用户名: 密码: 验证码:
有色冶金含砷烟尘中砷的脱除与固化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于砷及其化合物的挥发性,其通常富集于各类冶炼烟尘中。除了含有大量的砷,冶炼烟尘中还含有数量可观的有价金属。因此,有色冶金高砷烟尘中砷的脱除与固化,是消除“砷害”,实现资源循环利用的重要途径。本文研究了ISP炼锌工艺中最具代表性的含砷烟尘—高砷次氧化锌中砷的脱除与固化,其研究结果对其它含砷烟尘的处理也具有一定的指导意义。
     本论文的主要研究内容及结果撮要介绍如下。
     1、系统研究了ISP次氧化锌中砷的物相。根据次氧化锌中砷的物相形态,次氧化锌可分为三种类型:Ⅰ型成分为锌高铅低,砷主要物相为As2O3; Ⅱ型成分也是锌高铅低,但砷的主要物相为亚砷酸锌;Ⅲ型铅含量偏高,锌含量相对较低,砷主要以砷酸铅物相存在。造成次氧化锌多样性的原因是生产气氛的波动,而引起生产气氛波动的原因除了工艺技术以外,原料成分的波动不容忽视。
     2、提出了碱性体系选择性浸出脱砷—催化作用下As(Ⅲ)空气氧化—石灰沉砷—砷酸钙渣水泥固化的原则工艺,并从热力学及溶液平衡的角度,对各步工序进行了理论分析。由主要物相的溶解组分log C-pH图判断,利用碱性浸出体系均可实现三种类型次氧化锌中砷的选择性浸出,并且S2-的引入将有助于强化浸出体系的选择性,促进砷的浸出。从热力学上判断,空气氧化As(Ⅲ)是可行的,而可用于As(Ⅲ)氧化的锰化合物有:MnO4-、MnO2、MnOOH、Mn3O4。对As(Ⅲ)氧化过程吉布自由能影响最大的是反应体系的pH。石灰沉砷的产物主要取决于反应体系的终点pH,随着pH的增加,沉砷产物主要由CaHAsO4·H2O向Ca3(AsO4)2和Ca5(AsO4)3OH转变。就含砷溶液的净化深度及砷酸钙渣的稳定性而言,Ca5(AsO4)3OH均是最佳的选择。
     3、开展了三种类型次氧化锌中选择性浸出脱砷研究。对于Ⅰ型、Ⅱ型次氧化锌采用NaOH-H2O浸出体系可达到较好的脱砷效果,其砷浸出率可分别达84%、68%以上,而铅、锌的浸出率均小于1%;而对于Ⅲ型次氧化锌采用NaOH-Na2S-H2O浸出体系较为合适,在最优条件下,砷浸出率可达73%,同时,铅、锌的浸出率分别为0.4%和0.8%。
     4、分别开展了双氧水、空气及催化空气氧化As(Ⅲ)的工艺研究。对于本文所得浸出含砷浸出液,采用理论耗量1.2倍的双氧水,可实现As(Ⅲ)的完全氧化,但成本相对较高。空气氧化效率较低,氧化8h,仅有22.3%As(Ⅲ)氧化成五价砷。高锰酸钾对溶液中的As(Ⅲ)具有超计量氧化的特性,该特性源于其还原产物(MnxOy)对As(Ⅲ)的空气催化氧化效应。利用这一催化效应,可有效改善空气氧化As(Ⅲ)效率。控制反应体系在pH为13、砷锰摩尔比为21:1、空气流量0.2m3/h条件下反应5h可使溶液中的As(Ⅲ)完全氧化。
     5、石灰沉砷效果受温度、pH和Ca/As摩尔比的影响十分显著。含砷溶液未经氧化而直接采用石灰沉砷工艺时,在最佳条件下,沉砷率仅为67%左右;在pH为12,温度95℃,Ca/As摩尔比3:1条件下反应2h,氧化后液沉砷率可达99.5%,所得砷钙渣中的砷主要以晶态的Ca5(AsO4)3OH形式存在。沉砷过程中,浸出液中的铅、锌离子也会发生沉淀。对高铅、锌浸出液采用酸化-石灰沉砷工艺,利用浸出液中残余的硫离子选择性沉淀铅、锌离子,可避免浸出液中铅、锌离子在石灰沉砷过程中发生沉淀。
     6、砷酸钙渣热处理工艺不仅可使非晶或低晶含砷物相转变为晶态的砷酸钙,还可促使砷酸钙颗粒长大、致密化,从而提升砷酸钙渣的稳定性。高铅、锌砷酸钙渣在热处理过程后,Ca5(AsO4)3(OH)成为唯一的含砷物相,而含铅物相由Pb5(AsO4)3(OH)转化为以Ca2PbO4、PbO2。砷酸钙渣水泥固化效果除了与水泥配比有密切关系外,还与砷酸钙渣自身状况有较大影响。砷酸钙渣中残余的游离砷和碱对固砷效果有负面作用,因此,沉砷结束后需对其进行洗涤。将沉砷渣洗涤、干燥后,800℃下煅烧1h,在水泥/砷酸钙渣配比为3:1条件下固化,所得固化块稳定性采用HJ/T300-2007的方法评价,其浸出液中砷含量仅为1.5mg/L,可完全满足GB508.1-2007的要求。
Smelting dusts contain appreciable metal values and a large amount of arsenic due to its volatilization. To recover the metal values from smelting dusts, it is necessarily important to eliminate arsenic pollution by removal and solidification of arsenic. Focused on the representative arsenic bearing dust of Imperial Smelting Process(ISP) in zinc metallurgy, the removal and solidification of arsenic from secondary zinc oxide are investigated in this paper and the findings also benefit for treatment of other arsenic bearing smelting dust. The main experimental results are as follows:
     1. The chemical phase of arsenic in secondary zinc oxide from the production site was systematically characterized. Based on the results, secondary zinc oxide can be classified into three types:Type Ⅰ with As2O3as the main phase of arsenic in comparison to type Ⅱ with zinc arsenite (Zn(AsO2)2) and type Ⅲ with lead arsenate (Pb(As2O6, Pb4As2O9)). The main reason of the diversity of secondary zinc oxide is fluctuation of production atmosphere, which could be caused by the operational condition or the composition change of raw materials.
     2. Based on thermodynamic analysis of equilibrium solution, a principle process including selective alkaline leaching, catalytic oxidation of As(Ⅲ), arsenic precipitation and cement solidification was proposed. Arsenic in the three types secondary oxide could be selectively leached out in alkaline leaching system. The addition of S2-not only improved the leaching of arsenic, but also reduced the loss of metal values. The oxidation of arsenic could be thermodynamically accomplished by different oxidants, such as air, MnO4-, MnO2, MnOOH and Mn3O4. The pH value had a significant effect on arsenic oxidation. The products of arsenic precipitation with lime varied according to the terminal pH of solution system. The precipitates were converted into Ca3(AsO4)2and Ca5(AsO4)3OH from CaHAsO4·H2O with the increase of pH value, and Ca5(AsO4)3OH should be the optimal precipitate in terms of the removal of As and the stability of calcium arsenate.
     3. The results of arsenic leaching from three types of secondary zinc oxide revealed that the leaching of As reached84%and68%in NaOH-H2O leach system for type Ⅰ and type Ⅱ secondary zinc oxide, respectively, and the leaching of Zn and Pd were both less than1%. For the treatment of type Ⅲ secondary zinc oxide, it is suitable to employ NaOH-Na2S-H2O system to leach out more than73%of As and less than0.8%of Zn and0.4%of Pb.
     4. The results of oxidation of As(Ⅲ) by hydrogen peroxide, air and air with catalyst showed that As(Ⅲ) in the leach solution could be completely oxidized to As(Ⅴ) using1.2times of the stoichiometric amount of hydrogen peroxide with higher cost. Only22.3%of As(Ⅲ) was oxidized to As(V) by air even in8h. Due to the effect of super stoichiometric oxidation to As(Ⅲ) by the catalysis of manganese oxide on the air oxidation of As(Ⅲ), potassium permanganate could be used to remarkably improve the oxidation efficiency of As(Ⅲ) by air. By blowing0.2m3/h air at As/Mn mole ratio of21and pH of13, As(Ⅲ) could be completely oxidized in5h at40℃.
     5. Arsenic precipitation with lime was greatly influenced by temperature, pH and Ca/As mole ratio. The removal of arsenic from oxidized solution reached99.5%with a Ca/As mole ratio of3at pH12and95℃in2h in comparison to that of67%without As oxidation, and arsenic was mainly precipitated as Ca5(AsO4)3OH. To minimize the formation of lead and zinc arsenate in lime precipitation, the S2-could be used to selectively precipitate Zn and Pb after the pH adjustment of solution to12.
     6. It not only converted amorphous or low crystalline arsenic species to the high crystalline arsenate calcium by calcinations process, but also promoted the particle to grow and densify, which improved the stability of arsenate calcium. Ca5(AsO4)3(OH) was the only arsenic precipitate in arsenate calcium with high contents of lead and zinc after calcination. Pb5(AsO4)3(OH) existed in precipitate was decomposed into Ca2Pb04and PbO2. It is important to wash precipitate after arsenic precipitation to eliminate remaining arsenic and alkali. The resultant precipitate was then calcined and solidified with a cement/arsenate calcium mass ratio of3. The obtained solid meets the standard of GB508.1-2007according to the analytical method of HJ/T300-2007, leaving only1.5mg/L of As in the leachate.
引文
[1]俞信康.闪速炼铜砷资源的综合利用.江西有色金属,1995,9(2):34-38
    [2]陈知若.在炼铜过程中次要元素的分布.见:中国有色金属学会,编.中国首届熔池熔炼技术及装备专题研讨会论文集.2007.277-295
    [3]黄位森.砷在锡冶炼中的危害及解决的途径.有色金属(冶炼部分),1992,(4):4-6
    [4]刘政,姚媛.高砷钻矿火法富集过程中砷的污染和治理.江西有色金属,2002,16(4):35-37
    [5]李裕后,陈世民.韶冶厂砷的危害及治理方案探讨.有色矿冶,2000,16(3):47-48
    [6]邓亲贤.日本的砷害治理.工业安全与环保,1986,(10):39-43
    [7]余宝元.前苏联有色冶金工业应用的脱砷工艺.有色矿冶,1992,(1):33-40
    [8]田占欣.关于从有色冶金工艺中除砷问题的新进展.有色矿冶,1993,(3):32-35
    [9]Dutr e V., Vandecasteele C., Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. Journal of hazardous materials,1995,40(1):55-68
    [10]Akhter H., Cartledge F. K., Roy A, et al. Solidification/stabilization of arsenic salts:Effects of long cure times. Journal of hazardous materials,1997,52(2-3):247-264
    [11]Mandal B. K., Suzuki K. T. Arsenic round the world:a review. Talanta, 2002,58:201-235
    [12]Matschullat J. Arsenic in the geosphere-a review. The Science of the Total Environment,2000,249:297-312
    [13]Jain C. K., Ali I. Arsenic:occurrence, toxicity and speciation techniques. Water Research,2000,34(17):4304-4312
    [14]Yudovich Ya. E., Ketris M. P. Arsenic in coal:a review. International Journal of Coal Geology,2005,61:141-196.
    [15]Magalhaes M. C. F. Arsenic. An environmental problem limited by solubility. Pure and Applied Chemistry,2002,74(10):1843-1850
    [16]全国各省矿产储量表.内部资料,截止到2003年底.2004.
    [17]肖细元,陈同斌,廖晓勇等.中国主要含砷矿产资源的区域分布与砷污染 问题.地理研究,2008,27(1):201-212
    [18]唐谟堂.我国有色冶金中的砷害及其对策.湖南有色金属,1989,5(2):42-46
    [19]金哲男,蒋开喜,魏绪钧等.有色冶金工业含砷废弃物的处理现状与展望.有色金属(冶炼部分),1999,(12):9-12
    [20]殷德洪,黄其兴,刘特明.砷害治理与白砷提取流程的选择.有色金属(冶炼部分),1984,(3):12-17
    [21]田文增,陈白珍,仇勇海.有色冶金工业含砷物料的处理及利用现状.湖南有色金属,2004,20(6):11-15
    [22]Brooks W. E. U.S. Geological Survey, Mineral Commodity Summaries, 2010, http://minerals.usgs.gov/minerals/pubs/commodity/arsenic /mcs-2010-arsen.pdf
    [23]李玉栋.美国宣布将限制CCA防腐剂处理木材.国际木业,2002,(4):7-8
    [24]李玉栋.欧盟拟限制CCA防腐剂处理木材.人造板同学,2002,(7):6-7
    [25]曹金珍.国外木材防腐技术和研究现状.林业科学,2006,42(7):120-126
    [26]金重为,施振华.木材防护工业的技术进步和面临的问题.2004,(7):13-14
    [27]金进良.含砷农药的新进展.化学世界,1963,(3):105-107
    [28]刘瑞广,高麒麟,刘晓明.含有机砷废物无害化处理方法.辽宁师范大学学报(自然科学版),2010,33(2):216-218
    [29]周孟一.砷在玻璃配料中的作用,化学世界,1955,(12):599
    [30]刘小波,章礼,杨名江.含砷烟尘作玻璃澄清剂的应用研究.环境科学研究,1995,8(3):46-49
    [31]马英仁.玻璃工业中砷的污染及治理.环境保护科学,1988,14(3):65-67
    [32]石贤斗.无砷澄清剂在中碱玻纤中的应用.玻璃纤维,2007,(1):23-25
    [33]李钟模.中国雄黄应用简史.化工之友,2001,(3):47
    [34]周春生.我国古代炼丹术和医药中的化学成就.商洛师范专科学校学报,2002,16(2):74-79
    [35]兰雄飞.含砷药物浅议.湖南中医杂质,1995,11(5):40
    [36]林梅,王子好,张东生.含砷纳米中药的研究进展.江苏中医药,2005,26(11):73-76
    [37]梅建军.白铜—中国古代的独创合金.金属世界,2000,(2):15-16
    [38]潜伟,孙淑云,韩汝玢.古代砷铜研究综述.文物保护与考古科学,2000,12(2):43-50
    [39]卢元铎,方金英,赵淑珍等.铅酸蓄电池板栅合金的研制Ⅰ.铅基低锑合金.应用化学,1987,4(6):85-87
    [40]赵淑珍,顾维清,卢元铎等.铅酸蓄电池板栅合金的研制Ⅱ.铅-锑-砷-银合金.应用化学,1986,3(2):33-36
    [41]彭容秋.砷及其用途.金属世界,1994,(1):9-10
    [42]关口宏.古河机械金属株式会社生产的高纯度金属砷.有色冶金设计与研究,1995,16(3):56-58
    [43]王占国.半导体光电信息功能材料的研究进展.功能材料信息,2010,7(3):8-16
    [44]仇勇海,陈白珍.硫化氢的毒性及在铜净液中的防治.有色冶炼,2001,(4):36-39
    [45]陈白珍,仇勇海,梅显芝等.铜电积过程中砷的电化学行为,中南工业大学学报,1997,28(4):347-350
    [46]姚素平.诱导法脱砷技术在铜电解液净化系统的应用.有色金属(冶炼部分),1996(1):11-16
    [47]褚仁雪.连续脱铜电解研讨.有色冶炼,1996(6):46-50
    [48]钟点益.国外铜电解液净化除砷、锑、铋的方法.有色冶炼,1991,20(5):30-34
    [49]钟点益.除铜电解液中砷、锑、铋杂质国外专题资料综述.上冶科技,1991(2):45-56
    [50]姚素平.诱导法脱砷技术在铜电解液净化系统中的应用.有色金属(冶炼部分),1996(1):11-16
    [51]陈晓东.贵溪冶炼厂铜冶炼过程As的危害及控制措施浅议.有色金属(冶炼部分),1996(3):1-5
    [52]仇勇海,陈白珍,梅显芝等.控制阴极电势电积法新工艺及其应用.中南工业大学学报,1999,30(5):501-504
    [53]张凤林.半导体用气的安全及解毒处理.低温与特气,1988,(3):7-16
    [54]Lee J. C. and Moskowitz P. D. Hazard characterization and management of arsine and gallium arsenide in large-scale production of gallium arsenide thin film photovoltaic cells. Solar cells,18(1):41-54
    [55]颜鑫.电石气中AsH3的存在及其脱除的化学反应过程探讨.化学世界,2005,(4):253-255
    [56]胡述容.AsH。的化学处理—KMnO4氧化法.成都大学学报自然科学版,1986,(4):55-57
    [57]孙福楠,吴江红,柳蔚等.半导体生产用剧毒气体解毒技术的研究.低温与特气,2009,27(1):1-3
    [58]郑衍生,王明慧,马强.电热石英管中AsH3和SeH2的原子化过程.吉林大学自然科学学报,1993,(1):110-112
    [59]GUO Kun-min, XIE Zi-li, MA Lan et al. Special impregnated Actvivated carbon and canister for removing AsH3 and PH3 in H2 stream. New Carbon Materials,2001,16(2):54-56
    [60]余启炎,冷冰,郝雪松等.裂解气脱砷催化剂及工艺研究.石油化工,2003,32(7):549-551
    [61]Carr N. L., tahlfeld D. L., Robertson H. G., Remove Arsine to Protect Catalyst. Hydrocarbon Process.1985,100-102
    [62]于剑昆.高纯砷烷的合成与开发进展.低温与特气.2007,25(1):16-21
    [63]韩长秀,韩新宇,杨丽等.铁基合金脱除磷化氢中的砷化氢.环境工程学报,2010,4(7):1601-1604
    [64]郭秀丽.砷化氢尾气处理方法的研究.山东化工,1996,(3):27-29
    [65]Haacke G., Brinen J. S., Burkhard H. Arsine Adsorption on Activated Carbon. J. Electrochem. Soc.:Solid State Technol.1988,135:715-718
    [66]Watanabe T., Imai H., Suzuki T. Dissociative Mechanisms of Monosilane and Arsine on Copper(II) Oxide. J. Electrochem. Soc.1996,143: 2654-2657
    [67]Colabella J. M., Stall R. A., Sorenson C. T. The Adsorption and Subsequent Oxidation of AsH3 and PH3 on Activated Carbon. J. Cryst. Growth 1988,92,189-195
    [68]Stephen Poulston, Evan J. Granite, Henry W. Pennline et al. Palladium based sorbents for high temperature arsine removal from fuel gas. Fuel,2011,90(10):3118-3121
    [69]Robert Quinn, Thomas A. Dahl, Barry W. Diamond et al. Removal of arsine from synthesis gas using a copper on carbon adsorbent. Ind. Eng. Chem. Res.2006,45,6272-6278
    [70]Han F X, Su Y, Monts D L, et al. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften,2003, 90:395-401
    [71]魏梁鸿,周文琴.砷矿资源开发与环境治理.湖南地质,1992,11(3):259-262
    [72]宣之强.中国砷矿资源概述.化工矿产地质,1998,20(3):205-211
    [73]肖竺.湖南石门雄黄矿物药材特点与开发利用研究.湖南中医药导报,2000,6(7):15-16
    [74]连云港化工矿山设计研究院六连情报组.化工矿物简介(续)五、砷矿.化工矿山技术,1972,(10):45-47
    [75]王彦令,李荣昌.河南某雄黄—雌黄矿石的选矿富集.化工矿山技术,1993,22(6):21-22
    [76]伍耀明,李威荣,黎光旺等.砷精矿真空蒸馏制取金属砷.有色金属(冶炼部分),1985,(1):19-22
    [77]苏国辉.炼砷工业现状及前景.湖南冶金,1981,(8):40-48
    [78]欧鲁荣.三氧化二砷生产厂废气和废渣的处理探讨.化工环保,1991,11:182-183
    [79]王克浩,喻泽斌,梁有千.砒霜生产化工厂危险废物处置工程设计.环境工程学报,2009,3(6):1135-1139
    [80]武俊卿,水志良.砷渣的危害与治理.环境工程,1984,(4):42-45
    [81]肖细元,陈同斌,廖晓勇等.中国主要含砷矿产资源的区域分布与砷污染问题.地理研究,2008,27(1):201-212
    [82]中华人民共和国国家质量监督检验检疫总局&中国国家标准化管理委员会.GB 20424-2006.重金属精矿产品中有害元素的限量规范.北京:中国标准出版社,2006-12
    [83]中华人民共和国国家发展和改革委员会.YS/T 318-2007.铜精矿.北京:中国标准出版社,2007-07
    [84]叶国华,童雄,张杰.含砷矿石的除砷研究进展.国外金属矿选矿,2006,(3):20-25
    [85]黄正中.对含砷物料的防治与综合利用之浅见.有色金属(冶炼部分),1989,(3):32-34
    [86]钱鑫,童雄.硫化矿除砷研究的最新进展.中国矿业,1993,2(5):39-42
    [87]李成秀,王昌良.铜砷浮选分离的进展.国外金属矿选矿,2005,(9):9-12
    [88]曾科.硫砷矿物浮选行为与分离的研究.长沙:中南大学,2011:1-77
    [89]纪军.毒砂与有色金属硫化矿浮选分离的理论与实践.国外金属矿选矿, 1993,(10):30-35
    [90]S.H.卡斯特罗.硫砷铜矿的表面性质和可浮性.国外金属矿选矿,1999,(12):25-27
    [91]康建雄,周跃,吕中海.含砷金矿浮选研究现状与展望.四川有色金属,2008,(3):2-5
    [92]熊道陵,胡岳华,贺治国等.有机抑制剂在硫化矿浮选中抑制砷黄铁矿的研究进展.矿冶工程,2004,24(2):42-44
    [93]印万忠,洪正秀,马英强.国内外含砷硫金矿预处理技术的研究进展.2011,(2):1-8
    [94]刘汉钊.国内外难处理金矿焙烧氧化现状和前景.国外金属矿选矿,2005,(7):5-10
    [95]李运刚.低品位氧化铜矿还原焙烧-氨浸实验研究.矿产综合利用,2000,(6):7-10
    [96]周源,田树国,刘亮.高砷金矿脱砷预处理技术进展.金属矿山,2009,(2):98-101
    [97]钟平,黄承玲,胡跃华.焙烧法从高硫金矿中提金.赣南师范学院学报,2000,(3):42-45
    [98]王云.难选金矿自洁焙烧预氧化实践.有色金属(冶炼部分),2001,(11):32-36
    [99]吴仙花,张桂珍,盛桂云.难浸金矿石焙烧固硫、砷剂的研究.黄金,2001,(8):27-30
    [100]李国民,刘诚,刘金山.难处理金精矿固砷焙烧工艺研究.有色冶炼,2000,29(2):30-33
    [101]毛在砂,李希明,栾美琅等.微生物脱砷预处理难冶含砷金矿提金的研究.化工冶金,1996,17(3):200-204
    [102]闫颖,刘文斌,王铧泰等.菌种活化条件对含砷金矿石生物预氧化的影响.金属矿山,2008,(6):52-55
    [103]鲍利军,吴国元.高砷硫金矿的预处理.贵金属,2003,24(3):61-66
    [104]赖建林,李勤,吴桂明.高砷铜精矿预处理.江西有色金属,1999,13(1):34-36
    [105]赵欣,张干.含砷金精矿的处理方法.有色冶金设计与研究,2007,28(6):7-9
    [106]蒋曼,孙体昌,秦晓萌等.含砷、锡铁精矿煤基直接还原焙烧脱除砷锡试验研究.矿冶工程,2011,31(2):86-89
    [107]程惠如.高砷铜精矿脱砷工艺研究.湖南有色金属,1993,9(6):345-351
    [108]刘景槐,李学军.含砷铜精矿回转窑焙烧脱砷工艺研究.湖南有色金属,2000,16(1):23-25
    [109]梁铎强,华一新,蔡超君.高砷锑铜精矿水蒸气脱砷锑工艺试验.云南冶金,2005,34(2):38-40
    [110]刘万灵.缺氧磁化焙烧技术用于处理硫砷金精矿.黄金,2000,21(12):26-28
    [111]戴升弘.引进波力登脱砷技术对天马山硫砷金精矿进行预处理.江西冶金,1999,19(1):25-28
    [112]李云,袁朝新,王云等.沸腾焙烧高砷含铜金精矿的实验研究.矿冶,2008,17(3):33-36
    [113]曹彦,李邦嫦,刘偶英等.高砷铜精矿常压碱浸脱砷的动力学研究.中南矿冶学院学报,1982,(12):125-130
    [114]范乐顺,李邦嫦,曹彦等.高砷铜精矿氢氧化钠压煮脱砷研究,有色金属(冶炼部分),1982,(1):37-39
    [115]聂静.有色金属冶炼生产中含砷废水和废渣的治理研究.武汉:武汉理工大学:1-85
    [116]孟繁杓.重有色金属冶炼渣的处理与利用.有色金属(冶炼部分),1991,(1):43-45
    [117]柯家骏.有色金属工业冶炼废渣的治理问题.重庆环境科学,1989,11(4):91-94
    [118]李磊,王华,胡建杭.铜渣综合利用的研究进展.冶金能源,2009,28(1):44-48
    [119]谭鹏夫,张传福.不同渣型的铜熔炼中冰铜品位对伴生元素分配行为的影响.化工冶金,1998,19(2):166-169
    [120]玉子庆,姜凡均.有色冶炼炉渣在矿石充填中的应用研究.矿业研究与开发,2002,22(5):22-23
    [121]李克庆,苏圣南,倪文.利用冶炼渣回收铁及生产微晶玻璃建材制品的实验研究.北京科技大学学报,2006,28(11):1034-1037
    [122]朱剑钊,李启真.白砷冶炼的三废治理.污染防治技术,1995,8(2):92-94
    [123]吴超.炼砷弃渣污染治理及有价值金属回收.科技咨询导报,2007,(8):125-126
    [134]蒋宏国,罗琳,朱凌峰.三氧化二砷冶炼废渣的危害及处理.环境工程, 2009,27(2):88-91
    [135]武俊卿,水志良.砷渣的危害与治理.环境工程,1984,(4):42-45
    [126]王克浩,喻泽斌,梁有千.砒霜生产化工厂危险废物处置工程设计.环境工程学报,2009,3(6):1135-1140
    [127]Riveros P. A., Dutrizac J. E., Spencer P. Arsenic Disposal practices in the metallurgical industry. Canadian Metallurgical Quarterly, 2001,40(4):395-420
    [128]张昭,彭少方.废水中除砷的热力学分析及应用.成都科技大学学报,1995,(3):36-41
    [129]朱义年,张华,梁延鹏.砷酸钙化合物的溶解度及其稳定性随pH值的变化.环境科学学报,2005,25(12):1652-1660
    [130]付一鸣,王德全,姜澜.固体含砷废料的稳定性及处理方法.有色矿冶,2002,18(4):42-45
    [131]王文绍,周承泰,杨德英等.工业砷钙渣的中温固化研究.有色金属,1981,33(3):61-65
    [132]Deok Hyun Moon, Dimitris Dermatas, Nektaria Menounou. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Science of The Total Enviromental,2004,330(1-3):171-185
    [133]T. Nishimura, K. Tozawa. "Removal from Waste Water by Addition of Calcium Hydroxide and stabilizations of Arsenic-bearing Precipitates by Calcination", Impurity Control and Disposal, 1985, A. J. Oliver (editor), Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada,3/1-3/17
    [134]黄自力,耿晨晨,马丰.氯化铁对砷酸钙渣的药剂稳定化研究.矿冶工程,2010,30(6):34-37
    [135]曾子高,梁经冬,刘建军.难浸金矿选择性固砷焙烧预处理新工艺.矿冶工程,1997,17(3):39-42
    [136]宾万达,张永柱,杨天足等.难浸金矿提取冶金预处理方法、研究进展及工业实践.湖南有色金属,1994,10(6):360-366
    [137]王云,袁朝新.原矿焙烧提金工艺的研究及发展.矿冶,2002,11(增刊):112-115
    [138]刘汉钊.国内外难处理金矿焙烧氧化现状和前景.国外金属矿选矿,2005,(7):5-10
    [139]张敏.金精矿固砷固硫焙烧提金工艺设计.矿冶工程,2002,22(4):58- 61
    [140]刘利,吴复忠,赵平原.难浸金矿的焙烧预处理技术研究.中国稀土学报,2004,22,521-525
    [141]王云.难选金矿自洁焙烧预氧化实践.有色金属(冶炼部分),2001,12,32-36.
    [142]苏国辉.炼砷工业现状及前景.湖南冶金,1981,(8):40-48
    [143]魏昶,姜琪,罗天骄等.重有色金属冶炼中砷的脱除与回收.有色金属,2003,55:46-50
    [144]田文增,陈白珍,仇勇海.有色冶金工业含砷物料的处理及利用现状.湖南有色金属,2004,20(6):11-15
    [145]陈世民,程东凯,李裕后等.高砷次氧化锌综合回收实验研究.有色矿冶,2001,17(5):29-32
    [146]王忠兵,习雪康,代亚琦.氧化洗尽残渣脱砷的研究.有色金属(冶炼部分),2010,(4):25-28
    [147]付一鸣,姜澜,王德全.铜转炉烟灰焙烧脱砷的研究.有色金属(冶炼部分),2000,(12):14-16
    [148]梁勇,李亮星,廖春发等.铜闪速炉烟灰焙烧脱砷研究.有色金属(冶炼部分),2011,(1):9-11
    [149]吴俊升,陆跃华,周杨霁等.高砷铅阳极泥水蒸气焙烧脱砷实验研究.贵金属,2003,24(4):26-31
    [150]陈枫,王玉仁,戴永年.真空蒸馏砷铁渣提取元素砷.昆明工学院学报,1989,14(3):37-47
    [151]赵玉娜,朱国才.白烟灰浸出液砷与锌的分离与回收.矿冶,2006,15(4):84-87
    [152]关通.从石碌铜阳极泥中氰化提取金银.贵金属,2001,22(3):23-25
    [153]李清湘,彭容秋.高砷含锗盐氧化锌烟尘处理工艺的研究.有色金属(冶炼部分),1990,(6):27-29
    [154]赵晓军,张旭.高砷氯氧锑碱浸脱砷实验研究.云南冶金,2005,34(6):37-40
    [155]徐志峰,聂华平,李强等.高铜高砷烟灰加压浸出工艺.中国有色金属学报,2008,18(1):s59-s63
    [156]欧阳岚.氯化法处理冶炼烟尘.有色冶炼,1994,30-34
    [157]张荣良,丘克强,谢永金等.铜冶炼闪速炉烟尘氧化浸出与中和脱砷.中南大学学报(自然科学版),2006,37(1):73-78
    [158]朱继民.铜镍砷渣综合利用的研究.湖南有色金属,1989,5(2):34-38
    [159]曹应科.从铜冶炼砷烟灰中回收铟.湖南有色金属,2005,21(1):5-8
    [160]张才明.次氧化锌氧化水解除砷方法的研究及应用.9-11
    [161]孔繁珍.从高砷含铋物料中回收铋.湿法冶金,2000,19(3):54-58
    [162]陈白珍,唐仁衡,龚竹青等.砷酸铜制备工艺过程热力学分析.中国有色金属学报,2001,11(3):510-513
    [163]黄卫东.含砷硫化渣的综合利用研究.有色矿冶,2009,25(4):53-56
    [164]陈锦安.黑铜中铜砷湿法分离实验研究.有色冶炼,1999,28(3):26-29
    [165]董四禄.湿法处理硫化砷渣研究.硫酸工业,1994,(5):3-9
    [166]张发明,李大光,奚长生等.次氧化锌渣浸出液中铟与砷、锑、锡的分离.有色金属(冶炼部分),2007,(3):9-12
    [167]唐谟堂,赵天从.CR法处理高砷高锑复杂锡烟尘.中国有色金属学报,1992,2(4):37-40
    [168]段学臣,杨向萍,黄蔚庄.高纯三氯化锑的制备.中南工业大学学报,2001,32(2):169-172
    [169]段学臣.高砷锑烟尘中砷锑的回收.中南矿冶学院学报,1991,22(2):149-155
    [170]陈云.硫化法从砷滤饼中分离砷的实验研究.湿法冶金,2009,28(4):233-235
    [171]梁荣选,杨桂珍,杨建男.高铜-镍-砷渣脱砷及回收工艺研究.有色矿冶,2006,22(6):27-29
    [172]单桃云,刘鹊鸣,谈应顺.锑冶炼中砷碱渣与二氧化硫烟气综合回收清洁工艺探讨.江西有色金属,2010,24(3-4):97-100
    [173]仇勇海,卢炳强,陈白珍等.无污染砷碱渣处理技术工业试验.中南大学学报(自然科学版),2005,36(2):234-237
    [174]马伟.硫化砷渣氯化铜浸出及还原回收单质砷的实验研究.环境工程,1998,16(1):49-52
    [175]熊宗国.高砷低金银的铅阳极泥的高压脱砷.贵金属,1992,13(3):30-34
    [176]李岚,蒋开喜,刘大星等.加压氧化浸出处理硫化砷渣.矿冶,1998,7(4):46-50
    [177]张子岩,刘建华,万林生等.用氢氧化钠浸出含钴高砷铁渣中砷的试验研究.湿法冶金,2005,24(2):105-107
    [178]夏德长.从电解精炼铜阳极泥中选择性浸出砷和锑.湿法冶金,1997, (3):61-64
    [179]陈雯,沈强华,王达建等.铜转炉烟尘选冶联合处理新工艺研究.有色矿冶,2003,19(3):45-48
    [180]刘湛,成应向,曾晓冬.采用氢氧化钠溶液循环浸出法脱除高砷阳极泥中的砷.化工环保,2008,28(2):141-144
    [181]白猛,郑雅杰,刘万宇.硫化砷渣的碱性浸出及浸出动力学.中南大学学报(自然科学版),2008,39(2):268-272
    [182]柏宏明.砷烟尘脱砷及含砷残渣的无污染处理.云南冶金,1999,28(6):25-27
    [183]朱昌洛,寇建军.砷冰铜常压脱砷新工艺.有色金属(冶炼部分),2002,(1):15-17
    [184]吴继梅.高砷铅阳极泥预处理工艺研究.有色冶炼,1999,28(3):24-25
    [185]吴国元.高砷物料的NaOH焙烧脱砷工艺.中国有色金属学报,1998,8(2):451-453
    [186]闵世俊,曾英,韩璐.含砷工业废水处理现状与进展.广东微量元素科学,2008,15(8):1-7
    [187]毛豫兰,乔秀臣.国外有害固体废弃物固化与稳定技术的研究进展.国外建材科技,2007,28(3):8-11
    [188]王丹,朱义年,蒋志坚.含砷废渣处理技术研究进展.第三届全国环境化学学术大会论文集,2005,Ⅵ:7-8
    [189]李华伦,朱昌洛.含砷碱废水的无害化治理.矿产综合利用,2002,(4):12-15
    [190]Cullen W R, Reimer K J. Arsenic speciation in the environment. Chemical Reviews,1989,89(4):713-764
    [191]Veronique Lenoble. As(Ⅴ) retention and As (Ⅲ) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. Science of the Total Environment,2004(326):197-207
    [192]Li Na, Fan Maohong. Oxidation of As (Ⅲ) by potassium permanganate. Journal of environmental sciences,2007,19:783-786
    [193]Thomas R. Holm and Steve D. Wilson. Chemical oxidation for arsenic removal. Midwest Technology Assistance Center Publication TR06-05, ISWS Contract Report 2006,1-17.
    [194]Ganesh Ghurye and Dennis Clifford. Laboratory study on the oxidation of arsenic Ⅲ to arsenicⅤ.2001, EPA/600/R-01/021,1-87
    [195]Myint Zaw and Maree T. Emett. Arsenic removal from water using advanced oxidation processes. Toxicology Letters,2002, 133(1):113-118
    [196]Veronika Dutre, Carlo Vandecasteele, Stefan Opdenakker. Oxidation of arsenic bearing fly ash as pretreatment before solidification. Journal of Hazardous Materials,1999,68(3):205-215
    [197]张志,刘如意,孙水裕等.氧化-混凝工艺处理碱性含砷废水的试验研究.工业水处理,2004,24(11):36-38
    [198]Veronique Lenoble, Veronique Deluchat, Bernard Serpaud, et al. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta,2003,61:267-276
    [199]M. Borho. Optimized removal of arsenate by adaptation of oxidation and precipitation processes to the filtration step. Water Science Technology,34(9):25-31
    [200]张荣良,丘克强.铜冶炼闪速炉烟尘氧化浸出与中和脱砷.中南大学学报,2006,37(1):73-78
    [201]Wolfgang Driehaus. Oxidation of arsenate (Ⅲ) with manganese oxides in water treatment. Water Research,29(1):297-305
    [202]杨天足, 唐建军.焦锑酸钠生产工艺及研究进展.无机盐工业,1999,31(1):20-23
    [203]刘琦.高砷酸性废水除砷新工艺.洛阳工业高等专科学校学报,2005,15(1):10-11
    [204]郭瑞霞,李宝华.活性炭在水处理应用中的研究进展.炭素技术,2006,25(1):20-24
    [205]张发饶,柯家骏,赖雅银.水溶液中As(Ⅲ)的空气氧化.有色金属(冶炼部分),1996(4):22-26
    [206]钟耀东,强颖怀,赵新兵.重金属砷的前期处理实验.江苏环境科技,2007,20(5):6-9
    [207]Michael J. Scott. Reactions at oxide surfaces.1. Oxidation of As (Ⅲ) by synthetic birnessite. Environmental Science Technology,1995, 29(8):1898-1905
    [208]Ement M T, Khoe G H. Photochemical oxidation of arsenic by oxygen and iron in acidic solution. Water Research,2001,35(13):649-656
    [209]Stephan J. Hug, Laura Canonica, Martin Wegelin et al. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ. Sci. Technol.,2001,35(10):2114-2121
    [210]Monique Bissen, Morgane-Marie Vieillard-Baron. Ti02-catalyzed photo oxidation of arsenite to arsenate in aqueous samples. Chemosphere, 2001,44:751-757
    [211]Paritam K. Dutta, S.O. Pehkonen, Virender K. Sharma et al. Photocatalytic Oxidation of Arsenic(III):Evidence of Hydroxyl Radicals. Environ. Sci. Technol.,2005,39(6):1827-1834
    [212]Hyunjoo Lee, Wonyong Choi. Photocatalytic oxidation of arsenite in TiO2 suspension:kinetics and mechanisms. Environ. Sci. Technol., 2002,36(17),3872-3878
    [213]Anderson G, Williams J, Hiller R. The purification and characterization of arsenite oxidase from Alcaligenesfaecalis, amolybdenum-containing hydroxylase. Journal of Biological Chemistry,1992,267(33):23674-23682.
    [214]Salmassi T M, Venkateswaren K, Satmomi M, et al. Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from hot creek, California. Geomicrobiology Journal,2002,19(1):53-66.
    [215]ThomasM G, Jillian F B. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiology Letters,2001,200(2): 335-340
    [216]Thomas M G, Gregory K D, Blaine R M, et al. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus:field and laboratory investigations environ. Science Techno,12001,35(20):3857-3862
    [217]范秋燕,杨春艳,许琳等.耐As(111)及高效氧化(111)基因工程菌的构建.南京工业大学学报(自然科学版),2009,31(2):61-64
    [218]王薇,王君琴,杨洁等.三价砷氧化菌株的筛选及其培养条件初探.中国地方病学杂质,2006,25(1):96-98
    [219]肖唐付,洪冰,杨中华等.砷的水地球化学及其环境效应.地质科技情报,2001,20(1):71-76
    [220]Smith A. H., Lopipero P. A., Bates M. N., et al. Arsenic epidemiology and drinking water standards. Science 21,2002,296(5576):2145-2146
    [221]郑雅杰,罗园,王勇.采用含砷废水沉淀还原法制备三氧化二砷.中南大学学报(自然科学版),2009,40(1):48-54
    [222]周晓源,郑子恩,李有刚.朝鲜平北冶炼厂湿法提砷工艺设计.有色金属,2003,55(3):62-64
    [223]Robert G. Robins, Tadahisa Nishimura, Pritam Singh. Removal of arsenic from drinking water by precipitation, adsorption or cementation. Arsenic Removal from Drinking Water,2001,31-42
    [224]Nishimura T, Tozawa K. The Reaction for the Removal of As (Ⅲ) and As(Ⅴ) from Aqueous Solutions by adding Calcium Hydroxide. J. Min. Me.t Inst. Japan,1984,100:1085-1091
    [225]NishimuraT, Tozawa K. Removal of Arsenic from Waste Water by Addition of Calcium Hydroxide and Stabilization of Arsenic-Bearing Precipitate by Calcination, Oliver A J (editor). Impurity Control Disposal. Montreal, Canada:Canadian Institute of Mining, Metallurgy and Petroleum,1985,1-18
    [226]Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation. Environ Sci Technol,1999,33(21):3806-3811
    [227]Bothe J V, Brown P W. The stabilities of calcium arsenates at 23±1℃. J of Hazard Mater,1999, B69:197-207
    [228]Mahapatra P P, Mahapatra L M, Mishra B. Solubility of Calcium Hydrogen Arsenate in Aqueous Medium. Indian J Chem,1986,25A:647-649
    [229]Yinian Zhu, Xuehong Zhang, Qinglin Xie, et al. Solubility and Stability of Calcium Arsenates at 25℃. Water, Air, Soil Pollution, 2005,169(1-4):221-238.
    [230]Robins R. G. The Solubility of Metal Arsenates. Metallurgical Transactions B,1981,12B,103-109.
    [231]刘辉利,朱义年.CO2对砷酸钙稳定性影响的热力学分析.环境保护科学,2006,32(3):7-10
    [232]张昭,彭少方.废水中除砷的热力学分析及应用[J].成都科技大学学报,1995,27(3):36-41.
    [233]Vinals J., Sunyer A., Molera P., et al. Arsenic stabilization of calcium arsenate waste by hydrothermal precipitation of arsenical natroalunite. Hydrometallurgy,2010,104(2):247-259
    [234]Twidwell L. G., Plessas K.0., Comba P. G. et al. Removal of arsenic from wastewaters and stabilization of arsenic bearing waste solids: Summary of experimental studies,1994,36(1):69-80
    [235]T. Nishimura and K. Tozawa, "Removal from Waste Water by Addition of Calcium Hydroxide and Stabilization of Arsenic-bearing Precipitates by Calcination", Impurity Control and Disposal, 1985, A. J. Oliver (editor), Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, pp.3/1-3/17
    [236]Wang W. Z. C., Yang D. L. Y. Fixation of arsenic in industrial calcium arsenate sludge at moderate temperature. Nonferrous Metals (China), 1981, (3):61-65
    [237]Palfy P., Vircikova E., Molnar L. Processing of arsenic waste by precipitation and solidification. Waste Management,1999 19(1):55-59
    [238]Leist M., Casey R. J., Caridi D. The fixation and leaching of cement stabilized arsenic. Waste Management,2003,23(4):353-359
    [239]Singh T. S. and Pant K. K. Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. Journal of Hazardous Materials,2006, 131(1-3):29-36
    [240]Colin Sullivan, MarkTyrer, Christopher R. Cheeseman et al. Disposal of water treatment wastes containing arsenic-A review. Science of The Total Environment,2010,408(8):1770-1778
    [241]Nimfodora Papassiopi, Edita Vircikova, valentin Nenov et. Removal and fixation of arsenic in the form of ferric arsenates. Three parallel experimental studies. Hydrometallurgy,1996, 41(2-3):243-253
    [242]朱义年,张学洪,解庆林等.砷酸盐的溶解度及其稳定性随pH值的变化.环境化学,2003,22(5):478-484
    [243]Krause E., Ettel V. A. Solubilities and stabilities of ferric arsenate compands. Hydrometallurgy,1989,22(3):311-337
    [244]刘辉利,梁美娜,朱义年等.氢氧化铁对砷的吸附与沉淀机理.环境科学学报,29(5):1011-1020
    [245]Harris G. B., Krause E. et al. The disposal of arsenic from metallurgical processes:its status regarding ferric arsenate. Extractive Metallurgy of Copper, Nickel and Cobalt. Vol. I: Fundamental Aspects,1993,1221-1237
    [246]Harris B. The removal of arsenic from process solutions:theory and industrial practice. Hydrometallurgy,2003,1889-1902
    [247]Fang Zhaoheng, Shi Wei, Han Baoling et al. Removal of arsenic from high arsenic solutions by scorodite precipitation. Engineering Chemistry and Metallurgy,2000,21 (4):359-362
    [248]Swash P. M., Monhemius A. J. Hydrothermal precipitation from aqueous solutions containing iron(Ⅲ), arsenate and sulphate. Hydrometallurgy 94,1994,177-190
    [249]David R. Baghurst, Jack Barrett, D. Michael, P. Mingos. The hydrothermal microwave synthesis of scorodite:iron(Ⅲ) arsenate (Ⅴ) dehydrate, FeAs04·2H2O. Journal of the Chemical Society, Chemical Communications,1995, (3):323-324
    [250]Mambote R. C. M., Reuter M. A., Van Sandwi jk A., et al. Immobilization of arsenic in crystalline form from aqueous solution by hydrothermal processing above 483.15K. Minerals Engineering,2001, 14(4):391-403
    [251]Monhemius A. J. and Swash P.M. Removing and stabilizing as from copper refining circuits by hydrothermal processing. Journal of the Minerals, Metals and Materials Society,1999,51(9):30-33.
    [252]Fujita T.,Taguchi R.,Abumiya M. et al., Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part Ⅱ. Effect of temperature and air. Hydrometallurgy,2008,90(2-4):85-91
    [253]Fujita, T., Taguchi, R., Abumiya, M. et al. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part Ⅰ., Hydrometallurgy,2008,90(2-4):92-102
    [254]Fujita, T., Taguchi, R., Shibata, E. et al. Preparation of an As (Ⅴ) solution for scorodite synthesis and a proposal for an integrated As fixation process in a Zn refinery. Hydrometallurgy,2009, 96(4):300-312
    [255]Fujita T., Taguchi R., Abumiya M. et al. Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions:physical properties and stability of the scorodite. Hydrometallurgy,2009, 96(3):189-198
    [256]Fujita T., Taguchi R., Abumiya M. et al. Effects of zinc, copper and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process. Hydrometallurgy,2008,93(1-2):30-38
    [257]钟云波,梅光贵,钟竹前.硫化法脱除铜电解废液中As, Sb, Bi的试验.中南工业大学学报,1997,28(4):336-339
    [258]Han Jingtai, William S. Fyfe. Arsenic removal from water by iron-sulphide minerals. Chinese Science Bulletin,2000, 45(15):1430-1436
    [259]Bhattacharyya D., Jumawan Jr. A. B., Grieves R. B. Separation of toxic heavy metals by sulfide precipitation. Separation Science and Technology,1979,14(5):441-452
    [260]白猛,刘万宇,郑雅杰等.冶炼厂含砷废水的硫化沉淀与碱浸.铜业工程,2007,(2):19-22
    [261]马伟,马荣骏,李杨等.硫酸溶液硫化沉砷过程及磁场对沉砷的影响.中国有色金属学报,1997,7(1):33-36
    [262]陈云.硫化法从砷滤饼中分离砷的试验研究.湿法冶金,2009,28(4):233-235
    [263]尹爱君,刘肇华,蒋作宏等.硫化钠法处理S02烟气的吸收液脱砷研究.中南工业大学学报,1999,30(4):386-388
    [264]Richard T. Wilkin, Dirk Wallschlager, Robert G. Ford. Speciation of arsenic in sulfidic waters. Geochemical Transactions,2003, 4(1),1-7
    [265]宫本乙次郎,杉之原幸夫,柳ケ濑勉等.关于废水除砷的基础研究(第一报).硫酸工业,1978,(12):81-88
    [266]李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究.环境科学,2007,28(10):2198-2202
    [267]高乃云,李富生,汤浅晶等.铁和铝氧化物涂层砂的过滤与吸附性能评价.环境污染与防治,2004,26(1):3-5
    [268]Jan Gregor. Arsenic removal during conventional aluminium-based drinking-water treatment. Water Research,2001,35(7):1659-1664.
    [269]王化周.镁盐污水脱砷的研究.大连工学院学报,1980,19(4):83-92
    [270]饶金元,朱云.从含砷钼矿浸出液中脱砷.中国钼业,2008,32(5):22-24
    [271]Navarro, P., Alguacil, F. J. Removal of arsenic from copper electrolytes by solvent extraction with tributylphosphate. Canadian Metallurgical Quarterly,1996, (2):133-141
    [272]Ochromowicz Katarzyna, Chmielewski Tomasz. Solvent extraction in hydrometallurgical processing of polish copper concentrates. Physicochemical Problems of Mineral Processing,2011, (46):207-218
    [273]Anthony R. K. Dapaah, Akimi Ayame. Solvent extraction of arsenic from acid medium using zinc hexamethylenedithiocarbamate as an extractant. Analytica Chimica Acta,1998,360(1-3):43-52
    [274]Bogacki M. B., Wisniewski M., Szymanowski J. Effect of extractant on arsenic(Ⅴ) recovery from sulfuric acid solutions. Journal of Radioanalytical and Nuclear Chemistry,1998,228(1-2):57-61
    [275]Kalyanaraman S., Khopkar S. M. Liquid-liquid extraction of arsenic(Ⅲ) with diluted tributyl phosphate. Talanta,1977, 24(1):63-65
    [276]Lucyna lberhan, Maciej Wisniewski. Removal of arsenic(Ⅲ) and arsenic(Ⅴ) from sulfuric acid solution by liquid-liquid extraction. Journal of Chemical Technology and Biotechnology,2003, 78(6):659-665
    [277]Travkin V. F., Glubokov Yu. M., Mironova E. V., et al. Extraction of arsenic(Ⅴ) with Hexabutylphosphoric Triamide. Russian Journal of Applied Chemisty,2001,74(10):1664-1667
    [278]Alguacil F. J. Extraction of As(Ⅴ) from sulphuric acid solutions by cyanex 925. Revista De Metalurgia,1998,34:385-389
    [279]廖平婴,尹周澜.盐酸体系中萃取分离砷的研究.中南矿冶学院学报,1990,21(6):673-678
    [280]林国梁,韩天放,刘东生.磁场效应对含砷工业废水萃取的影响.东北大学学报(自然科学版),2005,26(4):303-306
    [281]Yusof A.M., Idris N. H., Malek N. A. N. N., et al. Use of granulated modified zeolite Y for the removal of inorganic arsenic and selenium species. Journal of Radioanalytical and Nuclear Chemistry,2009, (2):269-272
    [282]张寿恺,邱梅.沸石在水处理中的应用.净水技术,2000,18(2):41-44
    [283]王奖,乌力吉日嘎拉,赵希颖等.斜发沸石在废水处理中的应用研究进展.环境科学与技术,2008,31(8):49-57
    [284]Pu Hongping, Huang Jiangbo, Jiang Zhe. Removal of arsenic(V) from aqueous solutions by lanthanum-loaded zeolite. Acta Geological Sinica(English Eidtion),2008,82(5):1015-1019
    [285]Macedo-Miranda M. G., Olguin M. T. Arsenic sorption by modified clioptilolite-heulandite rich tuffs. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2006, (1):131-142
    [286]黄园英,刘丹丹,屈文俊等.几种吸附材料对水中砷(Ⅲ)去除效果比较.环境科学与技术,2010,33(6E):89-93
    [287]Liu Xiaozhen. Adsorption capacity of activated carbon fiber fabric in cyanide leaching liquor of gold ores. Chinese Journal of Reactive Polymers,2002,11(1):91-93
    [288]Rajakovic L. V. The sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology,1992,27(11):1423-1433
    [289]Campos V., Buchler P. M., Trace elements removal from water using modified activated carbon. Environmental Technology,2008,29(2): 123-130
    [290]Amuda 0. S., Giwa A. A., Bello I. A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal,2007,36(2):174-181
    [291]Mohan Dinesh, Pittman Jr. Charles U. Arsenic removal from water/wastewater using adsorbents-a critical review. Journal of Hazardous Materials,2007,142(1-2):1-53
    [292]Chakravarty S, Dureja V, Bhattacharyya G, et al. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research,2002,36(3):625-632.
    [293]Ouvrard S, Simonnot M 0, Sardin M. Key parameters controlling an adsorption process for the selective removal of arsenic from drinking water. Water Science and Technology,2002 2(5-6):111-117
    [294]商平,孙恩呈,李海明等.环境矿物材料处理砷(As)污染水的研究进展.岩石矿物学杂质,2008,27(3):232-240
    [295]Zhai Hui, Li Yilian. The study of the experimental model of adsorption on clay minerals of trivalence arsenic in groundwater. Chinese Journal of Geochemistry,2006,25(1):119
    [296]Mohapatra Debasish, Mishra Debaraj, Chaudhury Gautam Roy, et al. Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean Journal of Chemical Engineering,2007, 24(3):426-430
    [297]Lin Z., Puls R. W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 2000,39(7):753-759
    [298]Manning Bruce A., Goldberg Sabine. Adsorption and stability of arsenic(Ⅲ) at the clay mineral-water interface. Environmental Science of Technology,1997,31,2005-2011.
    [299]Garcia-Sanchez A., Alvarez-Ayuso E., Rodriguez-Martin F. Sorption of As(Ⅴ) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Minerals, 2002,37(1):187-194
    [300]赵卫红,张正斌.砷酸根的液-固界面交换吸附研究—pH和Ca(Ⅱ)的影响.青岛海洋大学学报,1997,27(2):233-240
    [301]叶瑛,季珊珊,邬黛黛等.针铁矿及其前体吸附亚砷酸根离子的反应及预处理方法的影响.岩土矿物学杂质,2005,24(6):551-555
    [302]Javier Gimenez, Maria Martinez, Joan de Pablo, et al. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Material,2007,141:575-580
    [303]Martin Lehmann, Anastasios I Zouboulis, Kostas A Matis, et al. Sorption of arsenic oxyanions from aqueous solution on goethite: a study of process modeling. Microchimica Acta,2005, 151(3-4):269-275
    [304]Tang Y., Wang J., Gao N. Characteristic and model studies for fluoride and arsenic adsorption on goethite. Journal of environmental sciences,2010,22(11):1689-1694.
    [305]Shi Rong, JiaYongfeng, Wang Chengzhi. Competitive and cooperative adsorption of arsenate and citrate on goethite. Journal of environmental sciences,2009,21 (1):106-112.
    [306]陈雯,刘玲,周建伟.三种氧化铁吸附水环境中砷的实验研究.环境科学与技术,2009,32(1):63-68.
    [307]黄自力,胡岳华,徐競.涂铁石英砂的制备及其对砷的吸附.污染防治技术,2003,16(4):13-16
    [308]Arun Joshi, Malay Chaudhuri. Removal of arsenic from groundwater by iron oxide-coated sand. Journal of Envrionmental engineering, 1996,122(8):769-771
    [309]Han Young-Soo, Gallegos Tanya J., Demond Avery H., et al. FeS-coated sand for removal of arsenic(Ⅲ) under anaerobic conditions in permeable reactive barriers. Water Research,2011,45(2):593-604.
    [310]蒋晓凤,盛梅.铁粉与石英砂对高砷地下水的除砷研究.工业水处理,2009,29(12):26-27
    [311]Raje N., Swain K. K. Purification of arsenic contaminated ground water using hydrated manganese dioxide. Journal of Radioanalytical and Nuclear Chemistry,2002,253(1):77-80
    [312]Camacho L. M., Parra R. R., Deng S. Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite:effects of pH and initial feed concentration. Journal of Hazardous Materials,2011, 189(1-2):286-293
    [313]Bruce A Manning, Scott E Fendorf, Benjamin Bostick, et al. Arsenic (Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite. Envrionmental science technology,2002, 36(5):976-981
    [314]郭永福,晏乃强.δ-Mn02对水中重金属及砷的研究与应用.水科学与工程技术,2009,(5):49-52
    [315]田军,乔秀丽.新生态δ-MnO2对废水中As(Ⅴ)的吸附研究.佳木斯大学学报(自然科学版),2004,22(4):508-511
    [316]Helene Jezequel, Khim Hoong Chu. Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions. Environmental Chemistry Letters,2005,3(3):132-135.
    [317]Bang Sunbaek, Patel Manish, Lippincott Lee, et al. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere,2005,60(3):389-397.
    [318]Pena M., Meng X., Korfiatis G. P., Jing C. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science Technology,2006,40(4):1257-1262
    [319]肖亚兵,钱沙华,黄淦泉等.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究.分析科学学报,2003,19(2):172-174
    [320]Kim Yonnghun, Kim Changmook, Choi Inhee, Rengaraj Selevaraj, Yi Jongheop. Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science Technology,2004,38, 924-931.
    [321]Kunzru Siddhartha, Chaudhuri Malay. Manganese amended activated alumina for adsorption/oxidation of arsenic. Journal of Environmental Engineering,2004,131 (9):1350-1353
    [322]Gregor J. Arsenic removal during conventional aluminium-based drinking-water treatment. Water Research,2001,35(7):1659-1664
    [323]王冰艳,周会群.砷与无定形氧化铝的表面络合反应平衡常数计算.环境化学,2006,25(4):389-394
    [324]普旭力,王鸿辉,董清木等.纳米氧化铝对As(Ⅲ)和As(Ⅴ)的吸附行为研究.广东微量元素科学,2008,15(7):50-54
    [325]齐光才,刘珍叶,李军武等.用粉煤灰处理含砷废水.延安大学学报(自然科学版),1999,18(4):55-58
    [326]赵文岩,杨磊,萨仁其其格等.混酸改性粉煤灰对砷的吸附研究.内蒙古大学学报(自然科学版),2009,40(5):625-629
    [327]赵萌,郑发鸿,王平艳.含砷污泥的粉煤灰固化研究.环境工程学报,2007,1(10):112-115
    [328]Polowczyk Lzabela, Bastrzyk Anna, Kozlecki Tomasz, et al. Use of fly ash agglomerates for removal of arsenic. Environmental Geochemistry and health,2010,32(4):361-366
    [329]Li Yiran, Wang Jun, Luan Zhaokun, et al. Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials,2010,177 (1-3):131-137
    [330]Altundogan H. S., Altundogan S., Tumen F., Bildik M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Management,2002,22(3):357-363
    [331]Rubinos D. A.,Arias M., Diaz-Fierros F., et al. Speciation of adsorbed arsenic(V) on red mud using a sequential extraction procedure. Mineraloqical Magazine,2005,69(5):591-600.
    [332]Hulya Genc-Fuhrman, Jens Christian Tjell, David Mc Conchie. Adsorption of arsenic from water using activated neutralized red mud. Environmental Science Technology,2004,38(8):2428-2434.
    [333]张书武,刘昌俊,栾兆坤等.铁改性赤泥吸附剂的制备及其除砷性能研究.环境科学学报,2007,27(12):1972-1977.
    [334]朱跃刚,陈仁民,李灿华等.钢渣吸附剂在废水处理中的应用.武钢技术,2007,45(3):35-38
    [335]郑礼胜,王士龙,张虹等.用钢渣处理含砷废水.华工环保,1996,16,342-345
    [336]刘盛余,马少健,高谨等.钢渣吸附剂吸附机理的研究.环境工程学报,2008,2(1):115-119.
    [337]Sushil Raj Kanel, Heechul Choi, Ju-Yong Kin, Saravanamuthu Vigneswaran, Wang Geun Shim. Removal of arsenic (Ⅲ) from groundwater using low-cost industrial by-products-blast furnace slag. Water Quality Research Journal of Canada,2006,41(2):130-139
    [338]胡天觉,曾光明,陈维平等.选择性高分子离子交换树脂处理含砷废水.湖南大学学报,1998,25(6):75-80
    [339]Ficklin Walter H. Separation of arsenic (Ⅲ) and arsenic(Ⅴ) in ground waters by ion-exchange. Talanta,1983,30(5):371-373
    [340]Kim Jaeshin, Benjamin Mark M. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research,2004,38(8):2053-2062
    [341]刘振中,邓慧萍,韩瑛等.离子交换纤维除As(V)性能研究.工业水处理,2009,29(8):62-66
    [342]彭容秋.重金属冶金学.长沙:中南工业大学出版社,1994
    [343]彭容秋.重金属冶金工厂原料的综合利用.长沙:中南大学出版社,2006
    [344]傅作健.重金属生产中砷的综合利用问题.有色金属(冶炼部分),1975,(9):26-32
    [345]李夏林.韶冶铅锌密闭鼓风炉熔炼砷的分布及行为.有色冶炼,1995, (1):27-28
    [346]徐明清.砷在冶炼过程中的分布及其治理利用.有色冶炼,1988,(3):5-11
    [347]易克俊.砷在铜冶炼过程的分布及其控制.湖南有色金属,2011,17(增刊):1-3
    [348]唐谟堂,李鹏,何静等.CR法处理铜转炉烟灰制取砷酸铜.中国有色冶金,2009,(6):55-59
    [349]周红华.高砷锑烟灰综合回收工艺研究.湖南有色金属,2005,21(1):21-23
    [350]刘政,姚媛.高砷钻矿火法富集过程中砷的污染和治理.江西有色金属,2002,16(4):35-37
    [351]洪育民.贵溪冶炼厂闪速炉电收尘烟灰除砷及综合利用研究.湿法冶金,2003,22(4):208-212
    [352]李利丽.铜冶炼高砷烟灰综合处理流程研究.中国金属通报,2011,(19):42-43
    [353]余忠珠,潘先健.铜转炉烟灰生产七水硫酸锌.有色金属(冶炼部分),1997,(6):20-22
    [354]中国铜冶炼企业与必和必拓敲定2010年铜精矿加工费协议.http://www.aastocks.com.cn/news/2010/1/15/7c3ca064-c318-4c92-96 da-a2f992ad7aOf.shtml
    [355]赵永,蒋开喜,王德全等.处理火法炼锌焙烧烟尘的新方法.有色矿冶,2004,20(5):29-33
    [356]张发明,奚长生,梁凯.锌工业废渣次氧化锌的综合利用.湖南有色金属,2006,22(3):19-23
    [357]谭湘庭.次氧化锌酸浸废渣资源化研究和应用.有色金属(冶炼部分),1998,(5):9-11
    [358]张才明.次氧化锌氧化水解除砷方法的研究及应用.有色金属(冶炼部分),1997,(2):9-11
    [359]曾平生,戴孟良.次氧化锌脱砷新工艺研究.有色金属(冶炼部分),2008,(3):16-19
    [360]J.A.迪安.兰氏化学手册(魏俊发等译).北京:科学出版社,2003
    [361]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985
    [362]Golam Mostafa,A.TM.,Eakman,J.M.Predi ct i on of standard heats and Gibbs Free Energies of formation of solid inorganic salts from group contributions. Ind. Eng. Chem. Res.1995,34,4577-4582
    [364]Anderson Dias. Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic (Ⅲ) oxidation. Materials Research Bulletin,2008,43(6):1528-1538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700