用户名: 密码: 验证码:
含镁多孔性材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国镁资源丰富,大量镁资源得不到利用,浪费了资源,污染了环境,迫切需要开发大规模利用镁盐的新领域。本研究以镁盐(MgCl2·6H2O)和商品硅胶、硅溶胶为原料,分别采用浸渍法、溶胶-凝胶法、水热法等多种方法,制备出镁化合物改性硅胶和多孔硅酸镁两个系列的新型含镁多孔材料。采用比表面积及孔径分析、傅立叶变换红外光谱分析、X射线衍射分析和热分析等现代分析手段对产物进行了分析表征。评价了这些多孔材料对水体污染物(染料、金属离子、氟离子)、空气中水蒸气和二氧化硫的吸附脱除性能。
     浸渍法制备氯化镁改性硅胶,对水蒸气的吸附量可以与目前广泛应用的氯化钙改性硅胶干燥剂吸水性相当。经过两级脱水后得到的低水合氯化镁改性硅胶,其比表面积为232.35 m2·g-1、孔径为10.95 nm。氯化镁改性硅胶不是氯化镁与硅胶的简单物理混合,而是氯化镁填充到硅胶的孔隙中,既充分利用了硅胶大的比表面积和孔结构,又充分发挥低水合氯化镁的强吸湿性,根据改性硅胶中镁含量不同,复合干燥剂的吸湿能力可以增加为硅胶的10 ~ 30倍,克服了单一硅胶干燥剂吸湿量小的缺点,同时避免了氯化镁的液解现象。根据不同的吸湿要求,可以通过两级脱水制备出氯化镁含量从0.1 %到30 %的一系列改性硅胶干燥剂,满足不同条件下的空气除湿要求。
     采用过量浸渍、等体积浸渍和浸渍沉淀三种方法,制备出氧化镁改性硅胶,对三种制备方法得到的改性硅胶进行吸附性能综合评价,发现:等体积浸渍法制备改性硅胶具有方法简单、产物比表面积大、吸附性能好的优点。控制制备过程中氯化镁浓度,采用多次浸渍的方法,将硅胶加入氯化镁浸渍液中,在25℃恒温振荡浸渍24 h后,于500℃焙烧4 h,可以得到氧化镁含量高、吸附性能好的氧化镁改性硅胶。
     采用氯化镁和硅溶胶为原料,溶胶凝胶法制备多孔硅酸镁。不断搅拌下,向氯化镁中逐滴加入硅溶胶,调节混合物体系的pH值为10,待原料完全混匀后,加入聚丙烯酰胺絮凝剂,陈化24 h后,在750℃焙烧1 h。根据混合物中镁含量不同,可以制备出一系列针对不同性质污染物的复合吸附剂。根据多孔硅酸镁中镁和硅的不同配比,吸附剂的比表面积从14.18 m2·g-1到177.37 m2·g-1变化。
     通过对水中污染物包括金属离子、染料和氟离子的吸附,研究不同种类含镁多孔材料的性能。考察了吸附时间与温度、污染物初始浓度、溶液初始pH值及环境盐度对吸附性能的影响,发现:在实验温度范围内,几种含镁多孔材料对污染物的吸附均遵循伪二级动力学模型,吸附过程可用Langmuir吸附等温式、Freundlich吸附等温式和D-R吸附等温式描述。相同试验条件下,氧化镁改性硅胶和多孔硅酸镁对染料、金属离子和氟离子的吸附量分别为硅胶的5 ~ 30倍。
     氧化镁改性硅胶对二氧化硫的吸附能力随吸附剂用量的增大而增强,随气体流速的增加而降低,水蒸气的存在有利于吸附过程的进行。改性硅胶的脱硫能力明显高于商品硅胶,在相同的实验条件下,改性硅胶对二氧化硫的吸附量约为商品硅胶的5 ~ 7倍。吸附机理研究表明:有水蒸气存在的情况下,二氧化硫可以进入硅胶发达的孔隙中,也可以与复合物中硅胶上负载的氧化镁反应生成MgSO3,提高吸附效率。
     上述研究结果表明,利用镁盐(主要是MgCl2·6H2O)和硅胶、硅溶胶制备的一系列含镁多孔材料具有较好的吸附性能和广阔的应用前景。本研究中首次将氯化镁和硅胶、硅溶胶作为研究对象制备新型含镁多孔材料,并应用于空气除湿和污染物脱除领域。为卤水中镁盐的大规模使用提供了新思路,同时制备出一种可用于治理污染物的新型吸附材料,达到了双向治理的目的。
Magnesium chloride is abundant in salt lakes in China. In some extent, it is bad for life and production. In order to make use of magnesium chloride, magnesium contained porous materials were prepared by mixture of magnesium chloride, silica and silica solution. The optimum preparation conditions were assured by uniform designs. The magnesium contained porous materials prepared under the optimum conditions were characterized by N2 adsorption/desorption isotherms, X-ray diffractometer, FT-IR spectrometers and thermogravimetry. The adsorption capacities of magnesium contained porous materials were evaluated by adsorbing dyes, metal ions and fluoride from aqueous solution, SO2 from gas and water vapor from air.
     The preparation of magnesium chloride modified silica need two steps of dehydration. The optimum preparation conditions were: first dehydration temperature of 60℃, second dehydration at 140℃for one and a half day. The BET surface areas of the sample prepared is 232.35 m2·g-1, which is intervenient of silicon dioxide (303.61 m2·g-1)and magnesium chloride(24.05 m2·g-1). The average pore radius is 10.95 nm, while the pore radius for silicon dioxide and magnesium chloride are 11.41 nm and 7.37 nm, respectively. These data indicate that the combined desiccant is not mechanical mix, but magnesium chloride penetrate into the pore of silica. The combined method can conquer the disadvantage of low uptake capacity of silicon dioxide and the deliquescence of magnesium chloride. And the water vapor uptake capacity of magnesium chloride modified silica is about 5 to 30 times larger than silica gel.
     Magnesia modified silica was prepared by three ways, namely superfluous solution soakage, equal solution soakage and equal solution soakage- precipitation methods. Compare the three methods, it can be find that the equal solution soakage way is easy to operate, economic and the best property for adsorption. By changing the concentration of magnesium chloride and repetitious soakage, the content of magnesia can be much more. The optimum preparation conditions were: Dipping at 25℃for 24 h, and then calcining at 500℃for 4 h.
     Sol-gel is the way for preparation of porous magnesium silicate use magnesium chloride and silicon solution. In uninterrupted mix round, the magnesium chloride and silica solution are mixed. The optimum pH value is about 10. Then, 0.2 % polyacry lamide act as flocculant was added in mixture. After aging for 24 h, the mixture were calcined at 7500℃for 1 h. The content of magnesia in porous magnesium silicate was controlled by the concentration of magnesium chloride solution. The BET surface area changed from14.18 m2·g-1 to 177.37 m2·g-1.
     The magnesium contained materials prepared were examined for the adsorption of dyes (Methylene blue and Weak acid red), metal ions ( Cu2+ and Ni2+) and fluoride from aqueous solutions by varying the parameters of adsorption time, temperature, initial pH, initial concentration and salinity of solution. Studies showed the adsorption of all the pollutants are followed the pseudo-second order model and could be described by Langmuir isotherm, Freundlich isotherm and D-R isotherm. Also, the adsorption mechanisms are not the same.
     The study of adsorption SO2 onto magnesia modified silica prepared showed that the adsorption capacities increase with the increasing of sorbent amount and decrease with the flow velocity and SO2 inlet concentration. Water vapor is beneficial for desulfurization. The adsorption amount of SO2 is much better than commercial silicon dioxide when water vapor presented. The adsorption mechanism of SO2 study showed that the mechanism of SO2 adsorption in SO2-H2O system is of physical adsorption and it could be changed to chemical adsorption when water vapor presented. The chemical adsorption played a more important role than physical adsorption.
     The study of preparation and adsorption behavior of magnesium contained porous materials show that all the materials have good characteristics. This is the first study of preparation of magnesium contained materials by magnesium salts from brine and salt lakes, the study can serve two purposes. First, it can provide a new way for magnesium salts from brine utilization; second, a useful, cheap and value-added sorbent for pollution treatment can be made. So this study is such an exploring research that has the certain prospect, innovation and important applied foreground.
引文
[1]曹文虎,吴蝉,等.卤水资源及其综合利用技术.地质出版社,北京:2004.12
    [2]乌志明,马培华.镁、镁资源与镁质材料概述.盐湖研究,2007,15(4):65-72
    [3]卫峰.运城盐湖氯化镁资源利用经验介绍.镁盐工业,2003,1:40-43
    [4]徐丽君,周仲怀.苦卤综合利用技术的研究与开发.海湖盐与化工,2001,30(4):5-9
    [5]王海增,郭鲁钢,于红.絮凝吸附法脱除盐湖卤水中的有色物质.海湖盐与化工,2003,32(1):22-24
    [6]徐丽君,于银亭,殷丽,等.我国21世纪海水化学资源综合利用技术发展战略.海湖盐与化工,1999,28(6):21-25
    [7]张保全.柴达木盆地盐湖镁盐工业的发展及对策.镁盐工业,2001,2:94- 99
    [8]李华.柴达木盆地盐湖开发中镁资源利用的几点思考.有色金属,2000,8:33- 34
    [9]向兰,刘峰,金永成,等.试论我国西部盐湖镁资源的高度利用对策.海湖盐与化工,2002,31 (4):24-28
    [10]徐日瑶.金属镁生产工艺学.长沙:中南大学出版社,2003
    [11]陈建军,马玉涛.水氯镁石脱水研究的进展与展望.盐湖研究,1998, 6(2):92-97
    [12]张永健.含水氯化镁脱水方法及其利用.轻金属,2001, (12) :42-45
    [13]王世忠.白色氯化镁生产工艺的探讨.海湖盐与化工,1997,26 (1):11-14
    [14]李增新,王彤.天然沸石负载壳聚糖用于苦卤脱色的研究.无机盐工业,2005,37 (5):47-49
    [15]李增新,孟韵.活性炭纤维用于苦卤脱色的研究.无机盐工业,2005,37 (12):50-52
    [16]贺春宝,李国英.中国硫酸镁的生产方法及发展前景.无机盐工业,2007,39(7):16-17
    [17]李丽,袁存光.黄河三角洲盐卤资源综合利用研究.海湖盐与化工,2005,34(3):1-4
    [18]乌志明,李法强.青海盐湖氯化镁资源开发.盐湖研究,2001,9(2):61-65
    [19]闫振甲,何艳君.镁水泥改性及制品生产实用技术.北京:化学工业出版社,2006.
    [20]张勇,罗必圣.氯氧镁水泥制品成型工艺实验研究.武汉工程大学学报. 2008,3:80-82
    [21]王雷,晏成林,刘美男,等.无机功能材料新工艺研究及其工业化前景.材料导报,2007,21(8):96-99
    [22]王训.纳米氧化镁制备工艺研究:[硕士学位论文].西安:西北大学,2001,4
    [23]徐丽君,于廷芳,于银亭,等.海水化学资源镁系产品技术研究与开发中的几个问题.海洋科学,1998,6:59-63
    [24]刘玉胜,刘翠,马培华.利用盐湖卤水制取氢氧化镁的技术探索.盐湖研究,2004, 12 (2):51-55
    [25]徐艺军,陈文凯,章永凡,等. NO在MgO[001]缺陷表面吸附解离的量子化学研究.结构化学,2004,23 (2):192
    [26] Soldatkina L.M., Purich A.N., Menchuk V. V. Adsorption of dyes on magnesium hydroxide. Adsorpt. Sci. Technol., 2001, 19 (4): 267-272
    [27]姜述芹,周保学,于秀娟,等.氢氧化镁处理含镉废水的研究.环境化学,2003,22(6):601-604
    [28]郭如新.绿色安全中和剂氢氧化镁.化工科技市场,1999,22(12):18-22
    [29]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002
    [30] E. Elvove. Removal of fluoride from water. Public Health Reports, 1937, 52: 1308-1314
    [31] A.C. Zettlemoyer, E.A. Zettlemoyer, W.C. Walker, Active magnesia II: adsorption of fluoride from aqueous solution. Am. Chem. Soc., 1947, 69 : 1312-1315
    [32]猪狩俶将.日本公开特许.昭52-114792
    [33] Okay, O., Güclü, H., Soner E., Balka T., Boron pollution in the Simav river, Turkey and various methods of boron removal. Water Research, 1985, 19, 857- 862
    [34] Nina Dionisiou, Theodora Matsi, Nikolaos D. Misopolinos. Use of magnesia for boron removal from irrigation water. Journal of Environmental Quality, 2006, 35 (6): 2222-2228
    [35] Sylvia Huber, Helmut Knozinger. Adsorption of CH-acidson magnesia - An FTIR spectroscopic study. Journal of Molecular Catalysis A: Chemical, 1999, 141:117-127
    [36] M. Trabelsi a, S. Saidi a, C. Chefia, et al. Thermodynamic and structural study of methanol thin films adsorbed on MgO (100). Surface Science, 2004, 566–568
    [37]凌金珠,余健力,王福琴,等.活性氧化镁处理印染废水的研究.环境污染治理技术与设备, 1981, Z1:70-77
    [38] Krischok S., Stracke P., Hofft O., Kempter V. A comparative analysis of electron spectroscopy and first-principles studies on Cu (Pd) adsorption on MgO. Surface Science, 2006, 600: 3815- 3820
    [39]姜述芹,周保学,于秀娟,等.含镍废水的氢氧化镁净化研究.哈尔滨工业大学学报,2003,10(35):1212-1216
    [40]陈光富.氧化镁脱硫技术的工程应用研究:[硕士学位论文].上海:上海交通大学, 2007
    [41]吴洪波.火电厂湿法氧化镁烟气脱硫除尘一体化技术应用分析.电站辅机,2005,3(1):22-25
    [42]孔火良,金保升,吴慧芳,仲兆平.燃煤电厂烟气脱硫主要工艺.环境技术,2002,4:15-20
    [43]李世涛,乔学亮,陈建国,等.氧化镁及其复合材料的抗菌性能研究.功能材料. 2005,11(36):1651-1663
    [44] Chuan Tianjing, Ming zhanglian. The utilization of MgO as a buffer in ammonium sulfite pulping, Cellulose Chemistry and Techndogy, 1999, 33(5~6): 495-501
    [45] Schaper, H., Berg-Slot, J. J., Stork, W. H. J. Stabilized magnesia: a novel catalyst (support) material. Applied Catalysis, 1989, 54(1): 79-90
    [46]阎振甲,何艳君.镁水泥改性及制品生产实用技术.北京:化学工业出版社,2006
    [47]袁大伟.利用硼泥制备磷酸镁水泥:[硕士学位论文].大连:大连理工大学. 2008,6
    [48] C.A Sorrell, C.R. Armstrong, Reactions and equilibria in magnesium oxychloride cements. Journal of the American Ceramic Society, 1976, 59 (1-2): 51
    [49]严育通,景燕,马军.氯氧镁水泥的研究进展.盐湖研究,2008,16(1):60-66
    [50] V.S.Ramachandran, R.F.Feldman, J.J.Beaudoin著.黄士元,孙复强,王善拔,等译.混凝土科学.北京:中国建筑工业出版社,1986,9
    [51]汪宏涛,钱觉时,王建国.磷酸镁水泥的研究进展.材料导报,2005,19(12):46-48
    [52]李鹏晓,杜亮波,李东旭.新型早强磷酸镁水泥的制备和性能研究.硅酸盐通报. 2008,27(1):20-25
    [53]苏畅,铝硅镁水泥.中国专利,00122936,2004.04.07
    [54]李智广.高掺量粉煤灰菱镁水泥性能研究.山东煤炭科技. 2007,1:70-71
    [55]许贤敏.磷酸铵镁水泥轻混凝土的耐热性. 2002,22(1):58-59
    [56] E. Aghion, B. Brontin, D.Eliezer. The role of the magnesium industry in protecting the environment. Jounral of Materials Processing Technology, 2001, 117:381-385
    [57] H.M. Lu, L.L. Yu, P. Liang, et al. Electrolysis of Magnesium from Bischofite in Qinghai Salt Lakes. Rare metals, 2001, 20 (4): 209-212
    [58] Targosz,Eugene F. Wastewater treatment process using an admixed paste for activated carbonand magnesium hydroxide. US patent,6379555, 2002
    [59]侯少芹,王海增,孙宝维,等.“氧化镁/活性炭”新型吸附剂的制备及其对Cr(VI)的吸附研究.环境工程学报,2009,In press
    [60]郭鲁钢,王海增,邢坤.用硫酸镁和造纸草浆黑液制备吸附剂及其对活性黄ST-4RFN吸附研究.中国海洋大学学报,2008,(1):107-110
    [61]郭鲁钢,朱培怡.用造纸草浆黑液和硫酸镁制备吸附剂及其对苯酚吸附研究.中国海洋大学.全国博士生学术论坛论文集.青岛,2007,8:377-381
    [62] Doesburg E B M, Hoppener R H, de Koning B et al. Preparation of catalystsⅣ. Amsterdam: Elservier Science Publishers B V,1987. 767
    [63] Baker, J. E., Bruch, R., Niu, Yuqin. Investigation of cobalt aluminum oxide (CoAl2O4), copper/cobalt aluminum oxide and cobalt/cobalt aluminum oxide catalysts for the formation of oxygenates from a carbon monoxide-carbon dioxide-hydrogen mixture. Applied Catalysis, 1991, 73(1): 135-52
    [64]杜以波,李峰,何静,等.影响水滑石晶体结构的因素.燃料化学学报,1997,25(5):449-453
    [65] I. Hama, T. Okamoto, E. Hidai et al. Direct ethoxylation of fatty methyl ester over Al-Mg composite oxide catalyst. JAOCS, 1997, 74(1): 19-24
    [66]卢永定.新型矿物材料-水滑石.无机盐工业,1998,30(3):8-10
    [67] Reichle, W. T., Kang, S. Y., Everhardt D. S. The nature of the thermal decomposition of a catalytically active anionic clay mineral, Journal of Catalysis, 1986, 101 (2): 352-359
    [68]俞卫华,倪哲明,郭志强. LDHs材料制备技术研究进展.浙江工业大学学报,2004,32 (3):306-307
    [69] Klumpp E, Contreras C O, Klahre P, et al. Sorption of 2, 4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A, 2004, 230: 111-116
    [70]安霞,谢鲜梅,王志忠.水滑石类化合物的性质及其催化作用.太原理工大学学报, 2002,33(5):498-501
    [71]崔卫华,董邦真,刘菲.硅胶载体除氟剂的性能.化工进展,2007,26(8):1170-1173
    [72]梅华,陈道远,姚虎卿.硅胶的二氧化碳吸附性能及其与微孔结构的关系.天然气化工,2004,29 (5):21-25
    [73]张磊.新型高效分离介质的制备和应用:[博士学位论文].天津:天津大学,2006
    [74]李鑫,李忠.硅胶的孔径结构对脱附活化能的影响.南京理工大学学报,2006,30(6):787-792
    [75] Maia C. Romanes, Nandika A. Dsouza, Decio. Coutinho, et al. Surface and subsurface characterization of epoxy-mesoporous silica composites to clarify tribological properties. Wear, 2008, 265 (1-2): 88-96
    [76] TashiroY, Kubo M, Katsumi Y, et al. Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system. Journal of Materials Science, 2005, 39 (4): 1315-1319
    [77] Ng K C, Chua H T, Chung C Y, et al. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Applied Thermal Engineering, 2001, 21 (16): 1631-1642
    [78] Muster T H, Prestidge C A, Hayes R A. Water adsorption kinetics and contact angles of silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176 (2-3): 253-266
    [79] Chung T. W, Chung C. C. Increase in the amount of adsorption on modified silica gel by using neutron flux irradiation. Chemical Engineering Science, 1998, 53 (16): 2967-2972
    [80] Chang K. S, Chen M. T, Chung T.W. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems. Applied Thermal Engineering, 2005, 25 (14-15): 2330-2340
    [81] Chang K S, Wang H C, Chung T W. Effect of regeneration conditions on the adsorption dehumidification process in packed silica gel beds. Applied Thermal Engineering, 2004, 24 (5-6): 735-742
    [82]李鑫,李忠,韦利飞,等.除湿材料研究进展.化工进展,2004,23 (8):811-815
    [83] Aristov Y.I., Restuccia G., Tokarev M.M. et al. Selective water sorbents for multiple applications. 11. CaCl2 confined to expanded vermiculite. React Kinet. Catal., 2000, 71 (2): 377-384
    [84] E.A.Levitskij, Yu.I.Aristov, M.M.Tokarev, et al.“Chemical Heat Accumulators”: A new approach to accumulating low potential heat. Solar Energy Materials and Solar Cells, 1996, 44: 219-235
    [85] Yu.I. Aristov, M.M Tokarev, G. Cacciola, et al. Selective Water Sorbents for Multiple Applications, 1.CaCl2 Confined in mesopores of Silica Gel: Sorption properties. Reaction Kineticsand Catalysis Letters, 1996, 59 (2): 325-333
    [86] Yu.I. Aristov, M.M Tokarev, G. Restuccia, et al. Selective Water Sorbents for Multiple Applications, 2.CaCl2 Confined in micropores of Silica Gel: Sorption properties. Reaction Kinetics and Catalysis Letters, 1996, 59 (2): 335-342
    [87] Yu.I. Aristov, G.D. Marco, M.M. Tokarev, V.N. Parmon. Selective water sorbents for multiple applications, 3.CaCl2 solution confined in micro-and mesoporous silica gels: pore size effect on the“solidification-melting”. Reaction Kinetics and Catalysis Letters, 1997, 61 (1): 147-154
    [88] M.M Tokarev, Yu.I. Aristov. Selective Water Sorbents for Multiple Applications, 4.CaCl2 Confined in Silica Gel Pores: Sorption/Desorption Kinetics. Reaction Kinetics and Catalysis Letters, 1997, 62 (1): 143-150
    [89] L.G. Gordeeva, M.M Tokarev, V.N. Parmon, Yu.I.Aristov. Selective Water Sorbents for multiple applications: 6 freshwater production from the atmosphere. Reaction Kinetics and Catalysis Letters, 1998, 65 (1): 153-159
    [90]刘业凤,范宏武,王如竹.新型复合吸附剂SiO2·xH2O·yCaCl2与常用吸附剂空气取水性能的对比实验研究.太阳能学报,2003,24 (2):141-144
    [91]刘业凤,范宏武,王如竹.新型空气取水复合吸附剂在沙漠气候下的吸附性能实验研究.离子交换与吸附,2002,18 (5):440-445
    [92]张学军,代彦军,王如竹.新型复合干燥剂吸附分形特性.工程热物理学报,25(2),2004:320-322
    [93] White D.A., Bussey R.L. Water sorption properties of modified clinoptilolite. Separation and Purification Technology, 1997, 11(2): 137-141
    [94]李鑫,李忠,刘宇,等.不同金属盐改性对硅胶的水蒸气吸附性能影响.离子交换与吸附,2005,21(5):391-396
    [95]贾春霞.硅胶基复合干燥剂强化除湿机理及其应用研究:[博士学位论文].上海:上海交通大学,2006.10
    [96]闫英桃,刘建,董岁明.载铁硅胶去除水中氟的吸附性能与机理.长安大学学报(建筑与环境科学版),2004,21(3):60-63
    [97]詹予忠,李玲玲,李浩,等.制备条件对硅胶负载氧化锆吸附除氟的影响.环境科学与管理,2007,23(5):83-85
    [98]马刚平,刘振儒,赵春禄.镧氧化膜硅胶吸附除氟性能研究.中国环境科学,1999,19(4):345-348
    [99] Wasay, S. A., Haron, Md. J., Tokunaga, S. Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environment Research, 1996, 68 (3): 295-300
    [100] Katri Sirola, Markku Laatikainen, Marko Lahtinen, Erkki Paatero. Removal of copper and nickel from concentrated ZnSO4 solutions with silica-supported chelating adsorbents. Separation and Purification Technology, 2008, 64: 88-100
    [101]李谦和,陈亮,尹笃林,等. Cr (Ⅵ)载体氧化试剂的制备和应用研究-微波促进三氧化铬/硅胶氧化试剂的制备.湖南师范大学自然科学学报,2004,27(4):55-58
    [102]王艳,王水利,马洁平.硅胶负载二氧化钛膜的制备与性能研究.科技创新导报,2008,3:20-21
    [103]胡庆福.镁化合物生产与应用.北京:化学工业出版社,2004,2
    [104]胡庆福,李保林,李国庭.医用三硅酸镁的制备.无机盐工业,1995,4:33-34
    [105]陈淑英.六硅酸镁的合成工艺研究.四川化工与腐蚀控制,2000,3(5):3-6
    [106] Ibrahim M. El-Naggar, Mamdouh M. Abou-Mesalam. Novel inorganic ion exchange materials based on silicates; synthesis, structure and analytical applications of magneso-silicate and magnesium alumino-silicate sorbents. Journal of Hazardous Materials, 2007, 149: 686–692
    [107] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski. Sedimentation and wettability of synthetica magnesium silicates. Physicochemical Problems of Mineral Processing, 2006, 40: 255-263
    [108] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski. Physicochemical studies on precipitated magnesium silicates. J Mater Sci, 2007, 42: 3831–3840
    [109] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski. Influence of precipitation parameters on physicochemical properties of magnesium silicates, Physicochemical Problems of Mineral Processing, 2004, 38: 197-206
    [110] Chaplots. L., Choudhury N. Phase transitions of enstatite MgSiO3: a molecular dynamics study, Solid State Communications, 2000, 116: 599-603
    [111] K. Speakman, A. J. Majumdar. Synthetic 'deweylite'. Mineralogical magazine, 1971, 38: 225-34
    [112] O. Yu. Golubeva, E. N. Korytkova, V. V. Gusarov. Hydrothermal synthesis of magnesium silicate montmorillonite for polymer-clay nanocomposites. Russian Journal of Applied Chemistry,2005, 78(1): 26332
    [113] Andrzej Krysztafkiewicz, Lidia Karolina Lipska, Filip Ciesielczyk, Teofil Jesionowski. Amorphous magnesium silicate - synthesis, physicochemical properties and surface morphology. Advanced Powder Technol., 2004, 15(5): 549-565
    [114] Elena V. Kalinkina, Alexander M. Kalinkin Willis Forsling, Victor N. Makarov. Sorption of atmospheric carbon dioxide and structural changes of Ca and Mg silicate minerals during grinding II. Enstatite, akermanite and wollastonite. Int. J. Miner. Process., 2001, 61: 289-299
    [115] Liu L-g. Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere. Physics of the Earth and Planetary Interiors, 1986, 42: 255-262
    [116] Hexiong Yang, Charles T. Prewitt, Daniel J. Frost. Crystal structure of the dense hydrous magnesium silicate, phase D. American Mineralogist, 1997, 82: 651-654
    [117]蒋学良.新型保温隔热材料-硅酸镁的应用.节能技术,1992,1:18-19
    [118]耿叔怡,李宝生.硅酸镁吸附碳酸钾中微量铁研究.河北化工,1990,3:33-34
    [119] Mamdouh M. Abou-Mesalam, Ibrahim M. El-Naggar. Selectivity modification by ion memory of magneso-silicate and magnesium alumino-silicate as inorganic sorbents. Journal of Hazardous Materials, 2008, 154: 168-174
    [120] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski. Magnesium silicates adsorbents of organic compounds. Applied Surface Science, 2007, 253: 8435-8442
    [121] Brian S. Cooke. Adsorbent Treatment of Frying Oils and the Impact on Health and Nutrition. The Dallas Group of America, 1402 Fabricon Blvd., Jeffersonville, IN, 47130, United States
    [122] Mamdouh M. Abou-Mesalam and Ibrahim M. El-Naggar. Selectivity modification by ion memory of magneso-silicate and magnesium alumino-silicate as inorganic sorbents. Journal of Hazardous Materials, 2008, 154: 168-174
    [123] Picheng Huang, Douglas W. Fuerstenau. The effect of the adsorption of lead and cadmium ions on the interfacial behavior of quartz and talc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177: 147-156
    [124]中华人民共和国化学工业部. HG/T2765.5-1996.中华人民共和国化工行业标准-硅胶试验方法.1996
    [125]国家环境保护总局. HJ/T 56-2000.固定污染源排气中二氧化硫的测定方法-碘量法.北京:中国环境科学出版社. 2000-12-17
    [126]国家环境保护局. GB7474-8.水质铜的测定.二乙基二硫代氨基甲酸钠分光光度法
    [127]国家环境保护局. GB11910-89.水质镍的测定.丁二酮肟分光光度法.1989
    [128]中华人民共和国国家标准. GB 7484-87水质-氟化物的测定-离子选择电极法.北京:中国标准出版社,1987
    [129]中华人民共和国化学工业部.HJ/T 2521-93.工业硅溶胶.中华人民共和国化工行业标准. 1994
    [130]中华人民共和国轻工业部. GB/T 13025.5-91.中国国家共和国国家标准制盐工业通用试验方法-氯离子的测定
    [131]李鑫,李忠,夏启斌. CaCl2/LiCl改性中孔硅胶的吸附/脱附性能.华南理工大学学报(自然科学版),2006,24(8):13-17
    [132] M.A. Tahat, Babus Haq, T.F.O Callaghan, P.W. Probert, S.D. Performance of an integrated thermochemical heat pump/energy store.Thermochimica Acta, 1995, 255: 39-47
    [133] A.L. Hines, T.K. Ghosh, S.K. Loyalka, R.C. Warder, Indoor Air: Quality and Control .PTR Prentice Hall, New Jersey, 1993
    [134]李玉贤,朱明悦,张征. MgCl2·6H2O热分解机理的研究.河南化工,1999,12:16- 17
    [135] D.Petzold, R. Naumann. Thermoanalytical study on the decomposition of magnesium chloride hexahydrate under quasi-isobar conditions. Journal of Thermal Ananlysis, 1980, 19(1): 25-34
    [136]陈新民,张平民,叶大陆等.氯化镁水合物分解的综合研究.中南矿冶学院学报,1979,l:15-26
    [137] I.H. Derby, V. Yngve. Dissociation tensions of certain hydrated chlorides and the vapor pressures of their saturated solutions. Journal of the American Chemical Society, 1916, 38, 1439-1451
    [138] K.K.Kelley. Energy Requirment and Equilibrium in Dehydration, Hydrolysis, and Decomposition of Magnesium Chloride, U.S. Bur. Mines, 1945
    [139] Berg, L. G., Burmistrova, N. P., Lisov, N. I. Investigation of reactions in solids by DTA. Journal of Thermal Analysis, 1975, 7 (1): 111-117
    [140] Serowy Fritz., Tittel Manfred. Zur Frage der thermischen Behandlung von Carnallit und Bischofit. Freib Forsch-11, 1959, 88
    [141]翟宗玺.氯化镁及其水合物的标准溶解焓与生成焓.盐湖研究,1993, 1:33-37
    [142] X.Π.斯特雷列茨(韩薇,霍光蔗等译).电解法制镁(第一版) .北京:冶金工业出版社,1981
    [143] Kirsh Y, Yariv S,Shoval S.Kinetic Analysis of Thermal Dehydration and Hydrolysis of MgCl2·6H2O by DTA and TG.Thermal.Anal.,1987, 32:392-408
    [144]陈建军,马培华,陈关城,陈丰秋.示差扫描量热法研究水氯镁石脱水过程的动力学.海湖盐与化工,2000,5(29):4-7
    [145]景燕.水氯镁石脱水研究:[硕士学位论文].西安:西北大学,2001
    [146] Moscowtz H, Lando D, Cohen H, et al. Study on the Dehydration of Bischofite. Ind. Eng. Chem. Prod., 1978, 17(2):156-160
    [147]黄小芳,吴玉龙,杨明德,胡湖生,党杰,张建安.水氯镁石的热解机理及动力学.过程工程学报,2006,6(5):729-733
    [148]徐万邦.低水合氯化镁吸水过程物理化学性质研究:[硕士学位论文].青海:中国科学院青海湖研究所,2005.4
    [149] de Boer J H, Everett D.H., Stone ED F S. The Structure and Properties of Porous Materials. Oxford: Butterworth Publishing Co,1958. 68
    [150]赵振国.吸附作用应用原理.北京:化学工业出版社,2005,6
    [151]张国虹,张瑞,王路海,任合刚,张宁宁,阎卫东.氯化镁/二氧化硅复合载体的制备及其比表面积的控制.精细石油化工,2008,25 (2):1-4
    [152] Wang J F, Wang L, Gao H Q, et al. Ethylene polymerization using a novel MgCl2/SiO2-supported Ziegler-Natta catalyst. Polymer International, 2006, 55: 299-304
    [153] S.M. Maliyekkal, S. Shukla, L. Philip, I. M. Nambi. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem. Eng. J. 2008, 140 (1-3): 183-192
    [154]刘业凤,王如竹.新型复合吸附干燥剂的吸附动力学特性研究.上海理工大学学报,2006,28(2):107-110
    [155] G. McKay, Y.S. Ho. Pseudo-second-order model for sorption processes. Process Biochem, 1999, 34: 451- 465
    [156] U?urlu M., Gurses A., Acikyildiz M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2. Micropor. Mesopor. Mater., 2008, 111 (1-3): 228-235
    [157]刘业凤.空气取水用复合吸附剂的吸附性能及吸附动力学特性研究:[博士学位论文].上海:上海交通大学,2003
    [158] A. Kodama, T. Hirayama, M. Goto, T. Hirose, R.E. Critoph. The use of psychrometric charts for the optimization of a thermal swing desiccant wheel, Applied Thermal Engineering, 2001, 21:1657-1674
    [159]谢和平.分形–岩石力学导论.北京:科学出版社,1997
    [160] Pfeifer P, Avnir D. Chemistry in nonintege dimensions detween two and three. Chem Phys, 1983, 79 (7): 3558-3565
    [161]张文生,叶家元,王妍萍,王宏霞,王渊,李永鑫.掺杂有机大分子水化硅酸钙的孔结构及表面分形特征.硅酸盐学报,2006,34(12):1497-1502
    [162]任志峰,何静.焙烧水滑石去除氯离性能研究.精细化工,2002,6 (19):339-342
    [163] Sushree Swarupa Tripathy, Ashok M. Raichur. Abatement of fluoride from water using manganese dioxide-coated activated alumina. Journal of Hazardous Materials, 2008,153: 1043-1051
    [164] R.L. Ramos, J.O. Turrubiartes, M.A.S. Castillo, Adsorption of fluoride from aqueous solution on aluminium-impregnated carbon, Carbon, 1999, 37: 609-617
    [165] Y.M. Zhou, C.X. Yu, Y. Shan. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin, Sep. Purif. Technol., 2004, 36: 89-94
    [166] Wasay, S. A., Haron, Md. J., Tokunaga, S. Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environment Research .1996, 68 (3): 295-300
    [167]潘履让.固体催化剂的设计与制备.天津:南开大学出版社,1993,12
    [168] G S. Xeidakis. Stabilization of swelling clays by Mg(OH)2-Factors affecting hydroxyl-Mg-interlayering in swelling clays. Eng. Geo. 1996, 44: 93-106
    [169]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2005,2
    [170] Erdal Eren, Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 2006, B135: 328- 336
    [171] Wei Hong, Wen Yan-qiu, Zhang Xi-man. Preparation of the modified magnesia powder and the characterization of the wet capability, Journal of Taishan medical college. 2007, 8: 611-613
    [172] K. S. W. Sing, D. H. Everett; R. A. W. Haul; L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to thedetermination of surface area and porosity. Pure & Appl. Chem., 1985, 57(4): 603-619
    [173] L. G. Gordeeva, A. V. Gubar, L. M. Plyasova, V. V. Malakhov, Yu. A. Aristov. Composite Water Sorbents of the Salt in Silica Gel Pores Type: The Effect of the Interaction between the Salt and the Silica Gel Surface on the Chemical and Phase Compositions and Sorption Properties. Kinetics and Catalysis, 2005, 46(5): 736-742
    [174] Maier, Joachim. Space charge regions in solid two-phase systems and their conduction contribution - I. Conductance enhancement in the system ionic conductor-'inert' phase and application on silver chloride:aluminum oxide and silver chloride:silicon dioxide. Journal of Physics and Chemistry of Solids, 1985, 46(3): 309-20
    [175] N. F. Uvarov. Stabilization of amorphous phases in ion-conducting composites. Zhurnal Prikladnoi Khimii (Sankt-Peterburg), 2000, 73(6): 970-975
    [176]邢坤,王海增.硝酸盐在层状氢氧化镁铝及其焙烧产物上的吸附特性比较.环境科学学报,2008,28(7):1340-134
    [177]赵正鹏,王海增,郭鲁钢,邓培昌,邢坤,朱培怡,宋卫得.焙烧层状氢氧化镁铝对溴离子吸附性能研究.盐业与化工,2007,36(2): 4-7
    [178]何余生,李忠,奚红霞,郭建光,夏启斌.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376-384
    [179] K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compound, Willey, New York, 1978
    [180] R.N. Nyquist, R.O. Kagel. Infrared and Raman spectra of inorganic compounds and organic salts. Academic Press, New York, 1997
    [181]曹娟,徐灿,朱莉芳,王喜民.(SiO2)nO2H4的红外振动光谱的理论研究.光谱学与光谱分析. 2007,9:1715-1718
    [182] Hiroyuki ONO and Shin-Ichiro WADA. Properties of Layer Silicates Formed from MgO-SiO2-H2O Mixtures at 25°C. J. Fac. Agr., Kyushu Univ., 2007, 52 (1): 159-162
    [183] D.R.M. Brew, F.P. Glasser. Synthesis and characterisation of magnesium silicate hydrate gels. Cement and Concrete Research, 2005, 35: 85-98
    [184]唐强,曹子栋,王盛,等.活性炭吸附法脱硫试验研究和工业性应用.先导化工,2003,23(3):37-40
    [185]雷仲存.工业脱硫技术.北京:化学工业出版社,2001
    [186] Goutam Chattopadhyaya, Douglas G. Macdonald, Narendra N. Bakhshi, Adsorptive removal of sulfur dioxide by Saskatchewan lignite and its derivatives. Fuel, 2006, 85:1803-1810
    [187] F. Vidal B., P.Ollero, F.J. Gutierrezortiz, et al. Catalytic Seawater Flue Gas Desulfurization Process: An Experimental Pilot Plant Study. Environ. Sci. Technol., 2007, 41: 7114-7119
    [188] Juan Rodriguez Sevilla, Manuel Alvarez, Maria C. Diaz, et al. Absorption Equilibrium of Dilute SO2 in Seawater. Chem. Eng. Data, 2004, 49:1710-1716
    [189] Abdul H. Abdulasttar, Srinivasan Sridhar, LeroyA. Bromley. Thermodynamics of the Sulfur Dioxide Seawater System. AlChE Journal. 1999, 1(23): 62-68
    [190] Ghazi Al-Enezi, Hisham Ettouney, Hisham El-Dessouky, et al. Solubility of Sulfur Dioxide in Seawater. Ind. Eng. Chem. Res., 2001, 40: 1434-1441
    [191]郭鲁钢,王海增,朱培怡,,邓培昌,邢坤.海水脱硫技术现状.海洋技术. 2006,25(3):10-14
    [192] Moreno-Castilla C., Carrasco-Martin F., Utrera-Hidalgo E.,et al. Activated carbons as adsorbents of SO2 in flowing air:Effect of their pore texture and surface basicity . Langmuir , 1993 ,9 :1378-1383.
    [193]郭鲁钢.用镁盐和造纸草浆黑液制备“氧化镁/活性炭”复合材料及其吸附性能研究.中国海洋大学博士论文.2007,6.
    [194]方亮.世界海水淡化供养人口超亿.河北国土资源,2006,8:45
    [195]董学德,彭斯干,唐崇武,丁伟.烟气海水脱硫技术及其应用,中国电力,1996,29:52-57
    [196]周志祥,段建中,薛建明.火电厂烟气脱硫技术手册.北京:中国电力出版社,2006:26-27
    [197]国家环境保护总局. GB 13223-2003.火电厂大气污染物排放标准.北京:中国标准出版社. 2004-01-01
    [198] Mahmut Ozacar, I. Ayhan Sengil. Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption, 2002, 8: 301-308
    [199] Ramakrishna, K.R. and T. Viraraghavan, Dye removal using low cost adsorbents, Wat. Sci. Tech., 1997, 36(2/3): 189-196
    [200]张庆建,许正文,王海玲,等.大孔树脂对对硝基苯胺的吸附行为及其应用研究.离子交换与吸附,2006,22(6):503-511
    [201]岳钦艳,解建坤,高宝玉,等.污泥活性炭对染料的吸附动力学研究.环境科学学报,2007,27(9):1431-1438
    [202] Kannan N., MariappanM. S..Kinetics and mechanism of removal of methylene blue by adsorption on various carbons- a comparative study. Dye. Pigment, 2001, 51(1): 25-40
    [203] Debnath S., Ghosh U. C. Kinetics, isotherm and thermodynamics for Cr (III) and Cr (VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodynamics, 2008, 40(1): 67-77
    [203] Phussadee Patnukao1, Apipreeya Kongsuwan, Prasert Pavasant. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. Journal of Environmental Sciences, 2008, 20: 1028-1032
    [205] S. Chakravarty, S. Pimple, Hema T. Chaturvedi, S. Singh, K.K. Gupta. Removal of copper from aqueous solution using newspaper pulp as an adsorbent. Journal of Hazardous Materials,2008, 159: 396-403
    [206] D. A. Belova, L. Z. Lakshtanov, S. L. S. Stipp. Experimental study of Ni adsorption on chalk: preliminary results. Mineralogical Magazine, 2008, 72(1): 377-379
    [207] Srinivasa R. Popuri ,Y. Vijaya, Veera M. Boddu, Krishnaiah Abburi. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 2009, 100: 194-199
    [208] Katri Sirola, Markku Laatikainen, Marko Lahtinen, Erkki Paatero. Removal of copper and nickel from concentrated ZnSO4 solutions with silica-supported chelating adsorbents. Separation and Purification Technology, 2008, 64: 88-100
    [209] Emine Malkoc, Yasar Nuhoglu. Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column.Journal of Hazardous Materials, 2006, B135: 328-336
    [210]夏畅斌,何湘柱,史红文.磺化褐煤对Cu(Ⅱ)离子的吸附性能及应用研究.环境科学研究,2001,14(5):37-39
    [211]赵修华,王文杰,胡茂盛,等.产朊假丝酵母生物吸附Cu2+影响因素及吸附机理的研究.环境科学学报,2006,26(5):808-814
    [212] Paul Chen J., Wu S., Chonga K. H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 2003, 41(10):1979-1986
    [213] Chen J. p., Yiacoumi, S. T. Blaydes G. Equilibrium and kinetic studies of copper adsorption by activated carbon. Separat. Technol., 1996, 6(2): 133-146
    [214]张克荣,张瑶,李崇福,等.活性炭直接吸附铜铁锰锌离子的机理.中国卫生检验杂志,1994,4(6):327-331
    [215]陈旭超,胡志彪,陈杰斌,等.竹炭对铜(II)离子的吸附性能研究.龙岩学院学报,2007,25(6):78-80
    [216]唐文清,曾光明,李小明,等.碳羟基磷灰石的制备及其对水中Cu2+的吸附.化工环保,2006,26(4):325-328
    [217]李冬梅,王海增,王立秋,赵正鹏.焙烧层状氢氧化镁铝对水中氟离子的吸附性能.离子交换与吸附,2007,23(2):103-111
    [218] WHO (World Health Organization) Guidelines for DrinkingWater Quality,World Health Organization,Geneva,1993
    [219]国家环保局.水和废水检测分析方法.北京:环境科学出版社,1989:574-575
    [220]詹予忠,朱小丽,李玲玲,等.硅胶负载氧化锆的吸附除氟研究.郑州大学学报(工学版),2007,28(4):20-23
    [221]黄怡,高乃云,周雪松.改性滤料除氟技术的探讨.工业水处理,2003,23(4): 6-9
    [222] C. Sairam Sundaram, Natrayasamy Viswanathan, S. Meenakshi. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2008, 155: 206-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700