用户名: 密码: 验证码:
小白菜耐盐性的遗传分析与耐盐相关基因的差异表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔬菜耐盐品种的选育和利用将在提高分布在耕地中的盐碱地的利用、增加单位面积产量和提高生产效益的同时,改善农田生态环境,丰富盐碱地分布地区的蔬菜多样性。本论文以小白菜为研究对象,通过对其耐盐性遗传规律和耐盐相关基因表达的研究,认识其耐盐机理,挖掘耐盐相关基因,以期为通过杂交育种或分子育种进行小白菜等蔬菜作物的耐盐性改良提供理论依据。
     本研究以8个具有不同耐盐水平的小白菜自交系为试验材料,利用完全双列杂交Ⅱ配制杂交组合,采用GriffingⅡ及Hayman法对小白菜耐盐性的配合力和基因效应进行了初步分析。结果表明,小白菜耐盐性的一般配合力和特殊配合力都达到了差异极显著水平。通过对小白菜不同品种耐盐性的一般配合力和特殊配合力的效应值估算及其比较,发现两个一般配合力高的亲本相配获得的F_1的性状值可能高,另外,两个一般配合力都不高的亲本,相配后的特殊配合力和F_1的性状值亦可能很高。小白菜耐盐性遗传符合“加性—显性”遗传模型。遗传效应中存在加性效应和显性效应,但以显性效应为主,且可能存在超显性。小白菜耐盐性主要表现为显性,敏盐性为隐性,耐盐性可能由其它基因调控下的寡基因控制。因此,在小白菜耐盐性育种中,一方面要选择一般配合力高的亲本,另一方面亦要注意选择特殊配合力高的组合,以利通过杂交优势育种育成耐盐一代杂种。
     以2个小白菜耐盐和中耐品种为试材,采用mRNA差异显示技术,通过2对锚定引物和随机引物组合对不同盐浓度诱导和盐诱导不同时间耐盐相关基因差异表达进行研究。通过目测比较相关差异带的消长和深浅,发现不同浓度NaCl诱导下差异片段表达量的大小顺序为1.6%>1.2%>2.0%。1.6%NaCl诱导6h时差异表达片段表达量较大:12h表达量略有下降,但之后,随着诱导时间的增加,表达量又开始逐步增加:到48h时表达量趋于稳定;72h表达量又有所下降。结合耐盐表型鉴定结果,认为1.6%的NaCl诱导48h比较适合小白菜耐盐相关基因的差异表达分析。这些研究结果为我们认识耐盐相关基因的表达程序和特点,制定有效的耐盐性研究策略提供了理论基础。
     对4个耐盐水平不同的自交系及其F_1代的四种杂交类型,即耐×耐、不耐×中耐、耐×不耐、耐×中耐,分别选取1.6%NaCl盐诱导48 h和非诱导对照的植株的相同部位的嫩叶进行mRNA差异显示分析。15对引物组合共产生2512条带,其中差异带共116条。发现亲本与F_1代杂交种之间在盐诱导相关基因的差异表达上存在明显的区别。而且,这种区别与杂种一代耐盐性的表现有着密切关系。这有助于我们理解植物耐盐杂种优势的理论基础,以指导杂种优势育种。
     以2个小白菜耐盐和中耐品种为试材,取1.6%NaCl诱导48h与非诱导对照的植株的相同部位的嫩叶进行mRNA差异显示分析,78对引物组合在两品种中产生了10种表达类型及101条与盐诱导相关的差异带。挑选经反复PCR反应及Northern杂交鉴定为阳性的13个表达量高、易于回收的盐诱导差异表达片段进行克隆和测序,得到了7个差异片段的序列。BLAST同源序列比对发现:cDNA片段38和68分别与油菜抗冻和萝卜抗旱的表达基因有90%和95%的同源性,显示cDNA片段38、68与植物中逆境胁迫下的抗性表达基因有关。cDNA片段03与cDNA片段27的同源性高,且分别与拟南芥中钙依赖型蛋白激酶的mRNA有85%和86%的同源性;cDNA片段73与拟南芥蛋白激酶相关mRNA有90%同源性;cDNA片段79与拟南芥中参与防御反应负调控的保守MAPKK激酶有90%同源性和促分裂原活化蛋白激酶的激酶之激酶(MAPKKK)mRNA有90%同源性:推测cDNA片段03、27、73、79可能与植物受到外界环境胁迫时参与信号传导途径的表达基因有关。cDNA片段85可能是植物中新发现的基因,它与Homo sapiens基因组DNA中肝细胞、结肠直肠细胞和非小细胞肺癌的抗癌基因99%同源。耐盐品种盐诱导相关cDNA片段及序列的获得为我们挖掘和利用耐盐相关基因及深入认识植物的耐盐机理奠定了一定的基础。
Development and use of the vegetable varieties with salinity tolerance will increase the utilization of the saline soil distributing in arable land and the productivity of vegetables, improve the entironment on farmland, enrich the vegetable diversity in saline area. Studies on the genetics and gene expression of salinity tolerance in Pak-choi [.Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee.] under salt stress were carried out in order to understand the mechanism of salinity tolerance in plant, mine the related genes of salinity tolerance, and use heterosis or molecular breeding to enhance the salinity tolerance in vegetables.
    Genetics of salinity tolerance in Pak-choi was investigated by a eight-parent complete diallel cross II design only including direct crosses. Combining ablity and genetic component analysis were estimated by using Griffingll and Hayman methods. Estimate of combining ability for salinity tolerance showed there were highly significant differences in GCA and SCA. Estimates of GCA and SCA effects of different varieties or combinations showed that not noly the parents with high GCA could produce good F! with high SCA, but also the parents with poor GCA could produce good combinations with high SCA. Inheritance of salinity tolerance in Pak-choi fitted to the "additive-dominant" model. There were additive effect and dominant effect in genetic effects. However, the dominant effect played a major role and overdominance may exist in salinity tolerance exhibition. Salinity tolerance was mainly controlled by dominant genes and salinity sensitively was controlled by recessive genes. Inheritances of salinity tolerance may be controlled by few major genes under the regulation of other genes. Selection should be focused on both the parents with high GCA and the higher SCA combinations in heterosis breeding on salinity tolerance improvement in Pak-choi.
    The salinity tolerance related genes expression under salt stress of certain intervals and different salt levels in two varieties was studied with two primer combinations by DDRT-PCR. Expression intensity under 1.6% NaCl were stronger than that under 1.2% and 2.0% NaCl. Expression reached the highest level for 6h salt stress. Expression level was less at 12h than 6h. But expression increased with the time under stress from 12h. It tended to be steady at 48h. It decreased after 72h. It was suitable to study the differential expression of the salinity tolerance related genes in Pak-choi for 48h under 1.6%NaCl stress. These results above would help us know the procedure and characteristics of the expression of the salinity tolerance related genes, and make effective stratege for salinity tolerance study in Pak-choi.
    The mRNA differential display was used to show the differential expression among the two salt-tolerant, one moderate salt-tolerant and one salt-sensitive parents and their four kinds of F1: tolerant tolerant, tolerant x moderate tolerant, sensitive x sensitive and tolerant x sensitive under 1.6%NaCl stress and non-salt stress. Fifteen primer combinations generated 116 differential cDNA fragments in 2512 cDNA fragments in total. Significant differences of gene expression among the parents and Ft were observed under salt stress. These differences were related to the phenomena of salinity tolerance. The results helped us understand the heterosis theoretically and guide the heterosis breeding.
    The mRNA differential display was used to screen the related transcriptic drived fragments of salt tolerance in salt-tolerant and moderate salt-tolerant varieties under the 1.6% salt stress and non-salt stress. Seven-eight primer combinations generated 101 differential cDNA fragments which were divided into 10 expression types. After they were proved to be positive by repeated PCR and northern blotting, thirteen cDNA fragments were reamplified by PCR, cloned and sequenced. Seven cDNA sequences were gained. BLAST analysis from GenBank and Brassica datebase found cDNA fragment 38 and 68 were 90% and 95% homologous to the expression genes i
引文
陈翠霞,于元杰,刘风珍,沈法富,王洪刚.棉花耐盐变异体的遗传分析.西北植物学报,2000,20(2):234-237
    陈国雄,李定淑,张志谦,杜虎林.盐胁迫对西葫芦和黄瓜种子萌发影响的对比研究.中国沙漠,1996(9):307-310
    陈火英,张建华,陈云鹏,庄天明,张才喜.NaC1胁迫对不同品种萝卜种子发芽特性的影响.江西科学,1999,17(6):96-99
    陈文炳,张谷曼.中国芋酯酶同工酶类型及品种群分类.福建农业大学学报,1997,26(4):421-426
    戴伟民,蔡润,潘俊松,何欢乐.盐胁迫对番茄幼苗生长发育的影响.上海农业学报,2002,18(1):58-62
    丁清泉,石浜明.有机盐对基因启动子的#delta#因子选择性的影响.生物化学杂志,1996,12(5):613-617
    董海涛,何祖华,吴玉良,董继新,程世军,程志强,莫肖蓉,李德葆.水稻抗稻瘟病近等基因系mRNA差别显示分析.农业生物技术学报,1998,6(3):223-228
    董云洲.表达肌醇甲基转移酶基因载体的构建及转基因烟草的耐盐性研究.植物学报,1999,41(2):146-149
    董云洲,沈波,Hohmann s., Bohnert H.耐盐性Imfl基因表达载体的构建及其在酵母中的高效表达.中国农业科学,1997,30(4):50-55
    董云洲,王雪艳.转肌醇甲基转移酶基因烟草的耐盐性及其遗传分析.农业生物技术学报,2000,8(1):53-55
    杜立群,李银心,李洪杰,郭北海,朱至清,周百成.在1/3海水培养基上筛选豆瓣菜耐盐变异体.植物学报,1999,41(6):633-639
    杜先明,郑素秋.小白菜多倍体诱变试验.湖南农学院学报,1995,21(1):25-29
    顾兴友,郑少玲,严小龙,杨崇,卢永根.盐浓度对水稻苗期耐盐指标变异度的影响.华南农业大学学报,1998,19(1):30-34
    顾兴友,郑少玲,严小龙,卢永根.水稻苗期耐盐性遗传的世代平均数分析.作物学报,1999,25(6):686-690
    郭北海,杜立群,李银心,朱至清,张艳敏,李洪杰,张劲松,陈受宜.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    郭蓓.大豆耐盐性基因分子标记的鉴定与利用:硕士学位论文.北京:中国农业科学院研究生院,1999
    郭房庆,周建明,汤章城.NaC1胁迫下小麦突变体和野生型叶片中一些有机溶质累积和基因表达差异.植物生理学报,1999,25(3):263-268
    郭小丁,邬景禹,唐君,孙近友.甘薯品种资源田间耐盐性鉴定研究.作物品种资源,1994,(3):34-36
    
    
    郭岩,陈少麟,张耕耘,陈受宜.应用细胞工程获得受主效基因控制的水稻耐盐突变系.遗传学报,1997,24(2):122-126
    韩福光,赵海岩,林凤,杨立国.高梁幼叶离体培养的衍生系的耐盐筛选与性状分析.作物学报.1997,23(4):491-495
    何锶洁,董伟,李慧芬,谷冬梅,陈受宜,田文忠.转甜菜碱醛脱氢酶基因玉米及其耐盐性研究.高技术通讯,1999,9(2):50-52
    贺志理,王洪春.NaCl预处理对盐胁迫下苜蓿中Na~+,Cl~-和脯氨酸累积分布的影响.植物生理学通讯,1992,28(5):330-334
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    康玉林,常青,田翠萍.马铃薯耐盐试验.土壤肥料,1995(5):14-17
    李红,杨苏声.盐激条件下快生大豆根瘤菌的渗透调节.微生物学报,1995,35(1):1-6
    李磊,赵檀方,胡延吉,傅秀云.大麦耐盐生理性状遗传研究.大麦科学,2002(1):31-34
    李银心.抗盐、耐海水蔬菜的生物技术培育与海水无土栽培应用:博士论文.北京:中国科学院植物研究所,2001
    李银心,常凤启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484
    李玉全,张海燕,沈法富.作物耐盐性的分子生物学研究进展.山东科学,2002,15(2):8-14
    李子银,陈受宜.环境因子胁迫下水稻翻译延伸因子1A基因的诱导表达.植物学报,1999,41(8):800-806
    梁俊峰.β-氨基丁酸、茉莉酸诱导辣椒抗TMV作用及其相关基因的表达研究:硕士论文.北京:中国农业科学院,2003
    刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    刘来福,毛盛贤,黄远樟.作物数量遗传.北京:农业出版社,1984,125-146
    刘家栋,翟兴礼,王东平.植物抗性机理的研究.农业与技术,2001(1):2-29
    刘祖祺,张石诚.植物抗性生理学.北京:农业出版社,1994,222
    栾非时,崔喜波.菜豆种质资源等位酶标记的研究.东北农业大学学报,2001,32(3):252-258
    栾文琪,张建成,顾淑媛.花生品种资源耐盐性鉴定初报.花生科技,1994,(4):21-23
    罗斌.我国的盐碱化土地与治理技术.林业科技通讯,1994(3):8-10
    孟繁华.种植作物对土壤耕层水盐动态的影响.土壤,1995(6):319-323
    孟凡荣.小麦杂交和自交种子发育前期MADS-box和Ser/Thr两类家族基因差异表达与杂种优势.农业生物技术学报,2002,10(3):220-226
    莫肖蓉,董海涛,吴玉良,何祖华,李德葆.受GA3诱导的一个水稻伸长相关基因的初步鉴定.中国水稻科学,2000,14(1):1-5
    宁华,任南,宋运淳,李立家.玉米(Zea mays L.)盐逆境胁迫蛋白基因nacl的染色体原位杂交物理定位.华中师范大学学报.自然科学版,1996,30(4):480-485
    
    
    戚春章,胡是麟,漆小泉.中国蔬菜种质资源的种类及分布.物种品种资源,1997(1):1-5
    曲雪萍,贺道耀,余叔文.水稻中p5 cs基因的存在及其在高脯氨酸变异系中的作用.植物生理学报,1998,24(1):49-54
    任建华,高平平,乔燕祥,杜海平,冀彩萍.绿豆幼苗期耐盐性研究.山西农业科学,1994,22(2):20-24
    沈义国,杜保兴.山菠菜胆碱单氧化物酶基因(C M O)的克隆与分析.生物工程学报,2001,17(1):1-6
    沈银柱,刘植义,何聪芬,黄占景,孟庆昌,柏峰,马闻师,赵松山,陆莉,张焕英.诱发小麦花药愈伤组织及其再生植株抗盐性变异的研究.遗传,1997,19(6):7-11
    孙亮先,董海涛,李德葆.利用cDNA微阵列检测萌发期水稻重要代谢基因表达模式.中国水稻科学,2002,16(4):299-303
    谭其猛.蔬菜育种学.北京:农业出版社,1987,106-107
    王翠亭,黄占景,何聪芬,沈银柱,李辉.小麦耐盐突变体生化标记的研究.麦类作物学报,2002,22(1):10-13
    王鸣刚.小麦耐盐变异体的筛选Ⅱ小麦耐盐细胞系的筛选及生理生化特性的分析.西北植物学报,1995,15(5):15-20
    王喜庆,武维华,张继憉.钙依赖型蛋白激酶调节保卫细胞膜内向钾离子通道的实验证据.植物学报,1998,40(1):1001-1009
    王学军,李仁所,李式军,仝爱玲,陈丽平,郭红芸.黄瓜抗盐选择研究.山东农业大学学报(自然科学版),2000,31(11):71-73
    王章奎,倪中福,孟凡荣,吴利民,谢晓东,孙其信.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究.中国农业科学,2003,36(5):473-479
    吴乃虎.基因工程原理.北京:科学出版社,1998,359-364
    萧冰.五种豆科牧草耐盐临界值、极限值的研究.草业科学,1994,11(3):70-71
    谢晓东,倪中福,孟凡荣,吴利民,王章奎,孙其信.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究.遗传学报,2003,30(3):260-266
    熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究:硕士论文.武汉:华中农业大学,1999
    徐颖.盐分胁迫下植物的渗透调节.山东电大学报,2000(3):34-35
    晏斌,戴秋杰,刘晓忠,黄少白,王志霞,汪宗立.钙提高水稻耐盐性的研究.作物学报,1995,21(6):685-690
    张宝红,李秀兰,李凤莲.棉花耐盐胚性细胞系筛选及其植株再生.中国农业科学,1995,28(4):33-38
    张弛,陈受宜.利用DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达的基因.中国科学·B辑,1995,25(8):840-847
    张国青.野生大麦盐诱导基因表达差异的研究和cDNA文库的构建:硕士论文.北京:中国农业科学院研究生院,2002
    张桂兰,李龙昌,于占荣.棚室蔬菜土壤盐渍化原因与防治.吉林农业,2003,(5):21
    
    
    张慧,周骏马,郭岩,陈受宜.水稻突变体M-20的耐盐生理特性.植物生理学报,1997,23(2):181-186
    张可炜,王先艳,王灵芝.利用细胞工程技术培育玉米耐盐自交系及单交种.山东农业科学,2001(6):15-24
    张士功,邱建军.盐渍土资源与可持续发展:sdinfo. net. cn/luntan/content/a00069. htm
    翟虎渠.应用数量遗传.北京:中国农业出版社,2001,113-130
    赵可夫,王韶唐.作物抗性生理.北京:农业出版社,1990,306
    赵明范.世界土壤盐渍化现状与研究趋势.世界林业研究,1999(1):84-86
    赵瑞堂,高书国,乔亚科,朱惠梅,毕艳娟.用花药培养筛选耐盐变异体培育小麦耐盐品种的新途径.华北农学报,1994,9(1):34-38
    赵檀方,胡延吉,闫先喜.大麦耐盐育种研究概况.大麦科学,1994(3):15-17
    赵相山,张承烈.河西走廊芦苇在不同盐渍生境中RuBP羧化酶的比较研究.应用生态学报,1994,5(2):152-155
    智海英.小白菜种质资源耐盐性的鉴定及其耐盐机理的研究:硕士论文.山西农业大学硕士学位论文,2003
    周荣仁,杨燮荣,余叔文.利用组织培养选择烟草耐盐愈伤组织变异体并分化出再生植株.实验生物学报,1987,19(3):279-291
    宗绪晓,刘芳玉,郭高球,冯钦华,杨俊品,刘莹.豌豆优异种质筛选及农艺性状综合评价.作物品种资源,1997,(1):18-21
    Afiah, S., Kishk, E.T. and Abdel, H.A. Genetic analysis of yield and its attributes under two salinity levels in bread wheat (Triticum aestivum L.). Annals of Agricultural Science Cairo, 1999, 44 (1): 309-336
    Al, Karaki, G N. Germinationsodium and potassium concentrations of barley seedsas influenced by salinity. Journal of Plant Nutrition, 2001, 24 (3): 511-522
    Andrea, A., Ludwig, Tina, Romeis, Jonathan, D. G. and Jones. CDPK-mediated signaling pathways: specificity and cross-talk. Journal of Experimental Botany, 2003, 55 (395): 181-189
    Apse, M. P., Aharon, G. S., Snedden, W. A. and Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science-Washington, 1999, 285 (5431): 1256-1258
    Azhar, F. M. and McNeilly, T. Variation in responses of Sorghum bicolor (L.) Moench accessions to the effect of NaCl + CaCl_2 and NaCl salinity. Pakistan Journal of Agricultural Sciences, 2001, 38 (1-2): 25-28
    Bohra, J. S., Dorffling, H. and Dorffling, K. Salinity tolerance of rice (Oryza sativa L.) with reference to endogenous and exogenous abscisic acid. Agronomy and Crop Science, 1995, 174 (2): 79-86
    Chauhan, S., Forsthoefel, N., Ran.YingQuing, Quigley, F., Nelson, D. E., Bohnert, H. J. and Ran, Y. Q. Na~+/myo-inositol symporters and Na~+/H~+-antiport in Mesembryanthemum
    
    erystallinum. Plant Journal, 2000, 24 (4): 511-522
    Cucci, G., Cantore, V., Boari, F., Caro, A.de, de, Caro, A., Ferreira, M. I.(ed.) and Jones, H. G. Water salinity and influence of SAR on yield and quality parameters in tomato. Acta Horticulturae, 2000, 537 (2), 663-670
    Gregorio, G B. and Senadhira, D. Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1993, 86 (2-3): 333-338
    Hassan, A. A., Nassar, H. H., Barakat, M. A. and Tolba, M. S. Tomato breeding for salinity tolerance. Ⅲ. Genetics of tolerance. Egyptian Journal of Horticulture, 1999, 26 (3): 391-403
    Hauhan, S., Forsthoefel, N., Ran.YingQuing, Quigley, F., Nelson, D. E., Bohnert, H. J. and Ran.YQ. Na~+/myo-inositol symporters and Na~+/H~+-antiport in Mesembryanthemum crystallinum. Plant Journal, 2000, 24 (4): 511-522
    http://www.cpus, gov.cn/kiqy/file/0265.htm
    http://www.xjb.ac.cn/~xjlhs/kexie/articles/environment/environment30.htm
    Jones, M. P. Genetic analysis of salt tolerance in mangrove swamp rice. Rice Genetics Proceeding of international Rice. Genetics Symposium, 1985, (5): 411-422
    Karim, M. A., Nawata, E. and Shigenaga, S. Distribution of Na, K and Cl ions in different plant parts of wheat varieties differing in salinity tolerance. Annals of Bangladesh Agriculture, 1999, 8 (1): 35-42
    Kwon, Taek, R., youn, Harris, P. J. C., Bourne, W. F. and Kwon, T. R. Partitioning of Na~+, K~+, proline, and total soluble sugar in relation to the salinity tolerance of Brassica juncea and Brassica rapa. Journal of the Korean Society for Horticultural Science, 1999, 40 (4): 425-430
    Lee, K. yuSeong, Park, Nam, K. yu, Yang, SaeJun, Lee, K. S., Park, N. K. and Yang, S. J. Combining ability of japonica rices for salinity tolerance at seedling stage. Korean Journal of Crop Science, 1997, 42 (3): 270-274
    Lemaire, Chamley, M., Petit, J., Causse, M., Raymond, P. and Chevalier, C. Identification of differentially expressed genes during early development of tomato fruit: Characterisation of a novel cDNA coding for a RAD23 protein. Australian Journal of Plant Physiology, 2000, 27 (10): 911-920
    life.ac.cn/xyls/swjstb990204.htm
    Malik, R. S., Gupta, A. R, Haneklaus, S. and El, Bassam, N. Enhancement of salinity tolerance of pea by P fertilisation - a radiotracer study. Landbauforschung-Volkenrod, 1999, 49 (3): 113-122
    Maxwell, D. R, Nickels, R. and McIntosh, L. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant Journal, 2002, 29 (3): 269-279
    Mercado, J. A., Sancho, Carrascosa, M. A., Jimenez, Bermudez, S., Peran, Quesada, R., Pliego,
    
    Alfaro, F. and Quesada, M. A.. Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato. Plant Cell, Tissue and Organ Culture, 2000, 62 (2): 101-106
    Mishra, B., Singh, R. K. and Jetly, V. Inheritance pattern of salinity tolerance in fice. Journal of Genetics and Breeding, 1998, 52 (4): 325-331
    Moeljopawiro, S. and Ikehashi, H. Inheritance of salt tolerance in rice. Euphyica, 1981, 30: 291-300
    Nelson, D. E., Rammesmayer, G. and Bohnert, H. J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant-Cell, 1998, 10 (5): 753-764
    Okano, K, Nakano, Y. and Watanabe, S. Single-tuass tomato system -- a labor-saving management system for tomato production. JARQ, Japan Agricultural Research Quarterly, 2001, 35 (3): 177-184
    Peng, L. and Arthur, B. Pardee. defferential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257 (14): 967-971
    Qian, Y. L., Engelke, M. C. and Foster, M. J. V. Salinity effects on zoysiagrass cultivars and experimental lines. Crop Science, 2000, 40 (2): 488-492
    Quintero, R J., Blatt, M. R. and Pardo, J. M. Functional conservation between yeast and plant endosomal Na~+/H~+ antiporters.FEBS-Letters, 2000, 471(2-3): 224-228
    Rush, D. W. and Epstein, E. Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato. Journal of the American Society for Horticultural Science, 1980, 106 (6): 699-704
    Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. Over expression of a single Ca~(2+) dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 2000 (23): 319-27
    Satti, S. M. E. and Al, Yahyai, R. A. Salinity tolerance in tomato: implications of potassium, calcium and phosphorus. Communications in Soil Science and Plant Analysis, 1995, 26 (17-18): 2749-760
    Satti, S. M. E. and Ibrahim, A. A. Enhancement of salinity tolerance in tomato: implications of potassium and calcium in flowering and yield. Communications in Soil Science and Plant Analysis, 1994, 25 (15-16): 2825-840
    Serrano, R. and Gaxiola, R. Critical Reviews in Sciences. 1994, 13 (2): 121-38
    Shikano, T., Chiyokubo, T. and Taniguchi, N. Effect of in breeding on nity tolerance in the guppy (Poecilia reticulata). Aquaculture, 2001, 202 (1-2): 45-55
    Shiv, Narayan., Shastry, E. V. D. and Narayan, S. Inheritance of seedling establishment characteristics in wheat (Triticum aestivum L. Em. Thell.) grown under different levels of salinity. Current Agriculture, 1999, 23 (1-2): 101-104
    Sreenivasulu, N., Grimm, B., Wobus, U. and Weschke, W. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet
    
    (Setaria italica). Physiologia Plantarum, 2000, 109 (4): 435-442
    Subhadra, Singh., Singh, M. and Singh, S. Genotypic basis of response to salinity stress in some crosses of spring wheat Triticum aestivum L. Euphytica. 2000, 115 (3): 209-214
    Thirumeni, S., Subramanian, M. and Paramasivam, K. Combining ability and gene action in rice under salinity. Tropical Agricultural Research, 2000, (12): 375-385
    Vernon, D. M. and Bohnert, H. J. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J, 1992, 11 (6): 2077-2085
    Winicov, I I. and Bastola, D.R. Transgenic overexpression of the transcription factor alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants.Plant Physiol, 1999, 120 (2): 473-480
    Xia, T., Apse, M. P. and Aharon, G. S. and Blumwald E. Physiol Plant, 2002, 116 (2): 206-212
    Yamanouchi, M., Fujiyama, H., Matsumoto, N., and Nagai, T. Relationships between the varietal difference of salinity tolerance and the characteristics of absorption and translocation of sodium ion. V, Varietal differences of salinity tolerance for cucumber (Cucumis sativus L.). Bulletin of the Faculty of Agriculture, 1989, 42:25-30
    Yamazaki, M., Gong. ZhiZhong, Fukuchi, Mizutani, M., Fukui, Y., Tanaka,Y, Kusumi, T., Saito, K. and Gong, Z. Z. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. Journal of Biological Chemistry, 1999, 274 (11): 7405-7411
    Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi, Shinozaki, K. and Shinozaki, K. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol, 1997, 38 (10): 1095-1102
    Yung. MeiHing, Schaffer, R., Putterill, J. and Yung, M. H. Identification of genes expressed during early Arabidopsis carpel development by mRNA differential display, characterisation ofATCEL2, a novel endo-1, 4-beta-D-glucanase gene. Plant Journal, 1999, 17 (2): 203-208
    Zhang. JinFa, Nepomueeno, A., Stewart, J. M., Turley, R. B., Dugger, P. (ed.) and Richter, D. Gene expression related to the semigamy genotype in cotton (Gossypium barbadense). Proceedings Beltwide Cotton Conferences, 1998, 2 (5-9): 1457-1462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700