用户名: 密码: 验证码:
基于细胞培养的银杏黄酮类化合物的分离鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏是我国的珍贵树种,其特有的活性物质黄酮具有抗氧化、抑菌消炎、抗癌和防治心脑血管疾病等诸多功效,开发前景光明。为满足日益扩大的市场需求,发展银杏深加工产业,利用细胞培养技术大规模生产银杏黄酮为工业生产提供原料是一条有效途径。本文在前人的研究基础上,对银杏愈伤组织的诱导、继代及悬浮细胞系培养条件进行了系统的研究;建立了银杏黄酮糖苷的荧光光谱检测方法;以收获的悬浮培养细胞为对象,优化了加热回流提取及超声波提取工艺参数,推导了显著提取因子对黄酮糖苷得率的模型方程;并探讨了黄酮糖苷提取动力学过程;推测了黄酮糖苷种类;对银杏细胞黄酮体外抗氧化及抑菌活性进行了验证,得到如下结论:
     1.在细胞诱导试验中,培养基以DCR为好,添加激素BA可以提高诱导率。但在继代培养中MS培养基和激素KT在促进愈伤组织生长方面有积极作用。活性炭作为吸附剂,虽然对细胞的生长表现出一定的抑制作用,但是在黄酮积累上起到促进作用。
     2.蔗糖在悬浮培养中有利于银杏细胞生长,葡萄糖利于黄酮合成,硝态氮和氨态氮混合能促进细胞的生长,但对黄酮的合成来讲硝态氮更为有利。接种量40g/L、装液量100mL、封口膜封口、添加前体物苯丙氨酸以及24h光照为培养高产黄酮银杏细胞的较优条件,添加柠檬酸能促进细胞生长,而维生素C(Vc)既有利于黄酮的合成,又对细胞的褐化抑制效果较好。
     3.建立了荧光光谱法测定银杏细胞总黄酮的检测方法,结果表明,以芦丁为标样,纯甲醇溶解,10%Al(NO_3)_3添加4mL,pH3.6的乙酸-乙酸钠2.5mL条件下,荧光强度与芦丁浓度成线性关系,回归方程为y=29.92x+36.49(R~2=0.986),线性范围1.8×10~(-6)-3.2×10~(-5)mol/L,加标回收率为101.3%。该方法灵敏度高,重现性好,操作简单,成本低,具有良好的应用前景。
     4.利用响应面法(RSM)优化了银杏悬浮细胞中黄酮糖苷加热回流乙醇提取工艺,得出影响提取得率的显著因素(提取时间、提取温度和乙醇浓度)的二次多项式模型。最佳提取条件为:提取时间3.2h、提取温度76.85℃、乙醇浓度72.05%。此条件下黄酮糖苷提取得率为1.81%,与模型预测值一致,说明利用RSM优化提取条件,建立的模型预测银杏细胞黄酮糖苷准确可靠,重复性好。
     5.利用二次回归正交旋转组合试验设计,建立了超声波法以提取温度、提取时间、超声功率和乙醇浓度为自变量,黄酮得率为因变量的二次回归方程。最优工艺为以纯乙醇作提取溶剂,在超声功率500W条件下于80℃提取50min。此条件下所得到的黄酮糖苷得率为3.03%,与模型预测值吻合,相对误差较小,说明此二次回归方程可用于实际生产中银杏黄酮糖苷的预测。
     6.以悬浮培养细胞为原料,在Fick第一定律的基础上,推导了黄酮糖苷乙醇浸提的动力学模型,考察了提取温度对黄酮糖苷质量浓度的影响,计算了不同温度下黄酮糖苷的平衡质量浓度,求得了表观速率常数以及提取过程表观活化能。
     验证试验表明,黄酮糖苷质量浓度和相对萃余率的理论值和实际值在0-360min范围内基本吻合,说明建立的动力学模型是能够用来描述银杏细胞黄酮糖苷的实际提取过程的。
     7.利用HPLC-UV-ESI-MSn法在350nm波长下,50-1000m/z正离子模式质谱检测了槲皮素、山萘酚和异鼠李素3种苷元的裂解规律。并在相同的色谱、质谱条件下对培养细胞黄酮提取物中黄酮类化合物进行了鉴定。推测了8种黄酮糖苷,分别为:槲皮素-3-O[2-O,6-O-(α-L-二鼠李糖基)]-β-D-葡萄糖苷;山萘酚-3-O[2-O,6-O-(α-L-二鼠李糖基)]-β-D-葡萄糖苷;杨梅黄酮--3-O[6-O-(α-L-鼠李糖基)]-β-D-葡萄糖苷;槲皮素-3-O[2-O-(α-L-鼠李糖基)]-β-D-葡萄糖苷;异鼠李素-3-O[6-O-(α-L-鼠李糖基)]-β-D-葡萄糖苷;山萘酚-3-O[6-O-(α-L-鼠李糖基)]-β-D-葡萄糖苷、槲皮素-3-O-鼠李糖-2-O-(6-O-对香豆酰)-β-D-葡萄糖苷、山萘素-3-O-鼠李糖-2-O-(6-O-对香豆酰)-β-D-葡萄糖苷。
     8.银杏细胞黄酮糖苷的体外抗氧化及抑菌试验结果表明:银杏细胞黄酮糖苷对羟自由基和过氧化氢的清除率都显著高于柠檬酸、植酸和Vc;对超氧阴离子的清除率低于Vc,对Fe2+的螯合能力和对植物油脂的抗自氧化能力,受试各浓度下均显著高于阳性对照。体外抑菌试验表明随着黄酮浓度的增加,抑菌效果在增强,受试浓度下抑菌圈直径最大达2.2cm,最小为1.1cm,对大肠杆菌的最低抑菌浓度为0.141mg/mL。2.25mg/mL浓度作用10h时抑菌率达到81%。
Ginkgo biloba is precious species in our country for its specific active substancesof flavonoids, which have some sanitarian function as antioxidant, bacteriostat,antiphlogistic, anticarcinogen, preventing cardiovascular and cerebrovascular diseasesand so on. Prospect of exploitation of Ginkgo biloba is perspective.It is an effectiveway to use cell culture technique for large-scale production of Ginkgo bilobaflavonoids to provide raw material for industrial production in attention of the furtherprocessing industry development of Ginkgo biloba. Based on the the studies ofpredecessors, the induction and subculture conditions of callus were investigated inthis article.The suspendsion cultural conditions ofGinkgo biloba cell wereexhaustivllyresearched. Fluorescence spectrum method was established for flavonoidsdetection. Extracting technological parameters offlavonoids glycosideswere optimized,and thereafter the model equation of significantly factors on extraction wasestablished. The kinetic mechnism of flavonoids glycosides extraction was alsoapproached. The identification of flavonoids glycosides was also studiedby UV,HPLC and MS. The anti-oxidation and the inhibition bacteria activity of flavonoidsfrom suspension cultural cell in vitro were verified. The main results from studies areachieved as following:
     In the callus induction experiment, DCR medium and hormone BA do well thanMS medium and KT hormone. But MS subculture medium and hormone KT has apositive effect in promoting callus growth. Active carbon as adsorbent can inhibit cellgrowth, but play a promoting role in the accumulation of flavonoids.
     Sucrose was the favourite carbon source for the suspension cultural cell. Andglucose was most suitable for flavonoids synthesis. The mixture of nitrate-nitrogenand ammoniacal nitrogen can promote cell growth, but nitrate-nitrogen was in favourof flavonoids synthesis. The optimal cultural condition was of inoculum40g/L celland phenyl alanine precursor in100mL liquid medium with film sealing in24h lightper day for high yield flavonoids. Citric acid can promote cell growth, while Vitaminc was conducive to flavonoids synthesis. And the inhibition of cell brown wasperformed by Vitamin C.
     The method of fluorospectrophotometry for total flavonoids detection wasestablished with standard rutin. Results indicated that fluorescence intensity and rutinconcent was linear relationship with regression equation for y=29.92x+36.49, (R2=0.986). Linear range was1.810~(-6)~3.210~(-5)mol/L. Standard recovery of101.3%was achieved. The analysis results obtained from suspension cultured cell of Ginkgobiloba suggested that the development method is convenient for flavonoids detection.
     Ethanol extraction condition was optimized by response surface methodology.Quadratic polynomial model about significant factors, extraction time, temperatureand ethanol concent on flavonoids yield was obtained. The optimal extractionconditions was ethanol concent72.05%for3.285h at76.85℃. In this condition, theyield of flavonoids was1.8101%, which was consistent with the predictive value ofthe model. It was demonstrated that the model was accurate and reliable for flavonoidglycosides yield prediction.
     The regression equation was deduced by quadratic regression orthogonal rotationcombination design experiments.The optimal condition of ultrasonic-assisted methodwas ethanol concent100%and ultrasonic power500W at80℃for50min. The yieldof flavonoids in revification tests was3.0345%, consistent with the predicted value ofthe model. Repeatability and reliability were performed well by the model.
     The extraction dynamics model for flavonoids from suspension cultured cell wasdeduced on the base of Fick’ first law. This model was adapted to the extraction ofactive components of medicine plants, which belongs to an apparent first order kineticequation. Revification tests showed that the theoretic value of the content offlavonoids and relative raffinate rate basically consistent with experimental value in0-360min. The established dynamic model can be used to describe the actualextraction process of flavonoid glycosides from Ginkgo biloba cell.
     The fragmentation regularity of quercetin, kaempferol, isorhamnetin wasstudied using HPLC-UV-ESI-MSnmethod in350nm wavelength, at the range of50-1000m/z scanning scope. In the same conditions, flavonoidsfrom the extraction ofcultured cells were identified. Eightflavonoidglucosides were presumed respectivelyfor3-O[2-O,6-O-bis (α-L-rhamnosyl)-β-D-glucosyl]quercetin;3-O[2-O,6-O-bis(α-L-rhamnosyl)-β-D-glucosyl]kaempferol;3-O[6-O-(α-L-rhamnosyl)-β-D-glucosyl]myricetin;3-O[2-O-(α-L-rhamnosyl)-β-D-glucosyl]quercetin;3-O[6-O-(α-L-rhamnosyl)-β-D-glucosyl]isorhamnetin;3-O[6-O-(α-L-rhamnosyl)-β-D-glucosyl] kaempferol;3-O[2-O-(6-O-p-coumaroyl-β-D-glucosyl)-α-L-rhamnosyl] quercetin;3-O [2-O-(6-O-p-coumaroyl-β-D-glucosyl)-α-L-rhamnosyl]kaempferol.
     The anti-oxidation and bacteriostasis of flavonoids in vitro from suspension cultured cell of Ginkgo biloba were studied. The results showed that the clearance forhydroxy radical and hydrogen peroxide by flavonoids significantly better than citricacid, phytic acid and Vitamin C. But the clearance for superoxide anion by flavonoidswas more below than Vitamin C. The chelation ratio with Fe2+was significantlyhigher than active control. Antioxidative capacity of flavonoids on plant oil was alsostronger than active control in experimental content. The results of bacteriostasisexperiment in vitro showed that bacteriostatic activitywas enhanced with the increaseof flavonoids concentration. The maximum of inhibition zone diameter was2.2cmand minimum for1.1cm in the experimental content. The minimum of bacteriostaticconcentration on Escherichia coli was0.141mg/mL. The bacteriostatic ratio wouldachived81%with the condition for flavonoids concentration2.25mg/mL and actingtime10h.
引文
[1]梁立兴.中国银杏[M].山东科学技术出版社,1988.
    [2]孙国强,赵丰丽,刘哲瑜,等.白骨壤叶黄酮提取及抗氧化活性研究[J].中国酿造,2010,(11):95-100.
    [3]王月华,安建伟,赵言文.江苏省银杏品种资源现状与发展对策[J].浙江农业科学,2008,296(05):550-553.
    [4] DeFeudis F., Drieu K. Ginkgo biloba extract (EGb761) and CNS functions basic studies andclinical applications [J]. Current drug targets,2000,1(1):25-58.
    [5] Winkel S. B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology,and biotechnology [J]. Plant physiology,2001,126(2):485-493.
    [6]史清文,刘素云,张文素,等.银杏叶的研究开发概况[J].天然产物研究与开发,1995,7(1):70-76.
    [7]李兆龙.前景诱人的银杏叶制剂[J].植物杂志,1996,(3):7-8.
    [8]杨小兰,郑海鹰,胡仕屏,等.啤酒花超临界CO2萃余物中总黄酮的提取与抗氧化活性研究[J].食品科学,2008,29(11):137-141.
    [9] Ardestani A., Yazdanparast R. Antioxidant and free radical scavenging potential of Achilleasantolina extracts [J]. Food Chemistry,2007,104(1):21-29.
    [10] Jung M., Chung H., Kang S., et al. Antioxidant activity from the stem bark of Albizziajulibrissin [J]. Archives of Pharmacal Research,2003,26(6):458-462.
    [11]赵文红,邓泽元,范青生,等.淫羊藿总黄酮体外抗氧化实验[J].南昌大学学报:理科版,2009,33(1):53-55.
    [12]许丽璇.微波提取百合总黄酮及抗氧化性研究[J].时珍国医国药,2010,21(8):2069-2071.
    [13]张黎,陈志武.银杏叶总黄酮镇痛作用及机制的探讨[J].安徽医科大学学报,2001,36(4):263-266.
    [14] Zhou J.R., Mukherjee P., Gugger E.T., et al. Inhibition of murine bladder tumorigenesis bysoy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis [J]. Cancerresearch,1998,58(22):52-31.
    [15] Shoskes D.A. Effect of Bioflavonoids Quercetin and Curcumin on Ischemic Renal Injury: ANew Class of Renoprotective Agents1[J]. Transplantation,1998,66(2):147-152.
    [16] Li B., Fu T., Yan Y., et al. Inhibition of HIV infection by baicalin--a flavonoid compoundpurified from Chinese herbal medicine [J]. Cellular&molecular biology research,1993,39(2):119-124.
    [17] Hertog M.G.L., Feskens E.J.M., Kromhout D., et al. Dietary antioxidant flavonoids and riskof coronary heart disease: the Zutphen Elderly Study [J]. The Lancet,1993,342(8878):1007-1011.
    [18]彭欣莉,郑鸿雁,昌友权.松针黄酮抗氧化和降血脂作用研究[J].食品工业科技,2006,26(12):175-176.
    [19] Frankel E., German J., Kinsella J., et al. Inhibition of oxidation of human low-densitylipoprotein by phenolic substances in red wine [J]. The Lancet,1993,341(8843):454-457.
    [20] Tulecke W.R. A tissue derived from the pollen of Ginkgo biloba [J]. Science (New York, NY),1953,117(3048):599.
    [21]徐刚标,何方,黄晓光.银杏种质离体保存的研究Ⅰ.银杏花粉贮存[J].中南林学院学报,2000,(01):27-30.
    [22]陈学森,邓秀新,章文才.培养基及培养条件对银杏愈伤组织黄酮产量的影响[J].园艺学报,1997,(04):62-66.
    [23]郝岗平,杜希华,史仁玖,等.银杏幼嫩茎段培养诱导愈伤组织及其细胞学研究[J].西北植物学报,2003,(04):648-652.
    [24]王德强,王晓玲.银杏细胞的悬浮培养研究[J].食品与生物技术学报,2005,24(003):27-29.
    [25]杜希华,孙秀玲,郝岗平,等.不同外植体和激素对银杏愈伤组织诱导和生长的影响[J].山东师范大学学报:自然科学版,2008,23(1):129-133.
    [26] Webb D.T., Arias W., De Hhostos E. Callus formation by Ginkgo biloba embryos onhormone-free media controlled by closures and media components [J]. Phytomorph,1986,36(1):121-127.
    [27]于荣敏,赵鸿莲,郑玉果,等.银杏愈伤组织培养及其代谢产物银杏内酯的研究[J].生物工程学报,1999,15(1):52-58.
    [28]秦卫东,高明侠.银杏愈伤组织培养及其黄酮生物合成的初步探讨[J].食品科学,2002,23(11):38-41.
    [29]马云峰,尚富德,薛瑰玲.镧离子对银杏幼叶愈伤组织生长的影响[J].河南大学学报(自然科学版),2002,32(1):78-79.
    [30]江玲.稀土元素在植物中的生理效应[J].生物学通报,1997,32(002):9-11.
    [31]卢萍,鲁宽科.稀土对黄连愈伤组织生长的影响[J].北京医科大学学报,1998,30(5):389-391.
    [32]裴德清,郑俊华,鲁宽科,等.稀土元素对大黄植物细胞生长的影响[J].北京医科大学学报,1996,28(2):130-135.
    [33]庄向平,虞杏英.银杏叶中黄酮含量的测定和提取方法[J].中草药,1992,23(003):122-124.
    [34] Archipoff G., Linder C., Lobstein-Guth A., et al. Bioconversion of Morphine by CellSuspensions of Ginkgo biloba Growing in vitro [J]. Planta medica,1986,(6):515.
    [35] Jeon M.H., Sung S.H., Huh H., et al. Ginkgolide B production in cultured cells derived fromGinkgo biloba L. leaves [J]. Plant Cell Reports,1995,14(8):501-504.
    [36] Carrier D.J., Archambault J., Heijden R., et al. Formation of terpenoid products in Ginkgobiloba L. cultivated cells [J]. Plant Cell Reports,1996,15(12):888-891.
    [37] Byun S.Y., Ryu Y.W., Kim D.I. Studies on Production of Flavonol Glycosides Cell Culturesof Ginkgo biloba [M]. Biochemical Engineering for2001. Springer.1992:246-249.
    [38]姜玲,柯云.几种大量元素对银杏愈伤组织细胞生长及黄酮醇糖苷含量的影响[J].园艺学报,2000,27(2):130-132.
    [39] Camper N., Coker P., Wedge D., et al. In vitro culture of Ginkgo [J]. In Vitro Cellular&Developmental Biology-Plant,1997,33(2):125-127.
    [40]杨林,周吉源.银杏细胞悬浮培养及黄酮的产生[J].中央民族大学学报:自然科学版,2002,11(001):55-58.
    [41]江静,高青雨.银杏细胞悬浮培养及其黄酮类物质生产[J].河南大学学报:自然科学版,2002,32(3):20-24.
    [42] Wang Y.D., Yuan Y.J., Wu J.C. Induction studies of methyl jasmonate and salicylic acid ontaxane production in suspension cultures of Taxus chinensis var. mairei [J]. Biochemicalengineering journal,2004,19(3):259-265.
    [43] Zhou Z.Q., Mei X.G. Enhancement of Taxanes production in cell suspension cultures ofTaxus chinensis by precursor-feeding [J]. Chemistry and Industry of Forest Products,2005,25(3):51-54.
    [44] Uden W., Pras N., MalingréT.M. On the improvement of the podophyllotoxin production byphenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum Royle [J].Plant cell, tissue and organ culture,1990,23(3):217-224.
    [45]戴均贵,朱蔚华.前体及真菌诱导子对银杏悬浮培养细胞产生银杏内酯B的影响[J].药学学报,2000,35(2):151-155.
    [46]莫小路,黄学林,孟辰.银杏悬浮细胞叶绿体的分化与黄酮类产物积累[J].中山大学学报:自然科学版,2003,42(006):94-97.
    [47]都兴范,王关林.芦荟汁对银杏悬浮培养细胞的生长及次生代谢产物合成的影响[J].生物技术,2000,10(3):17-19.
    [48]朱红威,邵菊芳,李庆,等.不同培养条件对银杏愈伤组织生长及黄酮含量的影响[J].食品科学,2007,28(11):102-105.
    [49]李永欣,王义强,舒甫恩,等.湖南银杏细胞培养高产黄酮苷细胞系选育[J].经济林研究,2007,25(3):24-26.
    [50]李春斌,王关林,岳玉莲,等.培养条件对银杏悬浮培养细胞黄酮合成影响研究[J].大连理工大学学报,2003,43(003):287-291.
    [51]王关林,李春斌,方宏筠.提高银杏悬浮培养细胞内酯合成的研究[J].园艺学报,2002,29(4):321-325.
    [52]刘晓琴,张卫,金美芳,等.外植体与不同理化因子对虎杖愈伤组织诱导及次生代谢产物形成的影响(英文)[J].云南植物研究,2006,28(4):403-409.
    [53]陈颖,曹福亮.银杏愈合组织诱导的叶源建立及高黄酮外植体的筛选[J].浙江林学院学报,2007,24(2):150-155.
    [54]谷文英.红三叶不同外植体与愈伤组织类型对愈伤组织内异黄酮含量的影响[J].草原与草坪,2007,(4):73-76.
    [55] Glebko L., Kulesh N., Muzarokb T., et al. Isoflavonoid production by callus cultures ofMaackia amurensis [J]. Fitoterapia,2000,71365-372.
    [56]黎乃维,杨建荣,金海珠,等.洋葱黄酮类化合物的水提工艺条件研究[J].食品与机械,2006,22(5):57-59.
    [57]林启训,杨雅红,胡亮.枇杷叶黄酮水提工艺优化研究[J].天然产物分离,2004,2(005):10-13.
    [58]刘烨,陈波,姚守拙.水提取法分离大豆异黄酮苷和苷元[J].天然产物研究与开发,2008,19(B11):499-502.
    [59]刘国凌,宁正祥,彭小红.凤尾草黄酮类化合物的水提工艺条件研究[J].食品科学,2008,29(8):286-288.
    [60]王元清,严建业,陈志文,等.均匀设计优选玉米须中总黄酮和多糖的水提工艺[J].食品与机械,2010,(002):104-106.
    [61]李文生,王峥,韩淑英.水提取荞麦叶总黄酮的工艺研究[J].华北煤炭医学院学报,2008,10(4):476-477.
    [62]朱英,裘德胜,陈民,等.金银花叶总黄酮的水提取工艺研究[J].中成药,2007,29(1):60-63.
    [63]付斌,范青生,辛欣.藜蒿总黄酮提取工艺研究[J].天然产物研究与开发,2007,19(B08):312-317.
    [64]张年凤,黄阿根,宋秀梅,等.超声波辅助乙醇浸提桔皮黄酮的工艺研究[J].中国酿造,2009,(2):135-137.
    [65]王毓宁,陈和平,冯作山.超声波-乙醇法提取芦蒿总黄酮的工艺研究[J].江苏农业科学,2008,(5):215-217.
    [66]周小理,王正,俞苓.蜂胶中黄酮类化合物的提取与测定[J].食品工业,2008,(3):17-20.
    [67]顾婕,杨莉萍,赵微加,等.海蓬子总黄酮提取工艺优化研究[J].时珍国医国药,2009,20(009):2274-2275.
    [68] Park S., Kim K. Isolation and Identification of Antioxidant Flavonoids from Salicorniaherbacea L [J]. Journal of the Korean Society for Applied Biological Chemistry,2004,47(1):120-123.
    [69]杨新河,吕帮玉,毛清黎.槐花中芦丁的碱提酸沉法研究[J].食品工业科技,2007,28(4):183-185.
    [70]戴冰,冷旺,邹双华,等.新疆软紫草系统溶剂法提取工艺研究[J].中成药,2008,30(10):1461-1465.
    [71] Maier T., G ppert A., Kammerer D.R., et al. Optimization of a process for enzyme-assistedpigment extraction from grape (Vitis vinifera L.) pomace [J]. European Food Research andTechnology,2008,227(1):267-275.
    [72] Zheng H. Z., Hwang I.W., Chung S.K. Enhancing polyphenol extraction from unripe applesby carbohydrate-hydrolyzing enzymes [J]. Journal of Zhejiang University-Science B,2009,10(12):912-919.
    [73] Landbo A.K., Meyer A.S. Enzyme-assisted extraction of antioxidative phenols from blackcurrant juice press residues (Ribes nigrum)[J]. Journal of Agricultural and Food Chemistry,2001,49(7):3169-3177.
    [74] LiyanaP. C., Shahidi F. Optimization of extraction of phenolic compounds from wheat usingresponse surface methodology [J]. Food Chemistry,2005,93(1):47-56.
    [75] Park M., Kim C. Extraction of polyphenols from apple peel using cellulase and pectinase andestimation of antioxidant activity [J]. Journal of The Korean Society of Food Science andNutrition,2009,38(5):535-540.
    [76] Pinelo M., Rubilar M., Jerez M., et al. Effect of solvent, temperature, and solvent-to-solidratio on the total phenolic content and antiradical activity of extracts from differentcomponents of grape pomace [J]. Journal of Agricultural and Food Chemistry,2005,53(6):2111-2117.
    [77] Csiktusnádi Kiss G.A., Forgács E., Cserháti T., et al. Optimisation of the microwave-assistedextraction of pigments from paprika (Capsicum annuum L.) powders [J]. Journal ofChromatography A,2000,889(1):41-49.
    [78] Gao M., Liu C.Z. Comparison of techniques for the extraction of flavonoids from culturedcells of Saussurea medusa Maxim [J]. World Journal of Microbiology and Biotechnology,2005,21(8):1461-1463.
    [79]陈晓娟,周春山.酶法及半仿生法提取杜仲叶中绿原酸和黄酮[J].精细化工,2006,23(3):257-260.
    [80] Tu Q. Y., Zhou C. S., Tang J. P. Microwave assisted-semi bionic extraction of lignancompounds from Fructus Forsythiae by orthogonal design [J]. Journal of Central SouthUniversity of Technology,2008,15(1):59-63-63.
    [81]杨芙莲,王伟娜.蜂胶总黄酮半仿生提取工艺研究[J].粮食与油脂,2009,(5):42-44.
    [82]陈丛瑾,黄克瀛,李德良.正交试验法优选香椿叶总黄酮的半仿生提取工艺[J].食品科技,2007,32(6):119-121.
    [83]霍丹群,刘佳,张伟,等.正交实验优选葛根复方的半仿生提取工艺[J].中成药,2004,26(2):96-99.
    [84]李作美,王永斌,高世霞.超临界CO2萃取竹叶中总黄酮的研究[J].中国酿造,2009,(6):102-104.
    [85] Bimakr M., Rahman R., Ganjloo A., et al. Optimization of Supercritical Carbon DioxideExtraction of Bioactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leavesby Using Response Surface Methodology [J]. Food and Bioprocess Technology,2012,5(3):912-920.
    [86]万茵,谢明勇,董欢欢,等.超临界CO2流体提取车前子总黄酮的工艺优化[J].南昌大学学报:理科版,2007,31(2):160-163.
    [87]谷玉洪,罗濛,徐飞,等.超临界CO2提取蜂胶中总黄酮的工艺研究[J].中草药,2006,37(3):380-382.
    [88]游海,陈芩.蜂胶黄酮类化合物提取工艺参数优化[J].食品科学,2002,23(8):172-174.
    [89] Roh M.K., Uddin M., Chun B.S. Extraction of fucoxanthin and polyphenol from Undariapinnatifida using supercritical carbon dioxide with co-solvent [J]. Biotechnology andBioprocess Engineering,2008,13(6):724-729.
    [90] Kim H. S., Lee S.Y., Kim B.Y., et al. Effects of modifiers on the supercritical CO2extractionof glycyrrhizin from licorice and the morphology of licorice tissue after extraction [J].Biotechnology and Bioprocess Engineering,2004,9(6):447-453.
    [91] Sizova N., Popova I. Content of antioxidants in plant extracts obtained by supercriticalextraction [J]. Pharmaceutical Chemistry Journal,2006,40(4):206-210.
    [92] Choi Y., Kim J., Yoo K.P. Supercritical-fluid extraction of bilobalide and ginkgolides fromGinkgo biloba leaves by use of a mixture of carbon dioxide, methanol, and water [J].Chromatographia,2002,56(11):753-757.
    [93] Wang L., Zhao D., Liu Y. GC-MS analysis of the supercritical CO2fluid extraction ofEphedra sinica roots and its antisudorific activity [J]. Chemistry of Natural Compounds,2009,45(3):434-436.
    [94] Zarena A.S., Manohar B., Udaya Sankar K. Optimization of Supercritical Carbon DioxideExtraction of Xanthones from Mangosteen Pericarp by Response Surface Methodology [J].Food and Bioprocess Technology,2010,5(4):1181-1188.
    [95] Suleimenov E., Machmudah S., Sasaki M., et al. Composition of Senecio viscosus extractobtained by CO2extraction [J]. Chemistry of Natural Compounds,2010,46(1):140-141.
    [96]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报,2002,37(7):559-562.
    [97] Zhu H., Wang Y., Liu Y., et al. Analysis of flavonoids in Portulaca oleracea L. by UV–visspectrophotometry with comparative study on different extraction technologies [J]. FoodAnalytical Methods,2010,3(2):90-97.
    [98] Wang Y., Chu H.T. Analysis of Flavonoids in Acanthopanax by UV–Vis Spectrophotometrywith Comparative Study on Different Extraction Technologies [J]. Advanced MaterialsResearch,2011,2362630-2633.
    [99] Hui R., Hou D., Guan C., et al. Quantitative determination of total flavonoids insea-buckthorn fruit juice by three wavelength spectrophotometry][J]. Spectroscopy andSpectral Analysis,2005,25(2):266.
    [100] Dongyan H., Ruihua H., Yang M., et al. Determination of Total Flavonoids in LlexKudincha by Three Wavelength Spectrophotometry [J]. CHINESE JOURNAL OFANALYTICAL CHEMISTRY,2004,32(6):783-786.
    [101] Serbia V.S., Stefana D. Spectrofluorimetric and HPLC Determination of Morin in HumanSerum [J]. Acta Chim Slov,2009,56967-972.
    [102]罗喜荣,黄静,杨军,等.荧光分光光度法测定瑞香狼毒中总黄酮的含量[J].安徽农业科学,2012,40(17):9260-9261.
    [103]郭玉梅,杨景和,吴霞.银杏叶提取物中总黄酮含量的分析方法研究[J].山东大学学报(理学版),2009,44(5):40-44.
    [104]杨开,叶兴乾,刘东红,等.油菜花粉中黄酮苷类的制备分离和鉴定[J].中国粮油学报,2010,(8):91-97.
    [105] Chen J., Liu Y., Shi Y.P. Determination of flavonoids in the flowers of Paulownia tomentosaby high-performance liquid chromatography [J]. Journal of Analytical Chemistry,2009,64(3):282-288.
    [106]李春美,钟朝辉,窦宏亮,等.胡柚皮中两个二氢黄酮的分离与鉴定[J].食品科学,2006,27(6):161-164.
    [107]杨彦松,潘浪胜.洋甘菊中黄酮类成分的分离与结构确定[J].应用化工,2008,37(6):697-698.
    [108] Chao W.W., Lin B.F. Isolation and identification of bioactive compounds in Andrographispaniculata (Chuanxinlian)[J]. Chinese Medicine,2010,5(1):1-15.
    [109] Slimestad R., Francis G.W., Andersen M. Directed search for plant constituents: a case studyconcerning flavonoids in Norway spruce [J]. Euphytica,1999,105(2):119-123.
    [110] Zhang Y.Y., Li Z.C., Zhu J.K., et al. Simultaneous determination of flavonoids andanthraquinones in chrysanthemum by capillary electrophoresis with amperometry detection[J]. Chinese Chemical Letters,2010,21(10):1231-1234.
    [111] Chi L., Li Z., Dong S., et al. Simultaneous determination of flavonoids and phenolic acids inChinese herbal tea by beta-cyclodextrin based capillary zone electrophoresis [J].Microchimica Acta,2009,167(3):179-185.
    [112]陈剑英.油杉属植物黄酮类化合物薄层层析研究[J].西南林学院学报,2007,27(3):37-40.
    [113]孙丽萍,杜夏,徐响,等.薄层层析-生物自显影法筛选油菜蜂花粉中活性成分[J].食品科学,2010,31(21):
    [114] Cie la., Kowalska I., Oleszek W., et al. Free Radical Scavenging Activities ofPolyphenolic Compounds Isolated from Medicago sativa and Medicago truncatula Assessedby Means of Thin‐layer Chromatography DPPH˙Rapid Test [J]. Phytochemical Analysis,2012,
    [115] Hao G., Du X., Zhao F., et al. Role of nitric oxide in UV-B-induced activation of PAL andstimulation of flavonoid biosynthesis in Ginkgo biloba callus [J]. Plant cell, tissue and organculture,2009,97(2):175-185.
    [116] Hao G., Du X., Zhao F., et al. Fungal endophytes-induced abscisic acid is required forflavonoid accumulation in suspension cells of Ginkgo biloba [J]. Biotechnology Letters,2010,32(2):305-314.
    [117]郝岗平,杜希华,史仁玖. NO对银杏悬浮细胞生长及黄酮类物质合成的影响[J].西北植物学报,2007,27(2):272-277.
    [118] Danova K., ellárováE., MackováA., et al. In vitro culture of Hypericum rumeliacumBoiss. and production of phenolics and flavonoids [J]. In Vitro Cellular&DevelopmentalBiology-Plant,2010,46(5):422-429.
    [119]朱红威,邵菊芳,陶秀祥,等.激素对银杏愈伤组织诱导及继代培养的影响[J].天然产物研究与开发,2008,20(3):482-487.
    [120]倪静静.银杏愈伤组织培养及其黄酮类化合物的测定(简报)[J].热带亚热带植物学报,2001,9(2):163-166.
    [121]崔刚,唐蕾,王武.培养基和外源激素对银杏愈伤组织诱导,生长及叶绿素含量的影响[J].食品与生物技术学报,2008,27(2):117-122.
    [122]姜玲,章文才.微量元素对银杏愈伤组织细胞生长和黄酮醇粮苷含量的影响[J].湖北农业科学,1999,(5):45-47.
    [123]王立娅,方正,李英丽,等.蝴蝶兰组织培养中防褐化技术研究[J].河北农业大学学报,2008,31(5):33-45.
    [124]谷晓峰,唐仙英,罗正荣.罗田甜柿幼胚培养条件的研究[J].果树学报,2001,18(002):80-83.
    [125]邢建民,赵德修.碳源和氮源对水母雪莲悬浮培养细胞生长和黄酮合成的影响[J].生物工程学报,1999,15(2):230-234.
    [126]胡燕梅,韩晓红,周全.银杏液体悬浮细胞培养产生黄酮的研究[J].江西农业大学学报,2011,33(2):360-363.
    [127]范杰平.柿叶中有效成分的提取与分离研究[D];杭州:浙江大学博士论文,2006.
    [128] Chen J.X., Zhang Y. Rapid microwave-assisted hydrolysis for determination of Ginkgoflavonol glycosides in extracts of Ginkgo biloba leaves [J]. Journal of chromatographicscience,2008,46(2):117-121.
    [129] van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts [J]. Journal ofChromatography A,2002,967(1):21-55.
    [130] Zarena A., Manohar B., Udaya Sankar K. Optimization of supercritical carbon dioxideextraction of xanthones from mangosteen pericarp by response surface methodology [J].Food and Bioprocess Technology,2010,1-8.
    [131] Bimakr M., Rahman R.A., Ganjloo A., et al. Optimization of Supercritical Carbon DioxideExtraction of Bioactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leavesby Using Response Surface Methodology [J]. Food and Bioprocess Technology,2012,1-9.
    [132]田呈瑞,李昀.银杏叶黄酮的乙醇提取方法研究[J].西北植物学报,2001,21(3):556-561.
    [133]齐丽霞,郑彦峰,谈锋.银杏叶总黄酮提取方法的比较研究[J].江西农业学报,2007,19(1):80-83.
    [134]郑瑞昌,黄阿根,钱建亚.水芹黄酮提取工艺的研究[J].扬州大学学报(自然科学版),2001,4(4):50-51.
    [135]游新侠,仇农学.超声波辅助提取荆芥叶总黄酮的方法研究[J].西北农业学报,2006,15(001):152-155.
    [136]周厚良,王良健,谢伶俐.山药中黄酮提取工艺的优化[J].湖北农业科学,2012,51(17):3824-3826.
    [137]储茂泉,古宏晨.中草药浸提过程的动力学模型[J].中草药,2000,31(7):504-506.
    [138]魏安池,谷文英,代红丽.红花黄色素浸提过程的数学模型[J].河南工业大学学报:自然科学版,2006,27(2):13-16.
    [139]左玉帮,曾爱武,袁希钢,等.从豆粕中提取大豆异黄酮传质动力学研究[J].高校化学工程学报,2008,22(2):200-204.
    [140]白云娥,高运玲.金莲花总黄酮成分的含量测定[J].山西医科大学学报,2000,31(6):502-504.
    [141]倪静静,黄学林,冈田芳明.银杏愈伤组织培养及其黄酮类化合物的测定[J].热带亚热带植物学报,2001,9(2):163-166.
    [142]陈学森,邓秀新.培养基及培养条件对银杏愈伤组织黄酮产量的影响[J].园艺学报,1997,24(4):373-377.
    [143]李春斌.银杏组织,细胞悬浮培养及银杏黄酮和萜内酯的提取,纯化和检测方法研究[D];大连:大连理工大学,2002.
    [144] Pietta P., Facino R.M., Carini M., et al. Thermospray liquid chromatography-massspectrometry of flavonol glycosides from medicinal plants [J]. Journal of ChromatographyA,1994,661(1):121-126.
    [145] Hasler A., Sticher O., Meier B. Identification and determination of the flavonoids fromGinkgo biloba by high-performance liquid chromatography [J]. Journal of ChromatographyA,1992,605(1):41-48.
    [146]马欣,孙毓庆.高效液相色谱-紫外-电喷雾-质谱法分析银杏叶中黄酮醇苷类化合物[J].沈阳药科大学学报,2003,20(4):275-279.
    [147]胡益明,甘烦远,彭丽萍,等.星花绣线菊的组织培养及快速繁殖[J].植物生理学通讯,2001,37(3):235-236.
    [148]张强,王松华,孙玉军,等.洋葱中黄酮类化合物体外抗氧化活性研究[J].农业机械学报,2009,40(8):139-142.
    [149]张雁,池建伟,魏振承,等.葛根韧皮部总黄酮提取工艺及其抗氧化作用初探[J].食品工业,2010,(003):12-15.
    [150]何永艳,冯佰利,邓涛,等.荞麦提取物抗氧化活性研究[J].西北农业学报,2008,16(6):76-79.
    [151]霍文兰,刘步明,曹艳萍.陕北红枣总黄酮提取及其抗氧化性研究[J][J].食品科技,2006,4(10):45-47.
    [152]吴洪新,单昌辉,王育青,等.达乌里胡枝子黄酮抗氧化活性研究[J].西北农林科技大学学报:自然科学版,2009,(5):195-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700