom K.. Phylogeny of Rhizobium galegae with respect to other rhizobium and Agrobacteria. Int J Syst Bacteriol, 1998,48: 349-356
    69. Trucht G, Rosenberg C, Vasse J et al. Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens: host-specific nodulation by atypical infection. J bacteriol, 1984,157: 134-142
    70. Turner S L, Zhang X X, Li F D et al. What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology, 2002, 148(11): 3330-3331
    71. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996 ,60(2): 407-438
    72. Velazquez E, Cruz-sanchez J M, Mateos P F et al. Analysis of Stable Low-molecular-weight RNA Profiles of the Family Rhizobiaceae. Appl Environ Microbiol, 1998, 64: 1555-1559
    73. Versalovic J, Keouth T, Lupski J R. Distribution of repetitive DNA sequence in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 1991,19: 6823-6833
    74. Versalovic J, Schmeider M, de Buijn F J et al. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Method Mol Cellular Biol, 1994, 5: 25-40
    75. Vijne I, das Neves L, van Kammen A, Franssen H, Bisseling T. Nod factors and nodulation in plants. Science ,1993, 260: 1764-1765
    76. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornas M, Frijters A, Pot J, Peleman J, Kuiper M , Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Res ,1995, 23: 4407-4414
    77. Wang E T, van Berkum P, Beyene D, Sui X H, Dorado O, Chen W X, Martinez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and dexcriptioon of Mesorhizobium amorphae sp.nov. Int J Syst Bacteriol, 1999, 49: 51-65
    78. Woses C R. Bacterial evolution. Microbiol Rev, 1987, 51: 221-271
    79. Willems A, Doignon-Bourcier F, Coopman R et al. AFLP fingerprint analysis of Bradyrhizobium strains isolated from Faidherbia albida and Aeschynomen species. Syst Appl Microbiol, 2000, 23: 137-147
    80. Yelton M, Yang S, Edie S et al. Characterization of an effective salttolerant, fast-growing strains of Rhizobium Japonium. J Gen Microbiol, 1983,129: 1537-1547
    81. Young J P W, Haukka K. Diversity and phylogeny of rhizobia.. New phytol, 1996, 133: 87-94
    82. Young J M, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H. A revision of Rhizbium Frank 1889.with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et.al.1998 as new combinations: Rhizobium radiobacter, R.rhizogenes, R.rubi, R.undicola and R.vitis. Int J Syst Bacteriol, 2001, 51: 89-103
    83. Zabran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe condition and in arid climate. Microbiol Mol Biol Rev , 1999 , 63 : 968-989
    84. Zhang X P, Li DY, Nick G. Et al. Growth Characteristic and fatty acid analyses of bradyrhizobial strains isolated from the nodules of peanut(Arachis). Chin J Appl Environ Biol, 1997, 3(1): 44-48
    85. Zhang X P, Nick G, Kaijalainen S. Phylogeny and Diversity of Bradyrhizohium strains isolated from the root nodules of peanut (Arachis hypogaea) in Siduan, China. System Appl Microbiol, 1999, 22: 378-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700